Electronic Supplementary Information (ESI)

Palladium-Catalyzed Sonogashira Coupling of Amides: Access

to Ynones via C-N Bond Cleavage

Ming Cui,^a Hongxiang Wu,^a Junsheng Jian,^a Hui Wang,^a Chao Liu,^b Stelck, Daniel,^c Zhuo Zeng^{*ab}

 ^aCollege of Chemistry & Environment, South China Normal University, Guangzhou 510006, People's Republic of China
 ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese

Academy of Science, 345 LingLing Road, Shanghai 200032, China

°Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA

*E-mail: zhuoz@scnu.edu.cn

List of Contents

General experimental details and materials	2
Optimization of the reaction conditions Table 1	3
General procedure for N-acylsaccharin synthesis 1a-1p	4-5
General Procedures for the synthesis of products 3aa-3an , 3ba-3pa	5
Evaluating different amides Scheme 2	6
Detail description of for starting materials and products	6-23
References	
Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR of Starting Materials	25-47
Copies of ¹ H NMR, ¹⁹ F NMR of Products	

General experimental details and materials

The reactions were conducted in sealed tube under the protection of a nitrogen atmosphere. All reactants reported in the manuscript are commercially available and have been prepared by the method reported previously. N-Methoxy-*N*-Methylbenzamide **4b** was purchased at the China Suppliers. Other amides were prepared by standard methods.²⁻⁵ *N*-Acylsaccharins were prepared by the general methods. All solvents were purchased at the China suppliers and used without any purification. Triethylamine was purified by distillation with calcium hydride. Flash chromatography was performed using 200-300 mesh silica gel. All ynone products are known compounds. ¹H and ¹³C and ¹⁹F NMR data were recorded with Bruker Advance III (500 MHz) and Varian (400 MHz) spectrometers in CDCl₃ with tetramethylsiliane as an internal standard.

C) <u> </u>	mol % Pd(PPh ₃) t ₃ N (4 equiv), TH	D ₂ Cl ₂ F, 65 °C	0 I
	1a	2a			Заа
Entry	Catalyst	Ligand	Base	Solvent	yield ^b (%)
1	Pd(PPh ₃) ₂ Cl ₂	ND	K ₃ PO ₄	toluene	61
2	$Pd(OAc)_2$	PPh ₃	K ₃ PO ₄	toluene	48
3	Pd(PPh ₃) ₄	ND	K ₃ PO ₄	toluene	45
4	$Pd(OAc)_2$	ND	K ₃ PO ₄	toluene	ND
5	$Pd(OAc)_2$	PCy ₃	K ₃ PO ₄	toluene	ND
6 ^c	$Pd(OAc)_2$	dppf	K ₃ PO ₄	toluene	ND
7	Pd(PPh ₃) ₂ Cl ₂	ND	K ₃ PO ₄	THF	75
8	Pd(PPh ₃) ₂ Cl ₂	ND	K ₃ PO ₄	CH ₃ CN	62
9	Pd(PPh ₃) ₂ Cl ₂	ND	K ₃ PO ₄	dioxane	57
10	Pd(PPh ₃) ₂ Cl ₂	ND	ND	THF	ND
11	Pd(PPh ₃) ₂ Cl ₂	ND	K_2CO_3	THF	trace
12	$Pd(PPh_3)_2Cl_2$	ND	Cs ₂ CO ₃	THF	trace
13	$Pd(PPh_3)_2Cl_2$	ND	Et ₃ N	THF	95
14	Pd(PPh ₃) ₂ Cl ₂	ND	<i>i</i> -Pr ₂ NEt	THF	78
15	$Pd(PPh_3)_2Cl_2$	ND	Pyridine	THF	ND
16	Pd(PPh ₃) ₂ Cl ₂	ND	DBU	THF	ND
17	$Pd(PPh_3)_2Cl_2$	ND	DABCO	THF	ND
18 ^d	$Pd(PPh_3)_2Cl_2$	ND	Et ₃ N	THF	92
19 ^e	Pd(PPh ₃)Cl ₂	ND	Et ₃ N	THF	42

^a DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. DABCO = triethylenediamine. dppf = 1,1'-Bis(disphenylphosphino)ferrocene. PCy₃ = tri(cyclohexyl)phosphine. Reaction conditions (unless otherwise noted): 1a (0.5 mmol), 2b (0.75 mmol), catalyst (5 mol %), base (4 equiv, 2 mmol), ligand (10 mol %), solvent (3 mL). The mixture stirred and heated at 65 °C for 24 h. ^bIsolated yield. ^cdppf (5 mol %). ^dcatalyst (1 mol %). ^ecatalyst (0.5 mol %).

