Kinetically Controlled Simplification of a [10×10] Dynamic Imine Library

Chia-Wei Hsu and Ognjen Š. Miljanić*
Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States Email: miljanic@uh.edu
Phone: +1.832 .842 .8827

Supporting Information

General Methods and Materials S2
Syntheses of Imines. S3
Iterative Self-Sorting of the $[10 \times 10]$ Imine Library
Self-Sorting \#1: Slow Oxidation S4
Self-Sorting \#2: Adsorption-Driven Self-Sorting of $\left[\begin{array}{ll}9 & \times 9\end{array}\right]$ Imine Library Using Silica Gel-Based Column
Chromatography S5
Self-Sorting \#3: Distillation-Driven Self-Sorting of the $[7 \times 7]$ Imine Library S7
References S8

General Methods and Materials

Reagents and solvents were purchased from commercial suppliers and used without further purification, except PhMe and hexane, which were dried over molecular sieves. Three-necked round bottom flask (50 mL) was used in the slow oxidation. A round bottom flask $(50 \mathrm{~mL})$ and a DeanStark trap were used as the standard part of the reaction apparatus for the re-equilibration of the leftover imines. Column chromatography ${ }^{1}$ and slow distillation ${ }^{2}$ were performed in the same way as the reported procedures.

NMR spectra were collected on JEOL ECX-400, ECA-500, and ECA-600 NMR spectrometers, with working frequencies of 400,500 , and 600 MHz , successively, for ${ }^{1} \mathrm{H}$ nuclei. Chemical shifts are reported in ppm units relative to the residual signal of the solvent $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$, DMSO- d_{6} : $2.49 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded with simultaneous decoupling of ${ }^{1} \mathrm{H}$ nuclei. 1,3,5Trimethoxybenzene (Alfa Aesar, 99%) was used as the internal standard for the quantification of ${ }^{1} \mathrm{H}$ NMR spectra. The melting points were measured on a Barnstead International Mel-TEMP ${ }^{\circledR}$ apparatus, and are uncorrected. The mass spectra were obtained via LCQ Deca XP Plus from Thermo Finnigan (ESI-MS) or Micromass Autospec Ultima (CI-MS). IR spectra were collected on Thermo Scientific ${ }^{\text {mw }}$ Nicolet ${ }^{\text {mw }}$ iS ${ }^{\mathrm{mw}} 10$ FT-IR. For GC-FID analysis, Agilent 7820E spectrometer with a Zebron ZB-5MS capillary column ($0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m} \times 25 \mathrm{~m}$) was utilized under the following conditions: (a) initial temperature: $50^{\circ} \mathrm{C}$ for 1 min ; (b) first heating ramp of $30^{\circ} \mathrm{C} / \mathrm{min}$ to $80^{\circ} \mathrm{C}$, which temperature was held for 1 min ; (c) second heating ramp of $45^{\circ} \mathrm{C} / \mathrm{min}$ to $260^{\circ} \mathrm{C}$; (d) third heating ramp of $2{ }^{\circ} \mathrm{C} / \mathrm{min}$ to $300^{\circ} \mathrm{C}$, which temperature was held for 2 min . Imines B2, B3, C2, C3, and D4 quantification measurements were based on the integration of their peaks in GC-FID chromatogram and corrected by the corresponding response factors toward the internal standard, biphenyl.

All of the imines have been characterized and reported in the literature, except J4 and $\mathbf{H 4}$ (for the latter, no NMR data were reported in the literature). Syntheses and NMR data for J4 and $\mathbf{H 4}$ are provided in the following section.

Experiments are presented in the order following the discussion of the manuscript.
Compound numbers are identical to those in the main text of the manuscript.

Syntheses of Imines

4- n-Octyloxy- N-[(4-nitrophenyl)methylene]benzeneamine (H4)
Equimolar amounts of 4-nitrobenzaldehyde ($84 \mathrm{mg}, 0.56 \mathrm{mmol}$) and 4-n-octyloxyaniline (122 $\mathrm{mg}, 0.56 \mathrm{mmol}$) were added into a 50 mL round bottom flask, along with $\mathrm{PhMe}(25 \mathrm{~mL})$. The solution was heated at reflux for 12 h with a Dean-Stark trap. After that time, PhMe was evaporated in vacuo, and the resulting solid was recrystallized with $\mathrm{PhMe} /$ hexane, to give the title compound as a yellow solid in 72% yield (143 mg).

