## **Electronic Supporting Information**

Mo<sub>2</sub>C quantum dots embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range Zonghua Pu,<sup>a</sup> Min Wang,<sup>a</sup> Zongkui Kou,<sup>a</sup> Ibrahim Saana Amiinu,<sup>a</sup> and Shichun Mu<sup>a</sup>\*

<sup>a</sup> State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China

\* E-mail: msc@whut.edu.cn

## **Experimental Section**

**Materials:** Chitosan, ammonium molybdate ((NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>•4H<sub>2</sub>O) and sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) were purchased from Beijing Chemical Works. Commercial Mo<sub>2</sub>C, potassium hydroxide (KOH), potassium phosphate (KH<sub>2</sub>PO<sub>4</sub>, K<sub>2</sub>HPO<sub>4</sub>) and ethanol were purchased from Aladdin Reagent. Nafion (5 wt%) and Pt/C (20 wt%) were purchased from Sigma-Aldrich. All the reagents in the experiment were analytical grade and used without further treatments. Deionized Mini-Q water was used as solvent.

**Preparation of Mo<sub>2</sub>C QDs/NGCLs:** 1.0 g (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>•4H<sub>2</sub>O and 1.0 g chitosan were dissolved in water via ultrasonication for 20 min. The solution was dried at 80 °C form homogeneous powder. The solid mixture was annealing at 900 °C for 2 h in Ar atmosphere. After cooled to room temperature naturally, the resulting products of Mo<sub>2</sub>C QDs/NGCLs were obtained.

**Preparation of NGCLs:** NGCLs were derived from pyrolysis of chitosan powder with the same temperature under Ar flow.

**Characterizations:** X-ray diffraction (XRD) patterns were collected on a Rigaku X-ray diffractometer equipped with a Cu  $K_{\alpha}$  radiation source. The morphology and structure were characterized by transmission electron microscopy (TEM, HITACHI H-8100). X-ray photoelectron spectroscopy (XPS) was obtained on an ESCALABMK

II X-ray photoelectron spectrometer. Raman shifts were recorded a LabRAMAramis Raman spectrometer instrument using the Ar ion laser with an excitation wavelength of 633 nm.

**Electrochemical characterization:** The electrochemical tests for HER were carried out with a CHI 660E electrochemical workstation using a three-electrode configuration cell. The Ag/AgCl (3.0 M KCl) and graphite rod were used as reference electrode and auxiliary electrode, respectively. Glass carbon electrode (GCE: diameter = 3 mm) modified by catalyst was used as working electrode. 10 mg catalyst and 10 μl 5 wt% Nafion solution were dispersed in 990 μl ethanol/water (v/v=1:1) mixed solvent by sonication 30 min. Then 14 μl of the catalyst ink was loaded on a GCE (loading: 2.0 mg cm<sup>-2</sup>). The polarization curves were recorded in 0.5 M H<sub>2</sub>SO<sub>4</sub> (pH = 0), 1.0 M phosphate buffered solution (PBS, pH = 7) and 1.0 M KOH (pH = 14) with a scan rate of 2 mV s<sup>-1</sup> at room temperature (~25 °C), respectively. In all measurements, the Ag/AgCl reference electrode was calibrated with respect to reversible hydrogen electrode (RHE) by adding a value of (0.197 + 0.059 pH) V. EIS measurements were carried out in the frequency range of 100 kHz–0.01 Hz. All measured polarization curves were corrected for iR loss.