General procedure for N-acylsaccharin synthesis 1a-1p:

General procedure A:

$$\begin{array}{c} O \\ R \\ \hline CI \end{array} + \begin{array}{c} HN \\ O^{r}S \\ O \end{array} \end{array} \xrightarrow{Et_{3}N} \begin{array}{c} O \\ DMAc, 0 \\ C \end{array} \xrightarrow{O} C \end{array} \xrightarrow{O} \begin{array}{c} O \\ O \\ O^{r}S \\ O \end{array}$$

An oven-dried round-bottomed flask (25 mL) equipped with a stir bar was charged with Et_3N (10 mmol, 1.0 equiv), DMAc (8 mL) and saccharin (10 mmol, 1.0 equiv) were slowly added into the mixture. Acyl chloride (1.0 equiv) was added dropwise to the reaction mixture with vigorous stirring at 0 °C, and the temperature was maintained at 0 °C for 1h. After the indicated time, the reaction mixture was poured into 80 mL of water and extracted with ethyl acetate (3 × 20 mL). The organic layer was combined and washed with brine (3 × 30 mL), dried, and concentrated. The obtained residue was purified by column chromatography using petroleum ether/ethyl acetate (3/1) as eluent afforded *N*-benzoylsaccharin (2.10 g, 73.1%).

General procedure B:

$$\begin{array}{c} O \\ R \\ OH \end{array} + \begin{array}{c} HN \\ O^{2}S \\ O \end{array} \end{array} \xrightarrow{\text{DCC}} \begin{array}{c} DCC \\ CHCl_{3}, 80 \\ C \\ O^{2}S \\ O \end{array} \xrightarrow{\text{O}} S \\ O^{2}S \\ O \end{array}$$

An oven-dried round-bottomed flask (100 mL) equipped with a stir bar was charged with CHCl₃ (50 mL), saccharin (10 mmol, 1.0 equiv), benzoic acid (1.0 equiv). DCC (1.0 equiv) was added to the reaction mixture with vigorous stirring at 80°C, and the temperature was maintained at 80 °C for 12h. After cooling to room temperature, the mixture was filtrated through a short pad of silica gel, then the silica gel was washed with CHCl₃ (3 × 20 mL) and the organic phases were combined. After the solvent was removed, the crude product was purified by silica gel column chromatography using

petroleum ether/ethyl acetate (3/1) as eluent afforded N-benzoylsaccharin (1.46 g, 51.2%).

General procedure C:

An oven-dried round-bottomed flask (100 mL) equipped with a stir bar was charged with THF (30 mL), saccharin sodium salt (10 mmol, 1.0 equiv), acetic chloride (1.0 equiv). The reaction mixture was vigorous stirring at room temperature for 24h. After the solvent was removed, the crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (3/1) as eluent afforded *N*-acetylsaccharin (1.93 g, 85.7%).

General Procedures for the synthesis of products 3aa-3an, 3ba-3pa:

In an oven-dried Teflon septum screw-capped tube (15 mL), add N-acylsacchrin **1a-1p** (0.5 mmol), Pd(PPh₃)₂Cl₂ (3.5 mg, 0.005 mmol). The tube was then charged with nitrogen. Super dry tetrahydrofuran (3 ml) was injected into tube by springe. Et₃N (0.3 mL, 2 mmol) and the alkyne reagent **2a-2n** (0.75 mmol) was subsequently injected into the reaction tube. The reaction was monitored by TLC. The reaction was then heated to 65 °C and stirred for 24 h. After cooling to room temperature, the solvents were removed, the crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent.

Evaluating different amides Scheme 2

According to the general procedure, different amide **4a-4f** (0.5 mmol) was reacted with $Pd(PPh_3)_2Cl_2$ (3.5 mg, 0.005 mmol), Et_3N (0.3 mL, 2 mmol) and Phenylacetylene **2a** (0.75 mmol) in Super dry tetrahydrofuran (3 ml) for 24 h at 65 °C. The reaction was monitored by TLC. The reaction was completely unsuccessful. After cooling to room temperature, the solvents were removed, the crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent. The none of ynone products were obtained under optimized condition.

Detail description of for starting materials and products

Characterization Data of N-Acylsaccharins

N-Benzoylsaccharin (1a).¹ Following general procedure A, 1a was isolated as a white solid (2.10 g, 73.1%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13 - 8.09$ (m, 1H), 7.99 (dd, J = 4.7, 0.9, 2H), 7.93 - 7.87 (m, 1H), 7.79 - 7.70 (m, 2H), 7.66 - 7.61 (m, 1H), 7.52 - 7.46 (m, 2H).

N-(4-methylbenzoyl)saccharin (1b). Following general procedure A, 1b was isolated as a white solid (2.14 g, 71.2%). ¹H NMR (400 MHz, CDCl₃) δ = 8.14 – 8.11 (m, 1H), 8.01 – 7.96 (m, 2H), 7.90 (ddd, *J* = 7.8, 5.1, 3.4, 1H), 7.83 – 7.79 (m, 2H), 6.98 – 6.95 (m, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 166.39, 157.42, 138.38, 136.47, 134.94, 133.89, 132.33, 129.53, 128.42, 126.38, 125.43, 121.24, 21.56. HRMS (EI) m/z: [M] ⁺ Calcd for C₁₅H₁₁NO₄S 301.0409; Found 301.0417.

