Supporting information for

Organocatalyzed Nucleophilic Addition of Pyrazoles to 2H-Azirines: Asymmetric Synthesis of 3,3-Disubstituted Aziridines and Kinetic Resolution of Racemic 2H-Azirines

Dong An, Xukai Guan, Rui Guan, Lajiao Jin, Guangliang Zhang, Suoqin Zhang*

College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China

Table of Contents

1.	General Remarks	S2
2.	General procedure and characterization data for racemic 2H-azirine carboxylic esters 2	S2-S4
3.	General procedure and characterization data for chiral 2H-azirine carboxylic esters (R)-2	S4-S6
4.	General procedure and characterization data for chiral aziridines 3	S6-S12
5.	General procedure and characterization data for aziridine (2S, 3R)-3n	S12-S13
6.	General procedure and characterization data for chiral imidodiphosphoric acids 4	S13
7.	General procedure and characterization data for chiral aziridines 6	S14
8.	X-Ray Structures of 3e	S14
9.	Rerferences	S15
10.	NMR spectra	S16-S53
11.	HPLC spectra of racemic and enantioenriched products	S54-S88

General Remarks: All reagents were used without purification. All solvents were purified and dried according to standard methods. The reaction products were purified by flash column chromatography on 200-300 mesh silica gel. The melting point was recorded on a melting point apparatus (MPA100, Stanford Research Systems, Inc.). Optical rotations were measured with a Jasco-P-2000 digital polarimeter at 20 or 25 °C and concentrations (*c*) are given in $g \times (100 \text{ mL})^{-1}$. ¹H and ¹³C NMR spectra were recorded with Bruker 400 MHz spectrometers (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR); chemical shifts (δ) are given in ppm. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker ApexII mass spectrometer by means of the ESI technique. Analytical HPLC was recorded on a HPLC machine equipped with Elite P1201 series or Ichrom 5100 series quaternary pump with a UV diode array detector. Enantiomeric excess values were measured by analytical HPLC with Daicel ChiralPak AS-H or Daicel Chiralcel OD-H column. 5-aryl-1H-pyrazole-3-carboxylic esters **1** were synthesized according to literature procedures.¹

General procedure and characterization data for racemic 2H-azirine carboxylic esters 2:

Racemic 2H-azirine carboxylic esters 2 were synthesized according to literature procedures.² Compounds 2a, 2b, 2d, 2i, 2j, 2m and 2o are known compounds.¹ Compounds 2c, 2e-2h, 2k, 2l and 2n were first synthesized in this work and the characterization data was given.

General procedure for aliphatic substituded 2H-azirine carboxylic esters 2a-2i:

$$\begin{array}{c} O \\ R^{1} \\ \hline \\ O \\ \hline \\ CH_{3}OH, r.t. \end{array} \xrightarrow{N} O \\ \hline \\ CH_{3}OH, r.t. \end{array} \xrightarrow{N} O \\ R^{1} \\ \hline \\ CH_{3}OH, r.t. \end{array} \xrightarrow{N} O \\ R^{1} \\ \hline \\ CH_{3}OH, r.t. \end{array} \xrightarrow{N} O \\ \hline \\ CH_{3}OH, r.t. \end{array} \xrightarrow{N} O \\ \hline \\ R^{1} \\ \hline \\ COOR^{2} \\ \hline \\ DCM, r.t. \end{array} \xrightarrow{TsO_{N}} O \\ R^{1} \\ \hline \\ COOR^{2} \\ \hline \\ DCM \\ R^{1} \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\ COOR^{2} \\ \hline \\ CH_{3}OH, r.t. \\ \hline \\$$

To a solution of NH₂OH HCl (11 mmol, 1.1 equiv.) in 20 mL CH₃OH was added aliphatic substituded β -ketoester (10 mmol, 1.0 equiv.) dropwise and the solution was stirred for 1-2 h. After completion of reaction, the solvent was removed under reduced pressure. 30 mL ethyl acetate and 5 mL water was added and the organic and the aqueous layer were separated. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over MgSO₄ and concentrated in vacuo to give crude product without purification. (The products ketoximes are unstable and should be used for next step as soon as possible.)

To the ketoxime produced in the previous step, TsCl (12 mmol, 1.2 equiv.) and pyridine (12 mmol, 1.2 equiv.) were added. The solution was stirred for 6 h at 25°C. After the reaction was completed, the solvent was removed in vacuo and the crude material was purified by column chromatography.

To a solution of ketoximetosylate (5 mmol, 1 equiv.) in 10 mL CH_2Cl_2 , Et_3N (5.5 mmol, 1.1 equiv.) was added dropwise at 0 °C. After stirring at 0 °C for 15-30 min, the mixture was stirred at 25 °C for 6h. After the reaction was completed, the solvent was removed in vacuo and the crude material was purified by column chromatography.

General procedure for aromatic substituded 2H-azirine carboxylic esters 2j-2o:

To a solution of NH₂OH HCl (11 mmol, 1.1 equiv.) in 20 mL CH₃OH was added aromatic substituded β -ketoester (10 mmol, 1.0 equiv.) dropwise and the solution was stirred for 4-8 h. After completion of reaction, the solvent was removed under reduced pressure. 30 mL ethyl acetate and 5 mL water was added and the

organic and the aqueous layer were separated. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with 10 mL saturated Na₂CO₃ and saturated brine (10 ml \times 3), dried over MgSO₄ and concentrated in vacuo to give crude product without purification. (The products ketoximes are unstable and should be used for next step as soon as possible.)

To the ketoxime produced in the previous step, TsCl (6 mmol, 1.2 equiv.) and pyridine (6 mmol, 1.2 equiv.) were added. The solution was stirred for 3 h at 0 °C. After the reaction was completed, the solvent was removed in vacuo and the crude material was purified by column chromatography.

To a solution of ketoximetosylate (5 mmol, 1 equiv.) in 10 mL CH₂Cl₂, DBU (6.0 mmol, 1.2 equiv.) was added dropwise at 0 °C. After stirring at 0 °C for 15-30 min, the mixture was stirred at 25 °C for 2h. After the reaction was completed, 20 mL ethyl acetate and 5 mL water was added. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with saturated brine (10 ml \times 3), dried over MgSO₄ and concentrated in vacuo. The crude material was purified by column chromatography.

Characterization data for racemic 2H-azirine carboxylic esters 2:

Isopropyl 3-methyl-2H-azirine-2-carboxylate (±)-2c: colorless oil, 79% yield (from the corresponding keto ester), ¹H NMR (400 MHz, CDCl₃) δ 5.08-4.99 (m, 1H), 2.53 (s, 3H), 2.41 (s, 1H), 1.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.43, 159.10, 68.50, 28.91, 21.73, 21.68, 12.45. HRMS(ESI) *m*/*z* calcd for C₇H₁₂NO₂ ([M+H]⁺): 142.0868, found: 142.0862.