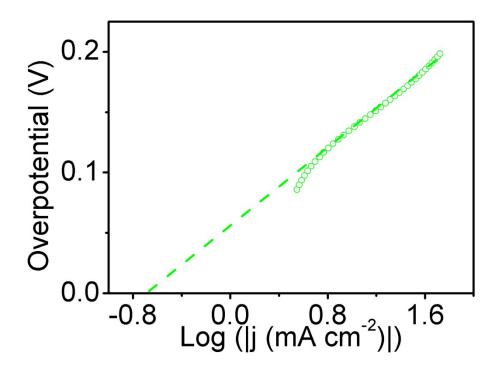
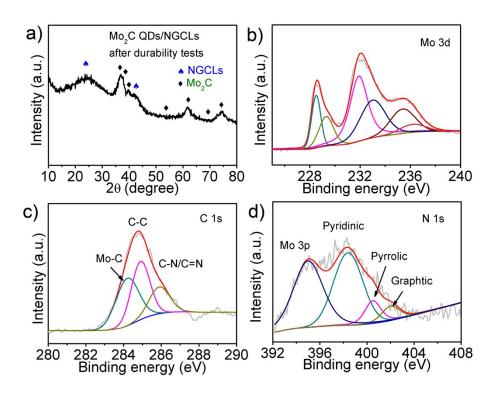
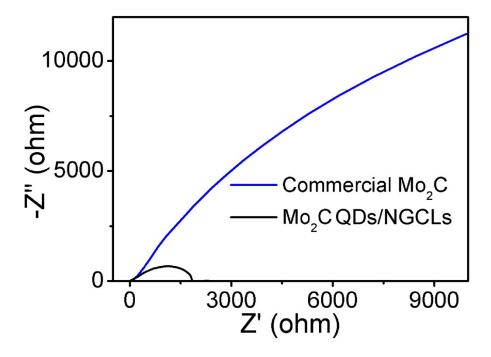
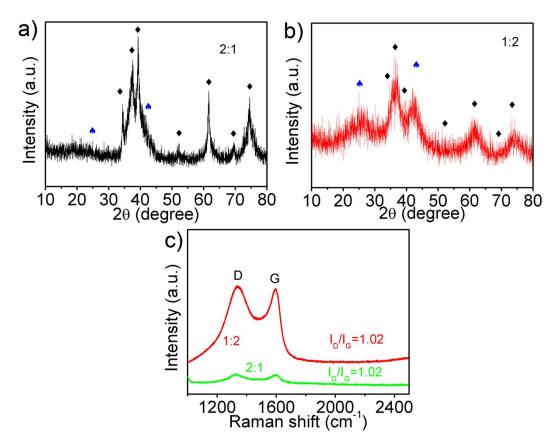
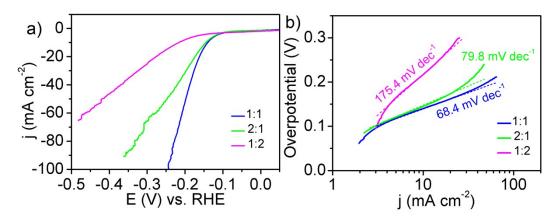
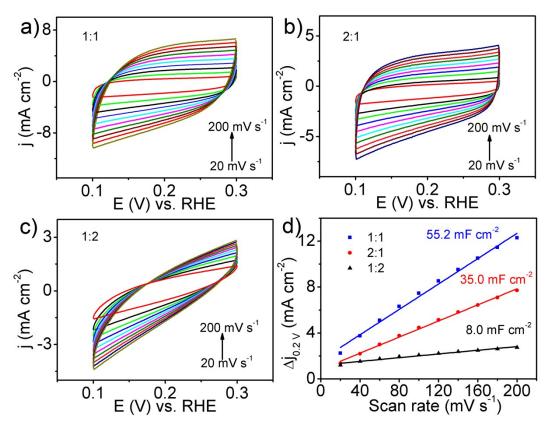



Fig. S1. Tafel plot of Mo<sub>2</sub>C QDs/NGCLs.



Fig. S2 (b) XRD pattern and (b-c) the high-resolution XPS spectra of  $Mo_2C$  QDs/NGCLs after the durability tests.




**Fig. S3** Nyquist plots of  $Mo_2C$  QDs/NGCLs and commercial  $Mo_2C$  in 0.5 M  $H_2SO_4$  at overpotential of 200 mV.



**Fig. S4** (a, b) XRD patterns and (c) Raman spectra for samples obtained from  $(NH_4)_6Mo_7O_{24}$ •4H<sub>2</sub>O and chitosan with different initial mass ratios (2:1 and 1:2).



**Fig. S5.** (a) Polarization curves and (b) Tafel plots of the catalysts derived from ammonium molybdate and chitosan with different initial mass ratios.



**Fig. S6** (a, b and c) CVs for samples obtained from  $(NH_4)_6Mo_7O_{24}$ • $4H_2O$  and chitosan with different initial mass ratios (1:1, 2:1 and 1:2). (d) The capacitive current density at 0.2 V as a function of scan rate for samples in 0.5 M  $H_2SO_4$ .

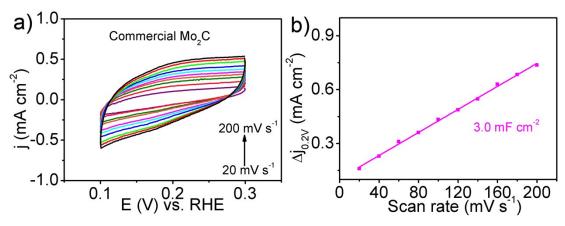



Fig. S7 (a) CVs and (b) the capacitive current density at 0.2 V as a function of scan rate for commercial  $Mo_2C$  in 0.5 M  $H_2SO_4$ .