H4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31(\mathrm{~d}, 2 \mathrm{H}), 8.07-8.05(\mathrm{~d}, 2 \mathrm{H})$, 7.32-7.29 (m, 2H), 7.36-7.39 (m, 2H), 6.97-6.93 (m, 2H), 3.99 (t, 2H), 1.83-1.77 (m, 2H), $1.50-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.90-0.88(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 125 \mathrm{MHz}\right)$: 160.0, 154.6, 149.0, 143.4, 142.1, 129.1, 124.1, 122.7, 115.2, 68.4, 31.9, 29.5, 29.4, 26.2, 22.8, 14.2 ppm. Melting point: $60-61^{\circ} \mathrm{C}$. IR (neat): 2939 2918, 2853, 1596, 1575, 1516, 1505, 1339, $830 \mathrm{~cm}^{-1}$. LRMS (ESI, positive): Calcd ([M+H]+), 355.20; Found, 355.26.

4-n-Octyloxy- N-[(2,4-dinitrophenyl)methylene]benzeneamine (J4)

Equimolar amounts of 2,4-dinitrobenzaldehyde ($108 \mathrm{mg}, 0.56 \mathrm{mmol}$) and 4-n-octyloxyaniline ($122 \mathrm{mg}, 0.56 \mathrm{mmol}$) were added into a 50 mL round bottom flask, along with $\mathrm{PhMe}(25 \mathrm{~mL})$. The solution was heated at reflux for 12 h with a Dean-Stark trap. After that time, PhMe was evaporated in vacuo, and the resulting solid was washed with hexane, to give the title compound as a yellow solid in 54% yield (120 mg).

J4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, 1 \mathrm{H}), 8.62(\mathrm{~d}, 1 \mathrm{H}), 8.52(\mathrm{dd}, 1 \mathrm{H})$, 7.39-7.36 (m, 2H), 6.98-6.95 (m, 2H), 4.00 (t, 2H), 1.84-1.78 (m, 2H), 1.50-1.44 (m, 2H), $1.39-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} 125 \mathrm{MHz}\right): 159.9,149.8,149.0$, 148.2, 142.6, 136.4, 131.2, 127.4, 123.5, 120.5, 155.3, 68.5, 31.9, 29.5, 29.4, 29.3, 26.1, 22.8, 14.2 ppm. Melting point: $69-70^{\circ} \mathrm{C}$. IR (FTIR, neat): 2923, 2856, 1648, 1598, 1573, 1523, 1341, 981, $833 \mathrm{~cm}^{-1}$. HRMS (CI, negative): Calcd, 399.1794; Found, 399.1787.

Iterative Self-Sorting of the $[10 \times 10]$ Imine Library

Self-Sorting \#1: Slow Oxidation

Equimolar amounts of 2,4-dimethoxybenzaldehyde ($92 \mathrm{mg}, 0.56 \mathrm{mmol}$), benzaldehyde ($56 \mu \mathrm{~L}$, 0.56 mmol), 4- n-octyloxybenzaldehyde ($134 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$), 4-chlorobenzaldehyde ($78 \mathrm{mg}, 0.56$ mmol), 4-bromobenzaldehyde ($102 \mathrm{mg}, 0.56 \mathrm{mmol}$), o-tolualdehyde ($65 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$), p tolualdehyde ($64 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$), 2,4-dinitrobenzalehyde ($108 \mathrm{mg}, 0.56 \mathrm{mmol}$), 2nitrobenzaldehyde ($84 \mathrm{mg}, 0.56 \mathrm{mmol}$), 1,2-phenylenediamine ($60 \mathrm{mg}, 0.56 \mathrm{mmol}$), aniline ($50 \mu \mathrm{~L}$, 0.56 mmol), 4 - n-octyloxyaniline ($122 \mathrm{mg}, 0.56 \mathrm{mmol}$), o-anisidine ($63 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$), 4 chloroaniline ($70 \mathrm{mg}, 0.56 \mathrm{mmol}$), 4-bromoaniline ($94 \mathrm{mg}, 0.56 \mathrm{mmol}$), p-anisidine ($68 \mathrm{mg}, 0.56$ mmol), p-toluidine ($58 \mathrm{mg}, 0.56 \mathrm{mmol}$), 2,4-dimethoxyaniline ($86 \mathrm{mg}, 0.56 \mathrm{mmol}$), and 4 aminobenzonitrile ($66 \mathrm{mg}, 0.56 \mathrm{mmol}$) were added into a 50 mL three-necked round bottom flask, along with $\mathrm{PhMe}(25 \mathrm{~mL})$. The mixture was heated at $65^{\circ} \mathrm{C}$ for 12 h , followed by slow addition of a solution of $\mathrm{I}_{2}(149 \mathrm{mg}, 0.59 \mathrm{mmol})$ in $\mathrm{PhMe}(12 \mathrm{~mL})$ at a rate of $1 \mathrm{~mL} \mathrm{~h}^{-1}$. After the completion of addition, the reaction was kept at $65^{\circ} \mathrm{C}$ for 1 h . The brown suspension was cooled down to room temperature, and filtered through a silica gel plug. Silica gel was washed with $\mathrm{PhMe}(70 \mathrm{~mL})$, followed by hexane/acetone ($250 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=3: 2$). The final product was eluted out with acetone $(300 \mathrm{~mL})$, followed by the recrystallization with $\mathrm{PhMe} /$ acetone. Product was obtained as a brown powder in 74% yield (105 mg).