Methyl 3-propyl-2H-azirine-2-carboxylate (±)-**2e**: colorless oil, 66% yield (from the corresponding keto ester), ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 2.81 (t, *J* = 7.2 Hz, 2H), 2.45 (s, 1H), 1.81 (q, J = 7.2 Hz, 2H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 172.47, 161.77, 51.98, 28.46, 28.35, 17.74, 13.54. HRMS(ESI) *m/z* calcd for C₇H₁₂NO₂ ([M+H]⁺): 142.0868, found: 142.0866.

Methyl 3-pentyl-2H-azirine-2-carboxylate (±)-**2f**: colorless oil, 67% yield (from the corresponding keto ester), ¹H NMR (300 MHz, CDCl₃) δ 3.72 (s, 3H), 2.82 (t, *J* = 7.4 Hz, 2H), 2.44 (s, 1H), 1.81-1.72 (m, 2H), 1.48-1.32 (m, 4H), 0.92 (t, *J* = 7.0 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.50, 161.94, 52.02, 31.06, 28.48, 26.59, 23.76, 22.08, 13.72. HRMS(ESI) m/z calcd for C₉H₁₆NO₂ ([M+H]⁺): 170.1181, found: 170.1176.

Methyl 3-hexyl-2H-azirine-2-carboxylate (±)-**2g**: colorless oil, 55% yield (from the corresponding keto ester), ¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 3H), 2.82 (t, J = 7.3 Hz, 2H), 2.44 (s, 1H), 1.82-1.70 (m, 2H), 1.45-1.40 (m, 2H), 1.39-1.26

(m, 4H), 0.90 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.50, 161.94, 52.03, 31.19, 28.63, 28.49, 26.63, 24.06, 22.31, 13.88. HRMS(ESI) m/z calcd for C₁₀H₁₈NO₂ ([M+H]⁺): 184.1338, found: 184.1334.

Methyl 3-isobutyl-2H-azirine-2-carboxylate (±)-2h: colorless oil, 14% yield (from the Corresponding keto ester), ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 2.73 (d, *J* = 6.8 Hz, 2H), 2.42 (s, 1H), 2.23-2.13 (m, 1H), 1.07 (t, *J* = 9.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.53, 161.24, 52.05, 35.31, 28.20, 25.32, 22.34. HRMS(ESI) *m/z* calcd for C₈H₁₄NO₂ ([M+H]⁺): 156.1025, found: 156.1028.

Methyl 3-(4-bromophenyl)-2H-azirine-2-carboxylate (±)-**2k**: white solid, 17% yield, (from the corresponding keto ester), m.p. 68.2-68.7 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.68 (m, 4H), 3.75 (s, 3H), 2.87 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.64, 157.99, 132.72, 131.54, 128.97, 121.06, 52.29, 29.54. HRMS(ESI) *m/z* calcd

for C₁₀H₉BrNO₂ ([M+H]⁺): 253.9811, found: 253.9800.

Methyl 3-(4-chlorophenyl)-2H-azirine-2-carboxylate (±)-**2l**: white solid, 11% yield (from the corresponding keto ester), m.p. 63.4-64.2 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 7.0 Hz, 2H), 3.75 (s, 3H), 2.87 (s, 1H). ¹³C

NMR (101 MHz, CDCl₃) δ 171.70, 157.82, 140.37, 131.51, 129.77, 120.66, 52.31, 29.57. HRMS(ESI) *m/z* calcd for C₁₀H₉ClNO₂ ([M+H]⁺): 210.0316, found: 210.0309.

Methyl 3-(4-(trifluoromethyl)phenyl)-2H-azirine-2-carboxylate (±)-**2n**: colorless oil, 26% yield (from the corresponding keto ester), ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 3.76 (s, 3H), 2.94 (s, 1H). ¹³C NMR

(75 MHz, CDCl₃) δ 171.36, 158.53, 135.25 (q, *J* = 32.7 Hz), 130.57, 126.30 (q, *J* = 3.7 Hz), 125.71, 123.25 (q, *J* = 271.3 Hz), 52.29, 29.91. HRMS(ESI) *m*/*z* calcd for C₁₁H₉F₃NO₂ ([M+H]⁺): 244.0580, found: 244.0567.

General procedure and characterization data for chiral 2H-azirine carboxylic esters (R)-2:

General procedure for chiral 2H-azirine carboxylic esters (R)-2:

For **2a-d**: A solution of ethyl 3-(4-bromophenyl)-1H-pyrazole-5-carboxylate **1a** (0.1 mmol) and catalyst **4e** (10 mol %, 0.01 mmol) in 0.9 mL cyclohexane and 0.1 mL toluene was stirred at -20 $^{\circ}$ C for 10 min, then racemic 2H-azirine carboxylic esters **2** (0.18 mmol) was added. The reaction mixture was stirred at -20 $^{\circ}$ C for 3 d. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

For 2e, 2g and 2i: A solution of ethyl 3-(4-bromophenyl)-1H-pyrazole-5-carboxylate 1a (0.1 mmol) and catalyst 4e (10 mol %, 0.01 mmol) in 0.9 mL cyclohexane and 0.1 mL toluene was stirred at 0 $^{\circ}$ C for 10 min, then racemic 2H-azirine carboxylic esters 2 (0.18 mmol) was added. The reaction mixture was stirred at 0 $^{\circ}$ C for 3 d. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

For 2k, 2l and 2n: A solution of ethyl 3-(4-bromophenyl)-1H-pyrazole-5-carboxylate 1a (0.1 mmol) and catalyst 4e (10 mol %, 0.01 mmol) in 0.9 mL cyclohexane and 0.1 mL toluene was stirred at 25 °C for 10 min, then racemic 2H-azirine carboxylic esters 2 (0.18 mmol) was added. The reaction mixture was stirred at 25 °C for 6 d. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

Characterization data for chiral 2H-azirine carboxylic esters (*R*)-2:

N (*R*)-ethyl 3-methyl-2H-azirine-2-carboxylate (*R*)-**2a**: colorless oil, 49% yield, 98% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 98 : 2, 1.0 ml/min, λ = 210 nm, t (minor) = 8.55 min, t (major) = 12.77 min]; ${}^{[\alpha]}_{D}{}^{25}$ = -223.2 (c = 0.112, EtOAc). ¹H NMR (300 MHz, CDCl₃) δ 4.25-4.12 (m, 2H), 2.53 (s, 3H), 2.44 (s, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.92, 159.07, 61.02, 28.71, 14.12, 12.48. HRMS(ESI) *m*/*z* calcd for C₆H₁₀NO₂ ([M+H]⁺): 128.0712, found: 128.0716.

N (*R*)-methyl 3-methyl-2H-azirine-2-carboxylate (*R*)-**2b**: colorless oil, 48% yield, 99% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 99 : 1, 1.0 ml/min, λ = 210 nm, t (minor) = 12.39 min, t (major) = 18.23 min]; ${}^{[\alpha]}_{D}{}^{25}$ = -140.5 (c = 0.195, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 2.54 (s, 3H), 2.46 (s, 1H). {}^{13}C NMR (101 MHz, CDCl₃) δ 172.25, 158.96, 51.97, 28.46, 12.38. HRMS(ESI) *m/z* calcd for C₅H₈NO₂ ([M+H]⁺): 114.0555, found: 114.0563.