N-(4-methoxybenzoyl)saccharin (1c). Following general procedure A, 1c was isolated as a white solid (2.64 g, 83.3%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.15 - 8.11$ (m, 1H), 8.00 - 7.95 (m, 2H), 7.90 (ddd, J = 7.8, 5.1, 3.4, 1H), 7.84 - 7.79 (m, 2H), 6.99 - 6.95 (m, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 164.67$, 157.92, 138.47, 136.24, 134.82, 132.74, 126.27, 125.79, 124.37, 121.19, 113.92, 109.99, 55.64. HRMS (EI) m/z: [M] ⁺ Calcd for C₁₅H₁₁NO₅S 317.0358; Found 317.0361.

N-(**3-methoxybenzoyl)saccharin (1d).** Following general procedure A, **1d** was isolated as a white solid (2.58 g, 81.4%). ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 7.6, 1H), 8.05 – 7.99 (m, 2H), 7.94 – 7.90 (m, 1H), 7.40 (t, *J* = 7.9, 1H), 7.36 – 7.28 (m, 2H), 7.19 (dd, *J* = 8.1, 2.6, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 166.18, 159.49, 157.46, 138.41, 136.41, 134.90, 133.53, 129.47, 126.39, 121.93, 121.25, 121.09, 120.25, 114.22, 55.54. HRMS (EI) m/z: [M] ⁺ Calcd for C₁₅H₁₁NO₅S 317.0358; Found 317.0363.

N-(2-methoxybenzoyl)saccharin (1e). Following general procedure B, 1e was isolated as a white solid (1.57 g, 49.6%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07$ (d, *J* = 7.9, 1H), 8.03 – 7.94 (m, 2H), 7.91 – 7.87 (m, 1H), 7.60 – 7.47 (m, 2H), 7.08 (t, *J* = 7.5, 1H), 6.93 (d, *J* = 8.8, 1H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 164.83$, 157.19, 156.63, 138.45, 136.28, 134.78, 133.88, 130.04, 126.03, 125.51, 122.96, 121.27, 120.95, 111.09, 55.85. HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₁NO₅S 317.0358; Found 317.0360.

N-(4-fluorobenzoyl)saccharin (1f). Following general procedure A, 1f was

isolated as a white solid (2.25 g, 73.8%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.14$ (d, J = 7.6, 1H), 8.03 - 7.98 (m, 2H), 7.95 - 7.91 (m, 1H), 7.81 (ddd, J = 8.0, 5.1, 2.5, 2H), 7.22 - 7.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.16, 157.52, 138.35$ (d, $J^1 = 258.2$), 136.52, 135.02, 132.54 (d, $J^3 = 9.2, 2$ H), 128.51 (d, $J^4 = 2.1$), 126.42, 125.40, 121.28, 115.95, 115.73(d, $J^2 = 23.2$). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -102.62$. HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₈FNO₄S 305.0158; Found 305.0160.

N-(4-chlorobenzoyl)saccharin (1g). Following general procedure A, 1g was isolated as a white solid (2.19 g, 68.3%). ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 7.6, 1H), 8.00 (t, *J* = 3.6, 2H), 7.95 – 7.90 (m, 1H), 7.73 – 7.68 (m, 2H), 7.50 – 7.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.39, 157.41, 140.51, 138.38, 136.54, 134.98, 130.98, 130.66, 128.85, 126.45, 125.34, 121.29. HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₈ClNO₄S 321.0201; Found 321.0200.

N-(4-bromobenzoyl)saccharin (1h). Following general procedure A, 1h was isolated as a white solid (2.65 g, 72.5%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 7.6, 0.7 Hz, 1H), 7.95 (d, *J* = 3.8 Hz, 2H), 7.87 (dd, *J* = 8.1, 4.1 Hz, 1H), 7.60 – 7.54 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ 165.61, 157.50, 136.53, 134.97, 131.82, 130.98, 126.46, 121.29, 77.31, 76.99, 76.68. HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₈ClNO₄S 364.9357; Found 364.9362.

N-(4-(trifluoromethyl)benzoyl)saccharin (1i). Following general procedure A, 1i was isolated as a white solid (1.62 g, 45.6%). ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, J = 7.6, 1H), 8.03 (d, J = 3.9, 2H), 7.95 (dd, J = 7.6, 4.3,1H), 7.84 (d, J = 8.2, 2H),

7.76 (d, J = 8.2, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.46, 157.19, 138.34(q, J² = 37.1), 136.73, 135.63, 135.10(q, J³ = 3.8), 130.55, 129.55, 126.53, 125.46, 125.42, 125.10, 121.36(q, J¹ = 274.2). ¹⁹F NMR (376 MHz, CDCl₃) <math>\delta = -63.23$. HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₈F₃NO₄S 355.0126; Found 355.0121.