A1 $_{\text {ox }}:{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $8.44(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.30-7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. Spectral data agree with the previous literature report. ${ }^{3}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the initial $[10 \times 10]$ imine library.

Self-Sorting \#2: Adsorption-Driven Self-Sorting of [9×9] Imine Library Using Silica Gel-Based Column Chromatography

The filtrate obtained after the first self-sorting step was evaporated in vacuo, and was then added into a 50 mL round bottom flask equipped with a Dean-Stark trap. The mixture was then heated at reflux in $\mathrm{PhMe}(25 \mathrm{~mL})$ for 12 h . After evaporation of PhMe under vacuum, 2.2 g of oven-dried silica gel was added and mixed with the dried filtrate. This mixture was put on the column pre-loaded with an $\sim 20 \mathrm{~cm}$-high layer of oven-dried silica gel. The column was wrapped with a heating tape and heated to around $50^{\circ} \mathrm{C}$. The elution—first, with a $10: 1$ hexane $/ \mathrm{PhMe}(\mathrm{v} / \mathrm{v}, 220 \mathrm{~mL})$ mixture, and then with an $8: 1$ hexane $/ \mathrm{PhMe}(\mathrm{v} / \mathrm{v}, 360 \mathrm{~mL})$ mixture-afforded the major sub-library after the evaporation of solvent in vacuo. The yields were calculated using 1,3,5-trimethoxybenzene as the internal standard (268 mg crude, 20.1 mg internal standard).

B2: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.75(\mathrm{~d}, 2 \mathrm{H}), 7.62-7.61(\mathrm{~d}, 2 \mathrm{H})$, 7.51-7.50 (d, 2H), 7.10-7.07 (m, 2H) ppm. B3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): 8.37(\mathrm{~s}, 1 \mathrm{H})$, 7.76-7.75 (d, 2H), 7.51-7.50 (d, 2H), 7.36-7.35 (d, 2H), 7.16-7.14 (m, 2H) ppm. C2: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~d}, 2 \mathrm{H}), 7.51-7.50(\mathrm{~d}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~d}, 2 \mathrm{H})$, 7.10-7.07 (m, 2H) ppm. C3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~d}, 2 \mathrm{H})$, 7.46-7.44 (d, 2H), 7.36-7.35 (d, 2H), 7.16-7.14 (m, 2H) ppm. Spectral data agree with the previous literature reports. ${ }^{4}$

Calculation of the Yields based on the Integration of ${ }^{1} \mathrm{H}$ NMR Spectra

We assumed that B2:B3:C2:C3 = 1:1:1:1 (each imine has 28 mmol). Internal standard 1,3,5trimethoxybenzene ($20.1 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added into 268 mg of the crude imine mixture obtained after the first elution. From the integration of the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure S1), the number of moles of $\mathbf{B} \mathbf{2}$ was calculated to be $0.120 \mathrm{mmol} \times 1.11=0.13 \mathrm{mmol}$. Thus, the yield of $\mathbf{B} \mathbf{2}$ is $0.13 \mathrm{mmol} \div 0.28 \mathrm{mmol}=46 \%$. Analogous calculations have been performed for all other imines of interest.