(*R*)-isopropyl 3-methyl-2H-azirine-2-carboxylate (*R*)-**2c**: colorless oil, 48% yield, 99% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 99 : 1, 1.0 ml/min, λ = 210 nm, t (minor) = 8.51min, t (major) = 10.74 min]; ${}^{[\alpha]}{}_{D}{}^{25}$ = -161.5 (c = 0.112, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 5.16-4.97 (m, 1H), 2.52 (s, 3H), 2.41 (s, 1H), 1.25 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.57, 159.24, 68.65, 28.94, 21.75, 12.46. HRMS(ESI) *m/z* calcd for C₇H₁₂NO₂ ([M+H]⁺): 142.0868, found: 142.0856.

(*R*)-benzyl 3-methyl-2H-azirine-2-carboxylate (*R*)-**2d**: colorless oil, 49% yield, 99% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 98 : 2, 0.5 ml/min, λ = 225 nm, t (minor) = 15.92 min, t (major) = 25.96 min]; ${}^{[\alpha]}_{D}{}^{25}$ = -129.8 (c = 0.168, EtOAc).

¹H NMR (300 MHz, CDCl₃) δ 7.45-7.29 (m, 5H), 5.19 (d, J = 12.3 Hz, 1H), 5.14 (d, J = 12.3 Hz, 1H), 2.52 (s, 3H), 2.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.77, 158.89, 135.49, 128.46, 128.22, 128.12, 66.71, 28.68, 12.44. HRMS(ESI) m/z calcd for C₁₁H₁₂NO₂ ([M+H]⁺): 190.0868, found: 190.0864.

(*R*)-methyl 3-propyl-2H-azirine-2-carboxylate (*R*)-**2e**: colorless oil, 48% yield, 97% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 99 : 1, 1.0 ml/min, λ = 210 nm, t (minor) = 9.43 min, t (major) = 20.27 min]; ${}^{[\alpha]}_{D}{}^{25}$ = -195.0 (c = 0.121, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 2.81 (t, *J* = 7.2 Hz, 2H), 2.45 (s, 1H), 1.81 (q, *J* = 7.2

Hz, 2H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.47, 161.77, 51.98, 28.46, 28.35, 17.74, 13.54. HRMS(ESI) m/z calcd for C₇H₁₂NO₂ ([M+H]⁺): 142.0868, found: 142.0866.

(*R*)-methyl 3-hexyl-2H-azirine-2-carboxylate (*R*)-**2g**: colorless oil, 49% yield, 99% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 98 : 2, 1.0 ml/min, λ = 210 nm, t (minor) = 6.29 min, t (major) = 9.75 min]; ${}^{[\alpha]}_{D}{}^{25}$ = -216.1 (c = 0.161,

EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 3H), 2.82 (t, *J* = 7.3 Hz, 2H), 2.44 (s, 1H), 1.82-1.70 (m, 2H), 1.45-1.40 (m, 2H), 1.39-1.26 (m, 4H), 0.90 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.50, 161.94, 52.03, 31.19, 28.63, 28.49, 26.63, 24.06, 22.31, 13.88. HRMS(ESI) *m*/*z* calcd for C₁₀H₁₈NO₂ ([M+H]⁺): 184.1338, found: 184.1334.

(*R*)-ethyl 3-benzyl-2H-azirine-2-carboxylate (*R*)-**2i**: colorless oil, 45% yield, 94% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 98 : 2, 1.0 ml/min, λ = 225 nm, t (minor) = 16.40min, t (major) = 24.27 min]; $[\alpha]_{D}^{25}$ = -275.2 (c = 0.164, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 4.25-4.09 (m, 4H), 2.51

(s, 1H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.65, 161.29, 131.57, 128.89, 128.70, 127.65, 61.04, 32.89, 29.15, 14.05. HRMS(ESI) m/z calcd for C₁₂H₁₄NO₂ ([M+H]⁺): 204.1025, found: 204.1018.

 $(R) \text{-methyl } 3\text{-}(4\text{-bromophenyl})\text{-}2\text{H-azirine-}2\text{-}carboxylate} \quad (R)\text{-}2\mathbf{k}: \text{ white solid, } 48\% \text{ yield, } 97\% \text{ ee [Daicel Chiralcel OD-H column, } n\text{-hexane } / i\text{-}PrOH = 95 : 5, 1.0 \text{ ml/min, } \lambda = 254 \text{ nm, t (minor)} = 10.27 \text{ min, t (major)} = 15.90 \text{ min]}; \text{ m.p. } 68.2\text{-}68.7 \text{ oC}, \\ [\alpha]_{D}^{25} = -377.3 \text{ (c} = 0.220, \text{ EtOAc}). \ ^{1}\text{H NMR} \text{ (400 MHz, CDCl}_{3}) \delta 7.87\text{-}7.68 \text{ (m, 4H), } 3.75 \text{ (s, 3H), } 2.87 \text{ (s, 1H).} \ ^{13}\text{C NMR} \text{ (101 MHz, CDCl}_{3}) \delta 171.64, 157.99, 132.72, 131.54, 128.97, 121.06, 52.29, 29.54. \text{ HRMS(ESI)} m/z \text{ calcd for } C_{10}\text{H}_9\text{BrNO}_2 \text{ ([M+H]}^+): 253.9811, \text{ found: } 253.9800. \text{ ml} \text$

(R) -methyl 3 - (4 - chlorophenyl) - 2H - azirine - 2 - carboxylate (R) - 2I: white solid, 49% yield, 96% ee [Daicel Chiralcel OD-H column,*n*-hexane /*i* $-PrOH = 95 : 5, 1.0 ml/min, <math>\lambda = 254$ nm, t (minor) = 9.32 min, t (major) = 14.10 min]; m.p. 63.4-64.2 °C, [a]_D²⁵ = -602.2 (c = 0.184, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 7.0 Hz, 2H), 3.75 (s, 3H), 2.87 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.70, 157.82, 140.37, 131.51, 129.77, 120.66, 52.31, 29.57. HRMS(ESI) *m*/*z* calcd for C₁₀H₉ClNO₂ ([M+H]⁺): 210.0316, found: 210.0309.

(*R*)-methyl 3-(4-(trifluoromethyl)phenyl)-2H-azirine-2-carboxylate (*R*)-**2n**: colorless oil, 46% yield, 98% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 97 : 3, 1.0 ml/min, $\lambda = 254$ nm, t (minor) = 9.49 min, t (major) = 17.24 min]; ${}^{[\alpha]}_{D} {}^{25} = -518.2$

(c = 0.203, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 3.76 (s, 3H), 2.94 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 171.36, 158.53, 135.25 (q, *J* = 32.7 Hz), 130.57, 126.30 (q, *J* = 3.7 Hz), 125.71, 123.25 (q, *J* = 271.3 Hz), 52.29, 29.91. HRMS(ESI) *m*/*z* calcd for C₁₁H₉F₃NO₂ ([M+H]⁺): 244.0580, found: 244.0567.