 $\begin{tabular}{lll} \textbf{Table S1} & Comparison & of & HER & performance & in a cidic & media & for & Mo_2C & QD \\ NCs/NGCLs & with other Mo_2C-based electrocatalysts. \end{tabular}$ 

| Catalyst                          | Loading                | Electrolyte/pH                       | j (mA cm <sup>-2</sup> ) | Overpotential at the | j <sub>0</sub> (mA cm <sup>-2</sup> ) | Ref.      |
|-----------------------------------|------------------------|--------------------------------------|--------------------------|----------------------|---------------------------------------|-----------|
|                                   | (mg cm <sup>-2</sup> ) |                                      |                          | corresponding j (mV) |                                       |           |
| Mo <sub>2</sub> C QDs/NGCLs       | 2                      | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 136                  | 0.2                                   | This work |
| Mo <sub>2</sub> C/GCNs            | 0.36                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 200                  | 0.0125                                | 1         |
| Bulk Mo <sub>2</sub> C            | 1.4                    | 1.0 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 210                  | 0.0013                                | 2         |
| Mo <sub>2</sub> C/CNT             | 2                      | 0.1 M HClO <sub>4</sub>              | 10                       | 152                  | 0.014                                 | 3         |
| Mo <sub>2</sub> C/XC              | 2                      | 0.1 M HClO <sub>4</sub>              | 3                        | ~150                 | 0.013                                 | 3         |
| Mo <sub>1</sub> Soy/RGO           | -                      | 0.1 M HClO <sub>4</sub>              | 10                       | 177                  | 0.037                                 | 4         |
| β-Mo <sub>2</sub> C               | 0.75                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 172                  | 0.017                                 | 5         |
| Mo <sub>2</sub> C@NC              | 0.28                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 124                  | 0.096                                 | 6         |
| Mo <sub>2</sub> C nanowires       | 0.21                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 130                  | -                                     | 7         |
| MoC <sub>x</sub> nano-octahedrons | 0.8                    | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 142                  | 0.23                                  | 8         |
| MoCN                              | 0.4                    | pH=1                                 | 10                       | 145                  | -                                     | 9         |
| Mo <sub>2</sub> C/NCNT            | 3                      | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 147                  | 0.1146                                | 10        |
| 3D Mo <sub>x</sub> C/Ni network   | -                      | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 150                  | 0.1                                   | 11        |
| Mo <sub>2</sub> C nanowires       | ~0.28                  | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 200                  | -                                     | 12        |
| Mo <sub>2</sub> C nanoparticles   | 0.102                  | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10                       | 198                  | -                                     | 13        |

 $\label{eq:table S2} \textbf{Table S2} \ \text{Comparison of HER performance in neutral media for Mo}_2 \text{C QDs/NGCLs with other Pt-free HER electrocatalyst.}$ 

| Catalyst                    | Electrolyte/pH | j (mA cm <sup>-2</sup> ) | Overpotential at the   | Ref.      |  |
|-----------------------------|----------------|--------------------------|------------------------|-----------|--|
| Catalyst                    |                |                          | corresponding $j$ (mV) |           |  |
| M. COD AICCL                | 1.0 M PBS      | 2                        | 73                     | This work |  |
| Mo <sub>2</sub> C QDs/NGCLs |                | 10                       | 136                    | THIS WOLK |  |
| Bulk Mo <sub>2</sub> C      | pH= 7          | 1                        | 200                    | 2         |  |
| Mo <sub>2</sub> C@NC        | 1.0 M PBS      | 10                       | 156                    | 6         |  |
| Mo <sub>2</sub> C/NCNT      | 1.0 M PBS      | 10                       | 645                    | 10        |  |
| MoP/CF                      | 1.0 M PBS      | 1                        | ~300                   | 14        |  |
| $MoS_2/Mo$                  | 1.0 M PBS      | 2                        | 172                    | 15        |  |
| WP NAs/CC                   | 1.0 M PBS      | 2                        | 95                     | 16        |  |
| CoP/CC                      | 1.0 M PBS      | 2                        | 65                     | 17        |  |
| Co-NRCNTs                   | 0.1 M PBS      | 2                        | 380                    | 18        |  |
| FeP/Ti                      | 1.0 M PBS      | 10                       | 102                    | 19        |  |
| H <sub>2</sub> -CoCat/FTO   | 1.0 M PBS      | 2                        | 385                    | 20        |  |
| Co-S/FTO                    | 1.0 M PBS      | 2                        | 83                     | 20        |  |
| CuMoS <sub>4</sub> crystals | 1.0 M PBS      | 2                        | 210                    | 21        |  |