N-(4-cyanobenzoyl)saccharin (1j). Following general procedure A, 1j was isolated as a white solid (1.68 g, 53.8%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, *J* = 7.6, 1H), 8.05 – 8.01 (m, 2H), 7.97 – 7.93 (m, 1H), 7.79 (d, *J* = 7.6, 4H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.06$, 157.11, 138.34, 136.84, 136.19, 135.16, 132.13, 129.54, 126.58, 124.94, 121.40, 117.57, 116.77. HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₈N₂O₄S 312.0205; Found 313.0212.

N-(4-formylbenzoyl)saccharin (1k). Following general procedure A, 1k was isolated as a white solid (1.94 g, 61.5%). ¹H NMR (400 MHz, CDCl₃) δ = 10.12 (s, 1H), 8.12 (d, *J* = 7.6, 1H), 8.04 – 7.99 (m, 4H), 7.94 (dt, *J* = 8.1, 4.2, 1H), 7.86 (d, *J* = 8.3, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 191.18, 165.66, 157.16, 139.18, 138.39, 137.31, 136.72, 135.08, 129.64, 129.41, 126.54, 125.10, 121.36. HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₈CINO₄S 295.0409; Found 295.0309.

N-(2-naphthoyl)saccharin (11). Following general procedure A, 11 was isolated as a white solid (2.24 g, 66.5%). ¹H NMR (400 MHz, CDCl₃) δ = 8.36 (s, 1H), 8.14 (d, *J* = 7.7, 1H), 8.01 (t, *J* = 7.5, 2H), 7.98 – 7.94 (m, 1H), 7.92 (t, *J* = 8.2, 3H), 7.77 (dd, *J* = 8.6, 1.8, 1H), 7.66 – 7.62 (m, 1H), 7.59 – 7.55 (m, 1H). ¹³C NMR (101 MHz, cdcl₃) δ 166.38, 157.59, 138.50, 136.39, 135.83, 134.89, 132.10, 131.88, 129.59, 129.57,

129.12, 128.30, 127.91, 127.13, 126.42, 125.60, 124.69, 121.26. HRMS (EI) m/z: [M]⁺Calcd for C₁₈H₁₁NO₄S 337.0740; Found 337.0743.

N-(thiophene-2-carbonyl)saccharin (1m). Following general procedure A, 1m was isolated as a white solid (2.03 g, 69.3%). ¹H NMR (400 MHz, CDCl₃) δ = 8.18 (dd, *J* = 9.4, 3.7, 1H), 8.01 – 7.90 (m, 4H), 7.84 (d, *J* = 5.0, 1H), 7.20 – 7.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.87, 158.03, 138.47, 137.20, 136.61, 135.79, 135.18, 128.43, 126.56, 125.88, 125.86, 121.48. HRMS (EI) m/z: [M]⁺ Calcd for C₁₂H₇NO₄S₂ 292.9817; Found 292.9808.

N-cinnamoylsaccharin (1n). Following general procedure A, 1n was isolated as a white solid (1.98 g, 63.3%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.19$ (d, J = 7.6, 1H), 8.08 (d, J = 15.7, 1H), 8.01 – 7.96 (m, 2H), 7.95 – 7.90 (m, 1H), 7.72 (d, J = 15.6, 1H), 7.67 (dd, J = 7.5, 2.0, 2H), 7.47 – 7.41 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.26$, 157.82, 149.68, 138.31, 136.42, 134.86, 134.01, 131.53, 129.05, 129.00, 126.27, 125.20, 121.20, 117.03. HRMS (EI) m/z: [M]⁺ Calcd for C₁₆H₁₁NO₄S 313.0402; Found 313.0399.

N-acetylsaccharin (10). Following general procedure C, 10 was isolated as a white solid (1.93 g, 85.7%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.16$ (d, J = 7.6, 1H), 8.01 – 7.95 (m, 2H), 7.92 (ddd, J = 7.8, 5.9, 2.7, 1H), 2.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.10$, 157.61, 138.17, 136.50, 134.90, 126.28, 125.03, 121.24, 26.04. HRMS (EI) m/z: [M]⁺ Calcd for C₉H₇NO₄S 225.0096; Found 225.0099.

N-dodecanoylsaccharin (1p). Following general procedure C, 1p was isolated as a white solid (3.01 g, 82.3%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.14$ (d, J = 7.6, 1H), 8.00 – 7.94 (m, 2H), 7.90 (ddd, J=7.7, 5.9, 2.7, 1H), 3.02 (t, J=7.4, 2H), 1.74 (dd, J = 15.0, 7.5, 2H), 1.42 – 1.24 (m, 16H), 0.87 (t, J = 6.8, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.40$, 157.59, 138.19, 136.41, 134.87, 126.21, 125.07, 121.19, 38.11, 33.84, 31.88, 29.58, 29.40, 29.30, 29.28, 28.88, 24.68, 23.49, 22.66, 14.10. HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₂₇NO₄S 365.1999; Found 365.1996.