General procedure and characterization data for chiral arylpyrazole substituted aziridines 3:

General procedure for chiral arylpyrazole substituted aziridines 3:

For **3a-3i** and **3p-3w**: A solution of 5-aryl-1H-pyrazole-3-carboxylic esters **1** (0.1 mmol) and catalyst **4e** (10 mol %, 0.01 mmol) in 0.9 mL cyclohexane and 0.1 mL toluene was stirred at -20 $^{\circ}$ C for 10 min, then racemic 2H-azirine carboxylic esters **2** (0.3 mmol) was added. The reaction mixture was stirred at -20 $^{\circ}$ C until the reaction was completed. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

For **3k-3o**: A solution of 5-aryl-1H-pyrazole-3-carboxylic esters **1** (0.1 mmol) and catalyst **4e** (10 mol %, 0.01 mmol) in 0.9 mL cyclohexane and 0.1 mL toluene was stirred at 25 °C for 10 min, then racemic 2H-azirine carboxylic esters **2** (0.3 mmol) was added. The reaction mixture was stirred at 25 °C until the reaction was completed. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

Characterization data for chiral arylpyrazole substituted aziridines 3:

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(ethoxycarbonyl)-2-methylaziridin-2-yl)-1H-pyrazole-5-carboxylate **3a**: colourless oil, 97% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 7.73 min, t (minor) = 15.77 min]; ${}^{[\alpha]}_{D}{}^{25}$ = +257.4 (c = 0.408, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H),

7.09 (s, 1H), 4.48-4.28 (m, 4H), 3.16 (s, 1H), 2.04 (brs, 1H), 1.93 (s, 3H), 1.45-1.36 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.35, 158.67, 149.29, 134.20, 131.74, 131.16, 127.33, 122.25, 108.68, 62.21, 61.36, 58.42, 42.17, 18.48, 14.20. HRMS(ESI) *m/z* calcd for C₁₈H₂₁BrN₃O₄ ([M+H]⁺): 422.0715, found: 422.0715.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2yl)-1H-pyrazole-5-carboxylate **3b**: colourless oil, 96% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 9.20 min, t (minor) = 18.72 min]; ${}^{[\alpha]}{}_{D}{}^{25}$ = +226.1 (c = 0.452, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.09 (s, 1H), 4.48-4.33 (m, 2H), 3.90 (s, 3H), 3.18 (s, 1H), 2.04 (brs, 1H), 1.93

(s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.70, 158.63, 149.27, 134.13, 131.71, 131.06, 127.28, 122.23, 108.72, 61.36, 58.43, 52.89, 42.01, 18.51, 14.16. HRMS(ESI) m/z calcd for $C_{17}H_{19}BrN_3O_4$ ([M+H]⁺): 408.0559, found: 408.0559.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(isopropoxycarbonyl)-2-methylaziridin -2-yl)-1H-pyrazole-5-carboxylate **3c**: colourless oil, 98% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 7.84 min, t (minor) = 14.96 min]; ${}^{[\alpha]}_{D}{}^{25}$ = +222.1 (c = 0.426, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.08 (s, 1H), 5.23-5.14 (m, 1H), 4.49-4.31 (m, 2H), 3.12

(s, 1H), 2.01 (brs, 1H), 1.93 (s, 3H), 1.46-1.30 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.71, 158.62, 149.21, 134.21, 131.73, 131.16, 127.33, 122.21, 108.62, 70.04, 61.29, 58.29, 42.35, 21.86, 21.77, 18.43, 14.22. HRMS(ESI) *m/z* calcd for C₁₉H₂₃BrN₃O₄ ([M+H]⁺): 436.0872, found: 436.0869.

Ethyl 1-((2*R*,3*S*)-3-((benzyloxy)carbonyl)-2-methylaziridin-2-yl)-3-(4-bro mophenyl)-1H-pyrazole-5-carboxylate **3d**: colourless oil, 98% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 13.13 min, t (minor) = 26.15 min]; ${}^{[\alpha]}_{D} {}^{25} = +246.5$ (c = 0.473, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.8

Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.49-7.30 (m, 5H), 7.08 (s, 1H), 5.33 (s, 2H), 4.40-4.35 (m, 2H), 3.21 (s, 1H), 2.04 (brs, 1H), 1.92 (s, 3H), 1.44-1.32 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.11, 158.61,

149.29, 135.07, 134.10, 131.72, 131.00, 128.60, 128.52, 128.34, 127.30, 122.25, 108.69, 67.70, 61.34, 58.48, 42.17, 18.54, 14.18. HRMS(ESI) m/z calcd for $C_{23}H_{23}BrN_3O_4$ ([M+H]⁺): 484.0872, found: 484.0861.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-propylaziridin-2-yl) -1H-pyrazole-5-carboxylate **3e**: white solid, 96% yield, 99.6% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 6.55 min, t (minor) = 18.88 min]; m.p. 130.6-131.2 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +252.4 (c = 0.416, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.52

(d, J = 8.4 Hz, 2H), 7.12 (s, 1H), 4.40 (q, J = 6.0 Hz, 2H), 3.89 (s, 3H), 3.25 (s, 1H), 2.37 (s, 1H), 2.04-1.95 (m, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.26-1.17 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.84, 158.67, 148.79, 134.47, 131.72, 131.20, 127.32, 122.19, 109.12, 61.50, 61.34, 52.88, 41.89, 33.87, 18.71, 14.19, 13.49. HRMS(ESI) m/z calcd for C₁₉H₂₃BrN₃O₄ ([M+H]⁺): 436.0872, found: 436.0870.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-pentylaziridin-2-yl) -1H-pyrazole-5-carboxylate **3f**: white solid, 92% yield, 99.4% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 5.41 min, t (minor) = 12.31 min]; m.p. 100.3-101.1 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +304.3 (c = 0.370, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H),

7.53 (d, J = 8.3 Hz, 2H), 7.12 (s, 1H), 4.40 (q, J = 7.0 Hz, 2H), 3.89 (s, 3H), 3.25 (s, 1H), 2.37 (s, 1H), 2.10-1.92 (m, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.29-1.11 (m, 6H), 0.80 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.77, 158.67, 148.78, 134.45, 131.71, 131.20, 127.31, 122.18, 109.14, 61.64, 61.33, 52.86, 41.92, 31.87, 31.04, 24.90, 22.28, 14.19, 13.81. HRMS(ESI) *m*/*z* calcd for C₁₉H₂₃BrN₃O₄ ([M+H]⁺): 464.1179, found: 464.1180.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-2-hexyl-3-(methoxycarbonyl)aziridin-2-yl)-1H-pyrazole-5-carboxylate **3g**: white solid, 86% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 4.99 min, t (minor) = 9.88 min]; m.p. 97.2-97.7 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +313.1 (c = 0.411, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J*