Yield of B3: $0.12 \times 1.34=0.16 \mathrm{mmol} \rightarrow \rightarrow 0.16 \mathrm{mmol} \div 0.28 \mathrm{mmol}=57 \%$.
Yield of C2: $0.12 \times 1.14=0.14 \mathrm{mmol} \rightarrow \rightarrow 0.14 \mathrm{mmol} \div 0.28 \mathrm{mmol}=50 \%$.
Yield of C3: $0.12 \times 1.39=0.17 \mathrm{mmol} \rightarrow \rightarrow 0.17 \mathrm{mmol} \div 0.28 \mathrm{mmol}=59 \%$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of the imine library prior to Self-Sorting \#2.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the first eluted fraction during Self-Sorting \#2.

The residue of the second section in the column was eluted with EtOAc (400 mL), followed by the evaporation of EtOAc in vacuo. The dried residue was added into a 50 mL round bottom flask equipped with a Dean-Stark trap. The mixture was heated to reflux in $\mathrm{PhMe}(25 \mathrm{~mL})$ for 12 h . After the evaporation of PhMe under vacuum, the residue was transferred to 25 mL round bottom flask and then equipped with a short distillation condenser. The mixture was distilled under vacuum (0.15 mmHg). The distillation program was as follows: $60^{\circ} \mathrm{C}$ for $5 \mathrm{~d}, 80^{\circ} \mathrm{C}$ for $3 \mathrm{~d}, 100^{\circ} \mathrm{C}$ for 2 d , and 120 ${ }^{\circ} \mathrm{C}$ for 2 d . The distillation resulted in a crude dark brown distillation residue (200 mg), which was identified as 4-n-octyloxy- N-[(4-n-octyloxyphenyl)methylene]benzeneamine D4 ($0.34 \mathrm{mmol}, 74 \%$ purity, 61% yield). Minor imines observed in the distillation residue were $4-n$-octyloxy- $N-[(2,4-$ dinitrophenyl)methylene]benzeneamine ($\mathbf{J 4}, 0.13 \mathrm{mmol}, 23 \%$ yield, 26% purity) and $4-n$-octyloxy-N-[(2,4-dinitrophenyl)methylene]benzeneamine (H4, 0.008 mmol$)$.

D4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 8.39$ (s, 1H), 7.82-7.80 (d, 2H), 7.20-7.18 (d, 2H), 6.97-6.95 (d, 2H), 6.92-6.90 (m, 2H), 4.03-4.00 (t, 2H), 3.98-3.95 (t, 2H), 1.83-1.76 (m, 4H), $1.50-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.90-0.88(\mathrm{t}, 6 \mathrm{H}) \mathrm{ppm} . \mathrm{J} 4:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $9.03(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, 1 \mathrm{H}), 8.62(\mathrm{~d}, 1 \mathrm{H}), 8.52$ (dd, 1H), 7.36-7.39 (m, 2H), 6.95-6.98 (m, 2H), $4.00(\mathrm{t}, 2 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.39(\mathrm{~m}, 8 \mathrm{H}), 0.88-0.91(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. Spectral data agree with the previous literature report. ${ }^{5}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of the imine mixture prior to distillation in Self-Sorting \#3.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of the distillation residue, containing imines D4, J4, and $\mathbf{H 4}$.

References

[1] C.-W. Hsu and O. Š. Miljanić, Angew. Chem. Int. Ed. 2015, 54, 2219.
[2] K. Osowska and O. Š. Miljanić, Angew. Chem. Int. Ed. 2011, 50, 8345.
[3] K. Osowska and O. Š. Miljanić, J. Am. Chem. Soc. 2011, 133, 724.
[4] For B2, see: A. Bolognese, M. V. Diurno, O. Mazzoni and F. Giordano, Tetrahedron 1991, 47, 7417. For B3, see: A. Subashini, G. Bhagavannarayana and K. Ramamurthi, Spectrochim. Acta, Part A 2012, 96, 716. For C2, see: A. Bolognese, M. V. Diurno, O. Mazzoni and F. Giordano, Tetrahedron 1991, 47, 7417. For C3, see: H. Naeimi and K. Rabiei, J. Chin. Chem. Soc. 2012, 59, 208.
[5] A.-T. Mohammada, G.-Y. Yeap and H. Osman, J. Mol. Struct. 2015, 1087, 88.