N-Methyl-*N*-phenylbenzamide (4a). Following general procedure of literature, 4a was was purified by column chromatography (Petroleum ether/EtOAc = 3/1) to afford a white solid . ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J* = 5.2, 3.3 Hz, 2H), 7.05 – 6.99 (m, 3H), 6.99 – 6.91 (m, 3H), 6.89 – 6.84 (m, 2H), 3.32 (s, 3H). Spectral data match those previously reported².

N-phenyl-*N*-tosyl benzamide (4c). Following general procedure of literature, 4c was was purified by column chromatography (Petroleum ether/EtOAc = 2/1) to afford a white solid (3.05 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ = 7.89 – 7.78 (m, 2H), 7.47 – 7.39 (m, 2H), 7.34 – 7.24 (m, 6H), 7.19 – 7.12 (m, 4H), 2.44 (s, 3H). Spectral data match those previously reported³.

1-Benzoylpyrrolidine-2,5-dione (4d). Following general procedure of literature,
4d was was purified by column chromatography (Petroleum ether/EtOAc = 3/1) to 11

afford a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 2.82 (s, 4H). Spectral data match those previously reported⁴.

2-Benzoylisoindoline-1,3-dione (4e). Following general procedure of the literature, **4e** was purified by column chromatography (Petroleum ether/EtOAc = 3/1) to afford a white solid (2.10 g, 83.2%). ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (dd, *J* = 4.6, 2.0, 1H), 7.89 – 7.84 (m, 4H), 7.76 (dd, *J* = 5.4, 3.2, 1H), 7.70 – 7.62 (m, 1H), 7.53 – 7.44 (m, 2H). Spectral data match those previously reported⁵.

1-Benzoylpiperidine-2,6-dione (4f). Following general procedure of the literature, **4f** was was purified by column chromatography (Petroleum ether/EtOAc = 3/1) to afford a white solid (2.18 g, 75.1%). ¹H NMR (400 MHz, CDCl₃) δ = 7.90 – 7.81 (m, 2H), 7.66 – 7.61 (m, 1H), 7.51 – 7.45 (m, 2H), 2.80 – 2.74 (m, 4H), 2.15 (ddd, *J* = 13.1, 6.5, 2.7, 2H). Spectral data match those previously reported⁴.

Detail descriptions for products

1,3-Diphenylprop-2-yn-1-one (3aa): In an oven-dried Teflon septum screwcapped tube (15 mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene **2a** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product 3aa (94.9 mg, 92%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.18 – 8.14 (m, 2H), 7.63 – 7.60 (m, 2H), 7.58 – 7.54 (m, 1H), 7.47 – 7.43 (m, 2H), 7.43 – 7.39 (m, 1H), 7.35 (ddd, J = 6.7, 4.5, 1.2 Hz, 2H). Spectral data match those previously reported⁶.

1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (3ab): In an oven-dried Teflon septum screw-capped tube (15 mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 4-ethynyltoluene **2b** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ab** (89.2 mg, 81%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.13 (m, 2H), 7.58 – 7.50 (m, 3H), 7.45 (dd, *J* = 10.6, 4.7 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H). Spectral data match those previously reported⁶.

1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (3ac): In an oven-dried Teflon septum screwcapped tube (15 mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 3-ethynyltoluene **3c** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ac** (67.2 mg, 61%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.20 (m, 2H), 7.64 – 7.60 (m, 1H), 7.54 – 7.48 (m, 4H), 7.32 – 7.28 (m, 2H), 2.38 (s, 3H). Spectral data match those previously reported⁶.

1-phenyl-3-(4-propylphenyl)prop-2-yn-1-one (3ad): In an oven-dried Teflon 13 septum screw-capped tube (15 mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 1-ethynyl-4-propylbenzene **2d** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3ad** (109.3 mg, 88%) as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dt, *J* = 8.5, 1.6 Hz, 2H), 7.63 – 7.58 (m, 3H), 7.53 – 7.49 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 2.65 – 2.60 (m, 2H), 1.68 – 1.63 (m, 2H), 0.95 (dd, *J* = 9.8, 4.9 Hz, 3H). Spectral data match those previously reported⁷.

1-Phenyl-3-(p-chlorophenyl)prop-2-yn-1-one (3ae): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 1-chloro-4-ethynylbenzene **2e** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ae** (103.5 mg, 86%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.18 (m, 2H), 7.65 – 7.60 (m, 3H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.42 – 7.40 (m, 2H). Spectral data match those previously reported⁶.

1-Phenyl-3-(p-bomophenyl)prop-2-yn-1-one (3af): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 1-bromo-4-ethynylbenzene **2f** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3af** (112.6 mg, 79%) as a pale yellow solid pale. ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.18 (m, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.59 – 7.52 (m, 6H). Spectral data match those previously reported⁶.

1-Phenyl-3-(4-trifluoromethylphenyl)prop-2-yn-1-one (3ag): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol,1.0 equiv) was reacted with 1-ethynyl-4-(trifluoromethyl)benzene **2g** (0.75 mmol, 1.5equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ag** (93.2 mg, 68%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.24 – 8.19 (m, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.70 – 7.65 (m, 3H), 7.54 (t, *J* = 7.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.13. Spectral data match those previously reported⁶.