= 7.9 Hz, 2H), 7.13 (s, 1H), 4.40 (q, J = 6.0 Hz, 2H), 3.89 (s, 3H), 3.25 (s, 1H), 2.38 (brs, 1H), 2.02 (t, J = 6.0 Hz, 2H), 1.41 (t, J = 5.6 Hz, 3H), 1.29-1.09 (m, 8H), 0.82 (t, J = 5.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.82, 158.68, 148.78, 134.45, 131.71, 131.22, 127.31, 122.20, 109.14, 61.64, 61.33, 52.91, 41.94, 31.94, 31.45, 28.56, 25.32, 22.40, 14.19, 13.92. HRMS(ESI) m/z calcd for C₂₂H₂₉BrN₃O₄ ([M+H]⁺): 478.1336, found: 478.1337.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-2-isobutyl-3-(methoxycarbonyl)aziridin-2yl)-1H-pyrazole-5-carboxylate **3h**: white solid, 93% yield, 99.3% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 5.38 min, t (minor) = 11.07 min]; m.p. 123.2-123.8 °C, ^[α]_D²⁵ = +358.9 (c = 0.418, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 2H), 7.52

(d, J = 7.5 Hz, 2H), 7.12 (s, 1H), 4.42-4.32 (m, 2H), 3.88 (s, 3H), 3.29 (s, 1H), 2.43 (brs, 1H), 1.93-1.73 (m, 1H), 1.41 (t, J = 6.8 Hz, 3H), 1.35-1.18 (m, 2H), 0.89 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.96, 158.65, 148.53, 134.49, 131.72, 131.23, 127.24, 122.16, 109.12, 61.31, 60.87, 52.85, 41.72, 39.65, 25.34, 22.86, 21.76, 14.19. HRMS(ESI) m/z calcd for C₂₀H₂₅BrN₃O₄ ([M+H]⁺): 450.1028, found: 450.1029.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(ethoxycarbonyl)-2-phenethylaziridin -2-yl)-1H-pyrazole-5-carboxylate **3i**: white solid, 91% yield, 97% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 8.35 min, t (minor) = 21.40 min]; m.p. 84.5-85.2 °C, ${}^{[\alpha]}_{D} {}^{25}$ = +219.5 (c = 0.307, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.18-7.11 (m, 3H), 7.05 (s, 1H), 6.92-6.84

(m, 2H), 4.43-4.29 (m, 4H), 3.71 (d, J = 14.3 Hz, 1H), 3.39 (d, J = 14.8 Hz, 1H), 3.33 (s, 1H), 2.28 (brs, 1H), 1.40 (t, J = 7.6 Hz, 3H), 1.38 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.37, 158.63, 148.87, 135.22, 134.76, 131.63, 131.14, 129.35, 128.07, 127.39, 126.87, 122.16, 109.19, 62.20, 61.59, 61.29, 42.44, 38.20, 14.21. HRMS(ESI) m/z calcd for C₂₄H₂₅BrN₃O₄ ([M+H]⁺): 498.1023, found: 498.1026.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(ethoxycarbonyl)-2-phenylaziridin-2yl)-1H-pyrazole-5-carboxylate **3j**: white solid, 89% yield, 98% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 13.76 min, t (minor) = 21.66 min]; m.p. 127.0-127.8 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +507.1 (c = 0.435, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.62-7.52 (m, 4H), 7.34-7.26 (m, 3H), 7.09 (s, 1H), 4.32 (q, *J* = 6.9 Hz,

2H), 4.06 (q, J = 6.9 Hz, 2H), 3.77 (s, 1H), 2.99 (brs, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.58, 158.34, 149.31, 134.87, 133.70, 131.75, 131.17, 128.81, 127.89, 127.79, 127.39, 122.30, 109.37, 61.85, 61.23, 43.70, 14.17, 13.89. HRMS(ESI) m/z calcd for C₂₃H₂₃BrN₃O₄ ([M+H]⁺): 484.0866, found: 484.0857.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-2-(4-bromophenyl)-3-(methoxycarbonyl) aziridin-2-yl)-1H-pyrazole-5-carboxylate **3k**: white solid, 91% yield, 99.7% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 13.05 min, t (minor) = 22.37 min]; m.p. 151.2-151.8 °C, $[\alpha]_{D}^{25}$ = +444.4 (c = 0.496, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 6.8 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.43 (s, 4H), 7.09 (s, 1H), 4.38-4.24 (m,

2H), 3.80 (s, 1H), 3.66 (s, 3H), 2.92 (brs, 1H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.05, 158.29, 149.60, 134.81, 132.79, 131.80, 131.17, 130.93, 129.46, 127.37, 123.19, 122.48, 109.44, 61.38, 52.86, 43.60, 14.17. HRMS(ESI) m/z calcd for C₂₂H₂₀Br₂N₃O₄ ([M+H]⁺): 547.9815, found: 547.9820.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-2-(4-chlorophenyl)-3-(methoxycarbonyl) aziridin-2-yl)-1H-pyrazole-5-carboxylate **3l**: white solid, 93% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 7.59 min, t (minor) = 12.92 min]; m.p. 148.2-148.7 °C, ${}^{[\alpha]}_{D} {}^{25}$ = +592.3 (c = 0.468, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H),

7.10 (s, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.80 (s, 1H), 3.66 (s, 3H), 2.05 (brs, 1H) 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.05, 158.33, 149.61, 134.89, 132.28, 131.83, 130.94, 129.18, 128.25, 127.37, 122.47, 109.44, 99.94, 61.38, 52.85, 43.63, 14.16. HRMS(ESI) m/z calcd for C₂₂H₂₀BrClN₃O₄ ([M+H]⁺): 504.0320, found: 504.0321.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-(p-tolyl)aziridin-2-yl)-1H-pyrazole-5-carboxylate **3m**: white solid, 74% yield, 99.5% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 95 : 5, 1.0 ml/min, λ = 254 nm, t (major) = 17.58 min, t (minor) = 29.89 min]; m.p. 134.5-135.2 °C, ${}^{[\alpha]}_{D}$ ²⁵ = +403.9 (c = 0.359, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 7.1 Hz, 2H), 7.09 (d, *J* = 7.1 Hz, 2H),

7.08 (s, 1H) 4.32 (q, J = 6.5 Hz, 2H), 3.75 (s, 1H), 3.65 (s, 3H), 2.95 (brs, 1H), 2.29 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.43, 158.37, 149.32, 138.78, 134.76, 131.75, 131.19, 130.70, 128.70, 127.56, 127.39, 122.29, 109.35, 61.25, 52.78, 43.59, 21.21, 14.19. HRMS(ESI) m/z calcd for C₂₃H₂₃BrN₃O₄ ([M+H]⁺): 484.0872, found: 484.0867.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-(4-(trifluoromethyl)phenyl)aziridin-2-yl)-1H-pyrazole-5-carboxylate **3n**: white solid, 90% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 8.68 min, t (minor) = 13.26 min]; m.p. 138.5-139.2 °C, $[\alpha]_D^{25} = +576.4$ (c = 0.483, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 7.7 Hz, 4H),

7.11 (s, 1H), 4.31 (q, J = 6.4 Hz, 2H), 3.84 (s, 1H), 3.65 (s, 3H), 3.00 (brs, 1H), 1.34 (t, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.73, 158.22, 149.78, 137.65, 135.03, 131.79, 130.87, 130.82 (q, J = 32.3 Hz), 128.25, 127.35, 125.12, 124.87 (d, J = 3.5 Hz), 123.78 (q, J = 271.1 Hz), 109.45, 61.37, 52.64, 43.80, 14.04. HRMS(ESI) m/z calcd for C₂₃H₂₀BrF₃N₃O₄ ([M+H]⁺): 538.0584, found: 538.0581.