 $\label{eq:table S3} \textbf{ Comparison of HER performance in basic media for $Mo_2C$ QDs/NGCLs with other Pt-free HER electrocatalyst.}$ 

| Catalyst                        | Electrolyte/pH | j (mA cm <sup>-2</sup> ) | Overpotential at the   | Ref.      |  |
|---------------------------------|----------------|--------------------------|------------------------|-----------|--|
|                                 |                |                          | corresponding $j$ (mV) | 11014     |  |
| Mo <sub>2</sub> C QDs/NGCLs     | 1.0 M KOH      | 2                        | 73                     | This work |  |
|                                 |                | 10                       | 111                    |           |  |
| Bulk Mo <sub>2</sub> C          | 1.0 M KOH      | 10                       | 190                    | 2         |  |
| $\beta$ -Mo <sub>2</sub> C      | 0.1 M KOH      | 10                       | 197                    | 5         |  |
| Mo <sub>2</sub> C@NC            | 1.0 M KOH      | 10                       | 60                     | 6         |  |
| MoC <sub>x</sub> nano-          | 1.0 M KOH      | 10                       | 151                    | 8         |  |
| octahedrons                     |                | 10                       | 131                    | 8         |  |
| Mo <sub>2</sub> C/NCNT          | 1.0 M KOH      | 10                       | 257                    | 10        |  |
| Mo <sub>2</sub> C nanoparticles | 1.0 M KOH      | 10                       | 176                    | 13        |  |
| MoS <sub>2</sub> /Mo            | 1.0 M KOH      | 2                        | 172                    | 15        |  |
| WP NAs/CC                       | 1.0 M KOH      | 10                       | 150                    | 16        |  |
| CoP/CC                          | 1.0 M KOH      | 10                       | 209                    | 17        |  |
| Co-NRCNTs                       | 1.0 M KOH      | 10                       | 370                    | 18        |  |
| Co-S/FTO                        | 1.0 M KOH      | 1                        | 480                    | 20        |  |
| Ni <sub>2</sub> P nanoparticles | 1.0 M KOH      | 20                       | 250                    | 22        |  |
| Ni wire                         | 1.0 M NaOH     | 10                       | 350                    | 23        |  |
| Ni-Mo alloy/Ti foil             | 1.0 M NaOH     | 10                       | 80                     | 23        |  |

## References

- W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri and X. Sun, ACS Catal., 2014, 4,
   2658-2661.
- 2 H. Vrubel and X. Hu, *Angew. Chem. Int. Ed.*, 2012, **124**, 12875–12878.
- W. Chen, C. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Energy Environ. Sci.*, 2013, **6**, 943–951.
- 4 W. Chen, S. Iyer, K. Sasaki, C. H. Wang, Y. Zhu, J. T. Muckerman and E. Fujita, *Energy Environ. Sci.*, 2013, **6**, 1818–1826.
- 5 F. Ma, H. Wu, B. Xia, C. Xu and X. Lou, *Angew. Chem. Int. Ed.*, 2015, **54**, 15395-15399.
- 6 Y. Liu, G. Yu, G. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Angew. Chem. Int. Ed.*, 2015, **54**, 10752–10757.
- L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang,
   B. Liu and H. H. Girault, *Energy Environ. Sci.*, 2014, 7, 387-392.
- 8 H. Wu, B. Xia, L. Yu, X. Yu and X. Lou, *Nat. Commun.*, 2015, **6**, 6512.
- Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, *J. Am. Chem. Soc.*, 2015,137, 110-113.
- 10 K. Zhang, Y. Zhao, D. Fu and Y. Chen, *J. Mater. Chem. A*, 2015, **3**, 5783-5788.
- 11 J. Zhang, X. Meng, J. Zhao and Z. Zhu, *ChemCatChem*, 2014, **6**, 2059-2064.
- 12 C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochim. Acta*, 2014, **134**, 182-186.

- 13 L. Ma, L. Ting, V. Molinari, C. Giordano and B. S. Yeo, *J. Mater. Chem. A*, 2015, **3**, 8361-8368.
- 14 W. Cui, Q. Liu, Z. Xing, A. M. Asiri, K. A. Alamry and X. Sun, *Appl. Catal. B-Environ.*, 2015, **164**, 144-150.
- 15 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, *Electrochim. Acta*, 2015, **168**, 133-138.
- Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.
- J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 18 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, **126**, 4461-4465.
- J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis and R. E. Schaak, ACS Nano, 2014, 8, 11101-11107.
- 20 Y. Sun, L. Chong, D. Grauer, J. Yano, J. Long, P. Yang and C. Chang, J. Am. Chem. Soc., 2013, 135, 17699-17702.
- P. Tran, M. Nguyen, S. Pramana, A. Bhattacharjee, S. Chiam, J. Fize, M. Field,
  V. Artero, L. Wong, J. Loo and J. Barber, *Energy Environ. Sci.*, 2012, 5, 8912-8916.
- L. Feng, H. Vrubel, M. Bensimon and X. Hu, *Phys. Chem. Chem. Phys.*, 2014,16, 5917-5921.
- 23 J. McKone, B. Sadtler, C. Werlang, N. S. Lewis and H. Gray, ACS Catal., 2013,

, 166-169.