Supplementary Information

'Simple Rules and the Emergence of Complexity in surface Chirality'

by Matthew Forster and Rasmita Raval

Figure S1 Surface chirality generators for the (i) homochiral ($C_2 \times E$) and (ii) heterochiral ($S_2 \times E$) footprint templates within a (3 × 2) packing. The chiral outputs arising from the enantiopure and racemic adsorption of both single-footed and two-footed molecules are derived for each template and are labelled in terms of their overall surface chirality, C_F^H .

Figure S2 Surface chirality generators for the (i) homochiral ($E \times E$) and (ii) heterochiral ($S_2 \times E$) footprint templates within a (4 × 2) packing. The chiral outputs arising from the enantiopure and racemic adsorption of both single-footed and two-footed molecules are derived for each template and are labelled in terms of their overall surface chirality, C_F^H .

Figure S3 Surface chirality generators for the (i) heterochiral ($\sigma_v \times S_2$) and (ii) heterochiral ($C_2 \times S_2$) footprint templates within a (4 × 2) packing. The chiral outputs arising from the enantiopure and racemic adsorption of both single-footed and two-footed molecules are derived for each template and are labelled in terms of their overall surface chirality, C_F^H .

Figure S4 Surface chirality generators for the (i) heterochiral ($E \times S_2$) and (ii) heterochiral ($S_2 \times S_2$) footprint templates within a (4 × 2) packing. The chiral outputs arising from the enantiopure and racemic adsorption of both single-footed and two-footed molecules are derived for each template and are labelled in terms of their overall surface chirality, C_F^H .

Figure S5 Surface chirality generators for (i) homochiral and (ii) heterochiral randomized footprint templates within a (4 × 2) packing. The chiral outputs arising from the enantiopure and racemic adsorption of both single-footed and two-footed molecules are derived for each template and are labelled in terms of their overall surface chirality, C_F^H .

Figure S6. Examples of chiral surfaces that may arise from either a statistically rare event or tailored enantiospecific interactions within (i) a homochiral footprint template and (ii) a heterochiral footprint template. (i) For racemic adsorption of a two-footed molecule in a homochiral template, we would expect a random arrangement of enantiomers if (S) and (R) can

occupy λ and δ footprints equally, leading to a surface described by, C_{Cn}^{Rn} (see surface chirality generators above). However, consider an event in which, by chance, enantiomers order as a racemic compound. The resulting surface would be a conglomerate in terms of the footprints but a racemic compound at the handedness level, C_{Cn}^{Rc} . This outcome is not disallowed by the rules but could only arise from a statistically rare event. Alternatively, enantiospecific interactions could be tailored such that heterochiral enantiomer interactions (*R*)-(*S*) are favoured over the homochiral interactions. In this instance, the chiral surface described by C_{Cn}^{Rc} could arise. (ii) Similarly, for racemic adsorption of a two-footed molecule in a heterochiral footprint template we would expect a random arrangement of enantiomers, C_{Rc}^{Rn} (see surface chirality generators above). However, a statistically rare event could also lead to a conglomerate at the handed level, C_{Rc}^{Cn} should enantiomers organize in separate domains. Again, this is a statistically unlikely event, but it is not forbidden by the rules. Alternatively, a conglomerate within the heterochiral footprint template, C_{Rc}^{Cn} could arise if interactions between homochiral enantiomer pairs (*S*)-(*S*) and (*R*)-(*R*) are preferred over heterochiral ones (*R*)-(*S*).