Ethyl 3-(4-bromophenyl)-1-((2*R*,3*S*)-2-(3-chlorophenyl)-3-(methoxycarbonyl) aziridin-2-yl)-1H-pyrazole-5-carboxylate **30**: white solid, 86% yield, 99% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 95 : 5, 1.0 ml/min, λ = 254 nm, t (major) = 18.37 min, t (minor) = 39.18 min]; m.p. 143.3-144.0 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +501.4 (c = 0.434, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.60-7.55 (m, 3H), 7.47 (d, *J* = 6.2 Hz, 1H), 7.30-7.19 (m, 2H),

7.11 (s, 1H), 4.33 (q, J = 6.8 Hz, 2H), 3.79 (s, 1H), 3.67 (s, 3H), 2.90 (brs, 1H), 1.35 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.93, 158.30, 149.69, 135.68, 134.87, 133.92, 131.81, 130.92, 129.24, 129.15, 128.03, 127.40, 125.99, 122.50, 109.52, 61.44, 52.85, 43.70, 14.17. HRMS(ESI) m/z calcd for $C_{22}H_{20}BrClN_3O_4$ ([M+H]⁺): 504.0326, found: 504.0321.

Ethyl 3-(4-chlorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2yl)-1H-pyrazole-5-carboxylate **3p**: white solid, 98% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 95 : 5, 1.0 ml/min, λ = 254 nm, t (major) = 11.93 min, t (minor) = 27.15 min]; m.p. 93.3-94.0 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +234.2 (c = 0.357, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.09 (s, 1H), 4.52-4.30 (m, 2H), 3.90 (s, 3H), 3.19 (s,

1H), 2.04 (brs, 1H), 1.93 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.85, 158.68, 149.30, 134.14, 134.07, 130.64, 128.80, 127.03, 108.75, 61.38, 58.45, 52.93, 42.05, 18.55, 14.19. HRMS(ESI) m/z calcd for C₁₇H₁₉ClN₃O₄ ([M+H]⁺): 364.1064, found: 364.1065.

Isopropyl 3-(4-chlorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin -2-yl)-1H-pyrazole-5-carboxylate **3q**: white solid, 97% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 6.63 min, t (minor) = 10.25 min]; m.p. 113.3-114.1 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +240.0 (c = 0.365, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.06 (s, 1H), 5.32-5.23 (m, 1H), 3.90 (s, 3H), 3.19 (s,

1H), 2.04 (brs, 1H), 1.94 (s, 3H), 1.40 (d, J = 4.0 Hz, 3H), 1.39 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.84, 158.24, 149.18, 134.58, 134.01, 130.70, 128.78, 127.02, 108.62, 69.19, 58.47, 52.91, 41.99, 21.81, 18.55. HRMS(ESI) *m*/*z* calcd for C₁₈H₂₁ClN₃O₄ ([M+H]⁺): 378.1221, found: 378.1218.

Ethyl 3-(3-chlorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2yl)-1H-pyrazole-5-carboxylate **3r**: white solid, 97% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 7.87 min, t (minor) = 16.21 min]; m.p. 87.1-87.8 °C, ${}^{[\alpha]}_{D}{}^{25}$ = +252.1 (c = 0.357, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 7.37-7.28 (m, 2H), 7.11 (s, 1H), 4.51-4.32 (m, 2H), 3.90 (s, 3H), 3.20

(s, 1H), 2.05 (brs, 1H), 1.93 (s, 3H), 1.42 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.81, 158.62, 149.01, 134.63, 134.16, 133.89, 129.85, 128.20, 125.79, 123.83, 108.89, 61.37, 58.48, 52.90, 42.00, 18.50, 14.16. HRMS(ESI) m/z calcd for C₁₇H₁₉ClN₃O₄ ([M+H]⁺): 364.1064, found: 364.1056.

Ethyl 3-(2-chlorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2-yl)-1H-pyrazole-5-carboxylate **3s**: colorless oil, 97% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 8.02 min]; ${}^{[\alpha]}{}_{D}^{25}$ = +237.5 (c = 0.347, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.4 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.38-7.27 (m, 3H), 4.51-4.32 (m, 2H), 3.89 (s, 3H), 3.22 (s, 1H), 2.05 (brs, 1H), 1.95 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 169.77, 158.83, 147.97, 133.20, 132.28, 131.04, 130.66, 130.22, 129.32, 126.85, 112.78, 61.34, 58.48, 52.89, 42.02, 18.57, 14.20. HRMS(ESI) *m*/*z* calcd for C₁₇H₁₉ClN₃O₄ ([M+H]⁺): 364.1064, found: 364.1072.

Ethyl 3-(4-fluorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2yl)-1H-pyrazole-5-carboxylate **3t**: colorless oil, 98% yield, 99.6% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 9.11 min, t (minor) = 18.54 min]; ^[α]_D²⁵ = +208.2 (c = 0.341, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.73 (m, 2H), 7.18-7.00 (m, 3H), 4.49-4.32 (m, 2H), 3.90 (s, 3H), 3.19 (s, 1H), 2.04 (brs, 1H), 1.93 (s, 3H), 1.41 (t, *J* = 7.1

Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.64, 162.85 (d, J = 245.3 Hz), 158.70, 149.50, 134.16, 128.41, 127.51 (d, J = 8.1 Hz), 115.49 (d, J = 21.5 Hz), 108.55, 61.28, 58.37, 52.74, 42.06, 18.53, 14.13. HRMS(ESI) m/z calcd for C₁₇H₁₉FN₃O₄ ([M+H]⁺): 348.1360, found: 348.1349.

Ethyl 3-(2-fluorophenyl)-1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2-yl)-1H-pyrazole-5-carboxylate **3u**: colorless oil, 97% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 7.91 min, t (minor) = 15.81 min]; ${}^{[\alpha]}_{D}{}^{25} = +179.8$ (c = 0.337, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 7.6 Hz, 1H), 7.35-7.28 (m, 1H), 7.26-7.24 (m, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.17-7.09 (m, 1H), 4.46-4.35 (m, 2H), 3.90 (s, 3H), 3.21 (s, 1H), 2.10 (brs, 1H), 1.94 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.68, 160.11 (d, *J* = 248.4 Hz), 158.76, 144.95, 133.75, 129.55 (d, *J* = 8.3 Hz), 128.52 (d, *J* = 3.0 Hz), 124.14 (d, *J* = 3.2 Hz), 120.04 (d, *J* = 11.3 Hz), 115.89 (d, *J* = 22.0 Hz), 112.18 (d, *J* = 9.7 Hz), 61.21, 58.43, 52.69, 41.98, 18.50, 14.10. HRMS(ESI) *m*/*z* calcd for C₁₇H₁₉FN₃O₄ ([M+H]⁺): 348.1360, found: 348.1361.