1-Phenyl-3-(4-methoxylphenyl)prop-2-yn-1-one (3ah): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 1-ethynyl-4-(trifluoromethyl)benzene **2h** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3ah** (94.5 mg, 80%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.68 – 7.61 (m, 3H), 7.52 (t, *J* = 7.6 Hz, 2H), 6.96 – 6.92 (m, 2H), 3.87 (s, 3H). Spectral data match those previously reported⁶.

1-Phenyl-3-(4-diphenyl)prop-2-yn-1-one (3ai): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin 1a (0.5 mmol, 1.0 equiv) was reacted

with 4-ethynyl-1,1'-biphenyl **2i** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ai** (120.0 mg, 85%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.19 (m, 2H), 7.77 – 7.74 (m, 2H), 7.67 – 7.60 (m, 6H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.47 (dd, *J* = 10.1, 4.8 Hz, 2H), 7.41 – 7.37 (m, 1H). Spectral data match those previously reported⁸.

1-Phenyl-3-(thiophen-2-yl)prop-2-yn-1-one (3aj): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 2-ethynylthiophene **2j** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3aj** (73.2 mg, 69%) as a pale yellow solid. ¹H NMR (400 MHz,CDCl₃) δ 8.21 – 8.16 (m, 2H), 7.62 (d, *J* = 7.3 Hz, 1H), 7.59 (d, *J* = 3.7 Hz, 1H), 7.53 (dd, *J* = 10.6, 4.4 Hz, 3H), 7.11 (dd, *J* = 5.1, 3.8 Hz, 1H). Spectral data match those previously reported⁶.

1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (3ak): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with 3-ethynylthiophene **2k** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3ak** (94.5 mg, 89%) as a brown liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 5.3, 3.2 Hz, 2H), 7.86 (dd, *J* = 2.9, 1.0 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.52 (dd, *J* = 10.3, 5.0 Hz, 2H), 7.39 (dd, *J* = 5.0, 2.9 Hz, 1H), 7.35 – 7.32 (m, 1H). Spectral data match those previously reported⁹.

1,5-Diphenylpent-2-yn-1-one (3al): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with but-3-yn-1-ylbenzene 21 (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3al** (94.9 mg, 81%) as a pale yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 7.4 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.32 (m, 2H), 7.27 (d, *J* = 7.9 Hz, 2H), 2.99 (t, *J* = 7.3 Hz, 2H), 2.82 (t, *J* = 7.3 Hz, 2H). Spectral data match those previously reported¹⁰.

1-Phenyl-3-hept-2-yn-1-one (3am): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin 1a (0.5 mmol, 1.0 equiv) was reacted with hex-1-yne 2m (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product 3am (54.0 mg, 58%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 2.50 (t, *J* = 7.1 Hz, 2H), 1.69 – 1.63 (m, 2H), 1.50 (dd, *J* = 14.9, 7.4 Hz, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). Spectral data match those previously reported¹¹.

3-Cyclopropyl-1-phenylprop-2-yn-1-one (3an): In an oven-dried Teflon septum screw-capped tube (15mL), N-benzoylsaccharin **1a** (0.5 mmol, 1.0 equiv) was reacted with ethynylcyclopropane **2n** (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3an** (54.0 mg, 58%) as a colorless liquid. ¹H

NMR (500 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 1.54 (tt, *J* = 7.8, 5.3 Hz, 1H), 1.06 – 1.00 (m, 4H). Spectral data match those previously reported⁶.

1-(4-p-tolyl)-3-phenylprop-2-yn-1-one (3ba):⁸ In an oven-dried Teflon septum screw-capped tube (15mL), N-4-methylbenzoyl saccharin **1b** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ah** (72.7 mg, 66%) as a yellow oil. ¹H NMR (500 MHz, CDCl3) δ 8.11 (d, *J* = 8.1 Hz, 2H), 7.68 – 7.65 (m, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H). Spectral data match those previously reported¹².

1-(4-methoxyl)-3-phenylprop-2-yn-1-one (3ca):² In an oven-dried Teflon septum screw-capped tube (15mL), N-4-methoxybenzoyl saccharin **1c** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3ca** (81.5 mg, 69%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.25 – 8.14 (m, 2H), 7.71 – 7.65 (m, 2H), 7.49 – 7.45 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.90 (s, 3H). Spectral data match those previously reported⁶.

1-(2-Methoxyphenyl)-3-(p-tolyl)prop-2-yn-1-one(3da):² In an oven-dried Teflon septum screw-capped tube (15mL), N-2-methoxybenzoyl saccharin **1d** (0.5mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3da** (57.9 mg, 49%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.51 – 7.48 (m, 1H), 7.33 – 7.29 (m, 4H), 6.93 (dd, *J* = 10.9, 4.1 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 3.90 (s, 3H). Spectral data match those previously reported⁶.

1-(3-methoxylphenyl)-3-phenylprop-2-yn-1-one (3ea): In an oven-dried Teflon septum screw-capped tube (15 mL), N-3-methoxybenzoyl saccharin **1e** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (20/1) as eluent afforded the product **3da** (73.2 mg, 62%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.88 – 7.85 (m, 1H), 7.71 – 7.67 (m, 3H), 7.48 (t, J = 7.5 Hz, 1H), 7.42 (dd, J = 7.7, 2.4 Hz, 3H), 7.19 – 7.16 (m, 1H), 3.88 (s, 3H). Spectral data match those previously reported¹³.

1-(4-fluorophenyl)-3-phenylprop-2-yn-1-one (3fa): In an oven-dried Teflon septum screw-capped tube (15 mL), N-4-fluorobenzoylsaccharin **1f** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate 19

(40/1) as eluent afforded the product **3ca** (76.2 mg, 68%) as a pale yellow solid pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.20 (m, 2H), 7.72 – 7.68 (m, 2H), 7.51 (ddd, *J* = 6.2, 3.6, 1.1 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.23 – 7.18 (m, 2H). ¹⁹F NMR (376 MHz, cdcl₃) δ -102.98, -102.99, -103.00, -103.02, -103.02. Spectral data match those previously reported⁶.

1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (3ga): In an oven-dried Teflon septum screw-capped tube (15 mL), N-4-chlorobenzoylsaccharin **1g** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ga** (103.5 mg, 86%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.20 (m, 2H), 7.72 – 7.68 (m, 2H), 7.51 (ddd, *J* = 6.2, 3.6, 1.1 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.23 – 7.18 (m, 2H). Spectral data match those previously reported⁶.

1-(4-bromophenyl)-3-phenylprop-2-yn-1-one (3ha): In an oven-dried Teflon septum screw-capped tube (15mL), 4-bromobenzoylsaccharin **1h** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ha** (87.0mg, 61%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.8 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 4H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H). Spectral data match those previously reported⁶.

3-phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (3ia): In an oven-dried Teflon septum screw-capped tube (15 mL), N-4-(trifluoromethyl)benzoyl saccharin **1i** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ia** (87.8 mg, 64%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -63.11. Spectral data match those previously reported⁶.

1-(4-cyanophenyl)-3-phenylprop-2-yn-1-one (3ja): In an oven-dried Teflon septum screw-capped tube (15mL), N-4-cyanobenzoylsaccharin **1j** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ja** (72.8 mg, 63%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.31 (m, 2H), 7.87 – 7.82 (m, 2H), 7.75 – 7.70 (m, 2H), 7.55 (ddd, *J* = 7.5, 3.9, 1.3 Hz, 1H), 7.50 – 7.45 (m, 2H). Spectral data match those previously reported¹⁴.

1-(4-formalphenyl)-3-phenylprop-2-yn-1-one (3ka): In an oven-dried Teflon septum screw-capped tube (15 mL), N-4-formylbenzoylsaccharin **1k** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl

acetate (10/1) as eluent afforded the product **3ka** (59.7 mg, 51%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 10.15 (s, 1H), 8.37 (d, *J* = 8.2 Hz, 2H), 8.03 (d, *J* = 8.2 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H). Spectral data match those previously reported¹⁵.

1-(Naphthalen-2-yl)-3-phenylprop-2-yn-1-one (3la): In an oven-dried Teflon septum screw-capped tube (15 mL), N-2-naphthoylsaccharin **11** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3la** (97.7 mg, 76%) as a pale yellow solid. 1H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.19 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.87 (dd, *J* = 12.0, 8.4 Hz, 2H), 7.73 – 7.69 (m, 2H), 7.62 – 7.58 (m, 1H), 7.55 (dd, *J* = 11.0, 3.9 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.42 (t, *J* = 7.3 Hz, 2H). Spectral data match those previously reported⁶.

1-(Thiophen-2-yl)-3-(p-tolyl)prop-2-yn-1-one (3ma): In an oven-dried Teflon septum screw-capped tube (15mL), N-thiophene-2-carbonyl saccharin **1m** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3ma** (65.8 mg, 62%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.64 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.10 (dd, *J* = 4.7, 4.0 Hz, 1H). Spectral data match those previously reported⁶.

1-pentene-5-phenyl-4-yne-3-one (3na): In an oven-dried Teflon septum screwcapped tube (15 mL), N-cinnamoylsaccharin **1n** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (40/1) as eluent afforded the product **3na** (113.8 mg, 98%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 16.1 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.58 (dd, *J* = 6.6, 2.8 Hz, 2H), 7.46 (dd, *J* = 8.6, 6.2 Hz, 1H), 7.43 – 7.38 (m, 5H), 6.85 (d, *J* = 16.1 Hz, 1H). Spectral data match those previously reported¹⁶.

1-methyl-3-phenylprop-2-yne-1-one (3oa): In an oven-dried Teflon septum screwcapped tube (15 mL), N-acetylsaccharin **10** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (50/1) as eluent afforded the product **3oa** (34.6 mg, 48%) as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 3H), 2.46 (s, 3H). Spectral data match those previously reported¹⁷.

1-undecyl-3-phenylprop-2-yne-1-one (3pa): In an oven-dried Teflon septum screwcapped tube (15 mL), N-dodecanoylsaccharin **1p** (0.5 mmol, 1.0 equiv) was reacted with phenylacetylene (0.75 mmol, 1.5 equiv) using standard procedures followed by silica gel column chromatography using petroleum ether/ethyl acetate (50/1)as eluent afforded the product **3pa** (86.6 mg, 58%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.51 (m, 2H), 7.48 – 7.42 (m, 1H), 7.41 – 7.35 (m, 2H), 2.66 (t, J =23 7.4 Hz, 2H), 1.78 - 1.69 (m, 2H), 1.25 (s, 16H), 0.87 (t, J = 6.8 Hz, 3H). Spectral data match those previously reported¹⁷.

References

- 1 T. Ueda, H. Konishi and K. Manabe, Angew. Chem. Int. Ed., 2013, 52, 8611–8615;
- 2 G. R. Meng and M. Szostak, Org. Lett., 2016, 18, 796-799;
- 3 X. J. Li and G. Zou. Chem. Commun., 2015, 51, 5089–5092;
- 4 G. R. Meng and M. Szostak, Org. Lett., 2015, 17, 4364-4367;
- 5 K. Phukan. International Journal of Applied Biology and Pharmaceutical Technology., 2014, 5, 171–175;
- 6 S. Tang, L. Zeng, Y. C. Liu and A. W. Lei, Angew. Chem. Int. Ed., 2015, 54, 15850-15853;
- 7 H. Tan, H. J. Li, W. Q. Ji and L. Wang, Angew, Chem. Int. Ed., 2015, 54, 8374-8377;
- 8 R. E. Whittaker and G. B. Dong, Org. Lett., 2015, 17, 5504-5507;
- 9 S. Karabiyikoglu, Y. Kelgokmen and M. Zora, *Tetrahedron.*, 2015, 71, 4324-4333;
- 10 X.-F. Wu, H. J. Jun, H. Neumann and M. Beller, Chem. Eur. J., 2012, 18, 16177-16185;
- 11 X.-F. Wu, H. Neumann and M. Beller, Angew. Chem. Int. Ed., 2011, 50, 11142-11146;
- 12 B. Yu, H. M. Sun, Z. Y. Xie, L. W. Xu, W. Q. Zhang and Z. W. Gao, Org. Lett., 2015, 17, 3298– 3301;
- X. W. Li, X. H. Liu, H. J. Chen, W. Q. Wu, C. R. Qi and H. F. Jiang, *Angew. Chem. Int. Ed.*, 2014, 53, 14485-14489;
- 14 Y. Ogiwara, M. Kubota, K. Kurogi, T. Konakahara and N. Sakai, *Chem. Eur. J.*, 2015, 21, 18598– 18600;
- 15 X.-F. Wu, B. Sundaraju, H. Neumann, P. H. Dixneuf and M. Beller, *Chem. Eur. J.*, 2011, 17, 106-110;
- 16 M. D. D. Pramanik, R. Kant and N. Rastogi, *Tetrahedron.*, 2014, 70, 5214-5220;
- 17 Q.-Q. Zhou, W. Guo, W. Ding, X. Xu, X. Chen, L. Q. Lu and W.-J. Xiao, Angew. Chem. Int. Ed., 2015, 54, 11196–11199;

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR of Starting Materials

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-102.58 -102.60 -102.61 -102.61 -102.61 -102.63 -102.63 -102.63 -102.63

39	41	51 24 52 29 28 56 56 57 57 50 57 50 50 50 50 50 50 50 50 50 50 50 50 50
LC ²	1-	0.8.9.7.0.0.8.9.1.
-16	÷	4000000000000000
	1	VIII VIIII

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80

70 60 50 40 30

32

20 10 0 -10

0 || 0 N F₃C[´] Ó 0 ¹⁹F NMR (376 MHz, CDCl₃) 1i

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

158.87 158.03 158.03 158.03 135.79 135.79 135.78 135.78 135.78 135.88 125.88 121.48

¹³C NMR (100 MHz, CDCl₃)

1m

Copies of ¹H NMR, ¹⁹F NMR of Products

3aa

3ab

3ac

3ad

3af

3ag

3ah

3ai

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.{

3ak

3ba

3ca

3ea

3fa

 $\begin{array}{c} -102.98 \\ -102.99 \\ -103.00 \\ -103.02 \\ -103.02 \end{array}$

O ∐ F

 $^{19}\mathrm{F}\ \mathrm{NMR}\ (400\ \mathrm{MHz},\ \mathrm{CDCI}_3)$

50 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -10 -10 -120 -130 -140 -150 -160 -170 -180 -190 -200

3ga

ll.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

3ha

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

3ja

3la

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

3ma