Ethyl 1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2-yl)-3-(p-tolyl)-1H-pyrazole-5-carboxylate **3v**: colorless oil, 98% yield, 99.9% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (major) = 7.48 min, t (minor) = 14.22 min]; ${}^{[\alpha]}{}_{D}{}^{25}$ = +203.8 (c = 0.320, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.16 (s, 1H), 4.55-4.32 (m, 2H), 3.91 (s, 3H), 3.20 (s, 1H), 2.06 (brs, 1H), 1.95 (s, 3H), 1.42 (t,

J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.86, 158.87, 150.49, 138.10, 133.85, 129.30, 125.67, 108.65, 61.26, 58.34, 52.88, 42.09, 21.24, 18.58, 14.20. HRMS(ESI) *m*/*z* calcd for C₁₈H₂₂N₃O₄ ([M+H]⁺): 344.1605, found: 344.1608.

Ethyl 1-((2*R*,3*S*)-3-(methoxycarbonyl)-2-methylaziridin-2-yl)-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole-5-carboxylate **3w**: white solid, 72% yield, 99% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, λ = 254 nm, t (major) = 7.15 min, t (minor) = 12.98 min]; m.p. 85.1-85.8 °C, $[\alpha]_D^{25}$ = +306.6 (c = 0.286, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.16 (s, 1H), 4.52-4.29 (m, 2H), 3.91 (s, 3H), 3.20

(s, 1H), 2.06 (brs, 1H), 1.95 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.59, 158.58, 148.92, 135.62, 134.45, 130.10 (q, J = 32.1 Hz), 125.93, 125.54 (d, J = 3.8 Hz), 124.07 (q, J = 260.9 Hz), 109.09, 61.41, 58.56, 52.78, 42.03, 18.50, 14.11. HRMS(ESI) m/z calcd for C₁₈H₁₉F₃N₃O₄ ([M+H]⁺): 398.1328, found: 398.1330.

General procedure and characterization data for chiral arylpyrazole substituted aziridine (2S, 3R)-3n:

General procedure for chiral arylpyrazole substituted aziridine (2S, 3R)-3n:

A solution of 5-aryl-1H-pyrazole-3-carboxylic ester **1a** (0.12 mmol) and TsOH (20 mol %, 0.02 mmol) in 1.0 mL cyclohexane was stirred at 25 °C for 10 min, then chiral 2H-azirine carboxylic ester (R)-**2n** (0.1 mmol) was added. The reaction mixture was stirred at 25 °C until the reaction was completed. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure product.

Characterization data for chiral arylpyrazole substituted aziridine (2S, 3R)-3n:

Ethyl 3-(4-bromophenyl)-1-((2*S*,3*R*)-3-(methoxycarbonyl)-2-(4-(trifluoromethyl) phenyl)aziridin-2-yl)-1H-pyrazole-5-carboxylate (2*S*, 3*R*)-**3**n: white solid, 79% yield, 98% ee [Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 90 : 10, 1.0 ml/min, $\lambda = 254$ nm, t (minor) = 9.12 min, t (major) = 14.53 min]; m.p. 138.3-139.2 °C, ${}^{[\alpha]}_{D}{}^{25}$ = -532.3 (c = 0.426, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 7.7 Hz, 4H), 7.11

(s, 1H), 4.31 (q, J = 6.4 Hz, 2H), 3.84 (s, 1H), 3.65 (s, 3H), 3.00 (brs, 1H), 1.34 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.73, 158.22, 149.78, 137.65, 135.03, 131.79, 130.87, 130.82 (q, J = 32.3 Hz), 128.25, 127.35, 125.12, 124.87 (d, J = 3.5 Hz), 123.78 (q, J = 271.1 Hz), 109.45, 61.37, 52.64, 43.80, 14.04. HRMS(ESI) m/z calcd for C₂₃H₂₀BrF₃N₃O₄ ([M+H]⁺): 538.0584, found: 538.0581.

General procedure and characterization data for H₈-BINOL derived chiral imidodiphosphoric acids 4:

 H_8 -BINOL derived chiral imidodiphosphoric acids **4a-4e** were synthesized according to our previous work.³ Catalyst **4e** were first synthesized in this work and the characterization data was given.

General procedure for H₈-BINOL derived chiral imidodiphosphoric acids 4e:

NaH (60% in oil, 3 mmol) was added to a stirred solution of 9-anthracenyl substituted H₈-BINOL-type phosphoryl chloride (1.2 mmol) in dry DMF (10 ml) under nitrogen atmosphere at room termperature. After stirring for 5 min, 1-naphthyl substituted H₈-BINOL-type phosphoramide (1 mmol) was added and the mixture was stirred for another 1 h. After the reaction was completed, 30 ml CH₂Cl₂ was added to the flask and the mixture was washed with saturated brine (50 ml \times 5). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified with silica gel column chromatography. Then the product was dissolved in CH₂Cl₂, acidified with 3 M HCl (10 ml), washed with brine (30 ml \times 5), dried over Na₂SO₄ and concentrated in vacuo. The product was further purified by recrystallization in THF and methanol to give catalyst **4e**.

Characterization data for H₈-BINOL derived chiral imidodiphosphoric acids 4e:

H₈-BINOL derived chiral imidodiphosphoric acids **4e**: white soild, 52% yield, ¹H NMR (300 MHz, CDCl₃) δ 8.19 (s, 2H), 8.06 (d, J =6.4 Hz, 1H), 7.94-7.85 (m, 1H), 7.77 (t, J = 6.4 Hz, 1H), 7.69-7.45 (m, 12H), 7.38-7.34 (m, 3H), 7.30-7.16 (m, 3H), 7.04-6.76 (m, 4H), 6.68 (t, J = 7.2 Hz, 1H), 6.60-6.50 (m, 4H), 6.32 (s, 1H), 6.20-5.92 (m, 3H), 5.69-5.60 (m, 1H), 2.99-2.28 (m, 16H), 2.12-1.75 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 145.59, 145.32, 145.00, 143.75, 138.01, 137.21, 136.75, 135.05, 134.83, 134.62, 133.71, 133.48, 133.20, 132.99, 132.65, 132.38, 132.06, 131.80, 130.85, 130.67, 130.42, 130.20, 129.71, 128.40, 128.11, 127.82, 127.32, 127.19,

126.84, 126.45, 126.19, 125.86, 125.27, 124.76, 124.50, 124.11, 123.97, 123.28, 29.64, 29.51, 29.42, 29.13, 28.98, 28.89, 28.47, 28.13, 27.95, 27.71, 23.17, 23.08, 22.85, 22.80, 22.77, 22.64, 22.52. ³¹P NMR (162 MHz, CDCl₃) δ 6.73, 6.31, 5.41, 4.99. HRMS(ESI) *m*/*z* calcd for C₈₈H₇₀NO₆P₂ ([M+H]⁺): 1298.4678, found: 1298.4686.

General procedure and characterization data for chiral arylpyrazole substituted aziridines 6:

General procedure for chiral arylpyrazole substituted aziridines 6:

A solution of 5-aryl-1H-pyrazole-3-carboxylic esters **1a** (0.1 mmol) and catalyst **4e** (10 mol %, 0.01 mmol) in 1.0 mL cyclohexane was stirred at 25 $^{\circ}$ C for 10 min, then 3-phenyl-2H-azirine **5** (0.12 mmol) was added. The reaction mixture was stirred at 25 $^{\circ}$ C for 6 d. After removal of the solvent, the residue was purified by flash column chromatography to afford the pure products.

Characterization data for chiral arylpyrazole substituted aziridines 6:

Ethyl 3-(4-bromophenyl)-1-(2-phenylaziridin-2-yl)-1H-pyrazole-5-carboxylate **6**: colorless oil, 62% yield, 77% ee [Daicel Chiralcel OD-H column, *n*-hexane / *i*-PrOH = 95 : 5, 1.0 ml/min, λ = 254 nm, t (minor) = 15.14 min, t (major) = 18.76 min]; ${}^{[\alpha]}{}_{D}{}^{25}$ = +144.7 (c = 0.253, EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 7.3 Hz, 2H), 7.37-7.26 (m, 3H), 7.20 (s, 1H), 7.12 (d, *J* = 7.1 Hz, 2H), 4.26 (q, *J* = 6.5 Hz, 2H), 2.87 (s, 1H), 2.65 (s, 1H), 1.62 (brs, 1H),

1.27 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 158.44, 148.81, 140.39, 136.21, 132.21, 131.66, 128.70, 127.99, 127.76, 125.09, 121.95, 109.33, 61.36, 14.30. HRMS(ESI) m/z calcd for C₂₀H₁₉BrN₃O₂ ([M+H]⁺): 412.0661, found: 412.0652.

X-Ray Structures of 3e:

Good quality crystal of **3e** was obtained by recrystallization in ethanol. CCDC 1486543 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

(1) (a) Çalışkan, B.; Yılmaz, A.; Evren, İ.; Menevşe, S.; Uludag, O.; Banoglu, E. *Med. Chem. Res.* 2012, 22, 782. (b) Kamal, A.; Shaik, A. B.; Polepalli, S.; Reddy, V. S.; Kumar, G. B.; Gupta, S.; Krishna, K. V.; Nagabhushana, A.; Mishra, R. K.; Jain, N. *Org. Biomol. Chem.* 2014, *12*, 7993. (c) Nagarapu, L.; Mateti, J.; Gaikwad, H. K.; Bantu, R.; Sheeba Rani, M.; Prameela Subhashini, N. J. *Bioorg. Med. Chem. Lett.* 2011, *21*, 4138.

(2) (a) Wang, Y.; Lei, X.; Tang, Y. *Chem. Commun.* 2015, *51*, 4507. (b) Ryu, T.; Baek, Y.; Lee, P. H. *J. Org. Chem.* 2015, *80*, 2376. (c) Loy, N. S. Y.; Kim, S.; Park, C. M. *Org. Lett.* 2015, *17*, 395. (d) Loy, N. S. Y.; Singh, A.; Xu, X.; Park, C. M. *Angew. Chem.* 2013, *125*, 2268.

(3) Fan, Y.-S.; Jiang, Y.-J.; An, D.; Sha, D.; Antilla, J. C.; Zhang, S. Org. Lett. 2014, 16, 6112.

NMR spectra:

2a:

2d:

2e:

2f:

24

2i:

26

2l:

3a:

3b:

3c:

3d:

3e:

3g:

3i:

3k:

3l:

3n:

:

q:

3r:

3s:

3t:

3u:

3v:

3w:

4e:

:

HPLC spectra of racemic and enantioenriched products:

2a:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	12.38665	0.15	1.38392	3.04	0.6345
2	18.22917	10.86	98.61608	476.24	99.3655

2b:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	8.51254	0.39	1.27614	5.81	0.4766
2	10.73833	30.31	98.72386	1213.80	99.5234

2c:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	15.92354	0.16	0.75336	4.98	0.5035
2	25.95750	21.67	99.24664	983.43	99.4965

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	9.42833	0.58	2.53855	13.33	1.3582
2	20.26500	22.09	97.46145	967.98	98.6418

2e:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	6.28500	0.23	0.55490	6.03	0.5418
2	9.75417	40.36	99.44510	1107.22	99.4582

2g:

N /· \

2l:

2n:

2

17.240

63

98.9

3795.001

98.9324

98.457

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	7.739	146.395	68.5	6467.712	50.9820
2	15.823	67.211	31.5	6218.546	49.0180

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	8.661	91.854	68.8	3793.823	49.3700
2	16.309	41.745	31.2	3890.643	50.6300

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	7.521	90.745	53.4	6924.902	50.0414
2	14.613	79.164	46.6	6913.450	49.9586

Реак	KI [min]	Height [mv]	Height %	Area[mv*s]	Area%
1	12.473	85.018	51.2	9869.518	52.5921
2	24.168	80.979	48.8	8896.633	47.4079

67

3d:

22.7

50.4302

71.997

3e:

2

18.801

3f:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	4.993	179.666	100.0	7660.563	99.9816
2	9.882	0.061	0.0	1.413	0.0184

3g:

3h:

3i:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	13.802	63.602	64.2	4845.514	50.9073
2	21.869	35.438	35.8	4672.788	49.0927

[min.]

73

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%	
1	6.039	171.792	74.0	3985.619	49.9795	
2	13.308	60.314	26.0	3988.888	50.0205	

3m:

(-)-**3**n:

0:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	11.789	93.479	68.2	6769.246	50.0547
2	25.347	43.681	31.8	6754.457	49.9453

p:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	6.945	327.465	69.3	11892.252	50.9722
2	11.163	145.044	30.7	11438.607	49.0278

q:

3r:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	8.054	142.924	53.1	8247.937	49.3048
2	14.177	126.186	46.9	8480.517	50.6952

3s:

3u:

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%	
1	7.720	84.364	54.7	3745.538	49.2495	
2	14.386	69.891	45.3	3859.698	50.7505	

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	7.748	188.311	67.5	8428.868	50.7236
2	15.435	90.625	32.5	8188.373	49.2764

Peak	RT [min]	Height [mV]	Height %	Area[mV*s]	Area%
1	7.301	83.549	66.3	3871.573	50.8486
2	13.209	42.406	33.7	3742.355	49.1514

: