### **Electronic Supplementary Information**

# Hydrothermal synthesis of high silica zeolite Y using tetraethylammonium hydroxide as

## structure-directing agents

Dawei He, <sup>ab</sup> Danhua Yuan, <sup>a</sup> Zhijia Song, <sup>ab</sup> Yansi Tong, <sup>ab</sup> Yaqi Wu, <sup>ab</sup> Shutao Xu,<sup>a</sup> Yunpeng Xu, <sup>a\*</sup>

### Zhongmin Liu a\*

- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China;
- b. University of Chinese Academy of Sciences, Beijing 100049, P. R. China.etc.
- \* E-mail: xuyp@dicp.ac.cn; liuzm@dicp.ac.cn

#### Synthesis

**TEA-Y samples.** The process of synthesizing high silica Y zeolite with TEAOH as SDAs was as follows: As a typical run of the sample TEA-1, sodium metaaluminate ( $Al_2O_3 = 48\%$ ,  $Na_2O = 40\%$ , Sinopharm Chemical Reagent Corp.) and sodium hydroxide (98%, Tianjin Kemiou Chemical Reagent Corp.) were mixed with tetraethylammonium hydroxide (35% aq. Solution, Shanghai Aladdin Chemical Reagent Corp.) in deionized water and stirred to a clear solution. Then, a given amount of silica gel (29.8% aq. Solution, Qingdao Ocean Chemical Plant) was slowly added into the solution. Composition of the starting gels is 1.3 Na<sub>2</sub>O/1.5 TEA<sub>2</sub>O/10 SiO<sub>2</sub>/1 Al<sub>2</sub>O<sub>3</sub>/90 H<sub>2</sub>O. This suspension was aged with agitation at room temperature for 12 h, and then poured into a stainless steel autoclave, and placed in an oven statically at 120 °C for 14 days. After crystallization, the as-synthesized products were separated by filtration, washed with deionized water until pH < 8, and then dried at 100 °C for further characterization.

**Na-Y sample.** The process of synthesizing sample Na-Y was as follows: sodium metaaluminate and sodium hydroxide were added in deionized water and stirred to a clear solution. Then, a given amount of silica gel was slowly added into the solution. The composition of the starting gels is 3.2 Na<sub>2</sub>O/10 SiO<sub>2</sub>/1 Al<sub>2</sub>O<sub>3</sub>/90 H<sub>2</sub>O. This suspension was aged with agitation at room temperature for 12 h, and then poured into a stainless steel autoclave, and placed in an oven statically at 120 °C for 14 days. After crystallization, the as-synthesized products were separated by filtration, washed with deionized water until pH < 8, and then dried at 100 °C for further characterization.

**H-form TEA-Y zeolites.** H-form zeolites were prepared by ion-exchange of  $NH_4NO_3$  solution, followed by calcination. In a typical run, 2 g calcinated zeolite was ion-exchanged with 50 mL of  $NH_4NO_3$  solution (1.5 mol/L) at 80 °C for 5 h. After washing with deionized water and drying at 100 °C for 12 h, the ion-exchanged zeolite was calcined at 500 °C for 4 h. This process was repeated for two times.

**Hydrothermal treatment.** Hydrothermal treatment of the H-form zeolites was performed in a tube furnace. The H-form zeolites were placed in the tube furnace and were heated in 100 % steaming vapor at temperature of 750 °C. The samples were designated as zeolites-hydro.

#### Characterization

The X-ray diffraction (XRD) patterns were collected on a PANalytical X'Pert PRO X-ray diffractometer using the Cu-K $\alpha$  radiation ( $\lambda = 1.54059$  Å), operating at 40 kV and 40 mA. The step size was 0.02 °, and the scanning speed was 12 °/min. The relative crystallinity was estimated by the reflection intensities of the peaks (1 1 1), (2 2 0), and (3 3 1) of the samples. The crystal size and morphology were observed with a Hitachi SU8020 scanning electron microscopy. N<sub>2</sub> adsorption-desorption isotherms of the samples were measured at 77 K on a Micromeritics ASAP 2020 system. All the solid state NMR experiments were performed on a Bruker AvanceIII 600 spectrometer equipped with a 14.1 T wide-bore magnet. TG-DSC analysis was carried out on TA Q-600 analyzer from room temperature to 1200 °C with a heating rate of 10 °C/min in an air flow of 100 ml/min. the chemical composition of the samples was calculated with a Philips Magix-601 X-ray fluorescence (XRF) spectrometer. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) analysis was measured with PerkinElmer 7300DV.

# **Supporting Figures**

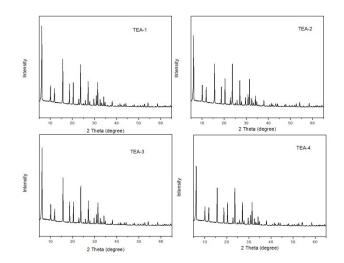



Fig. S1 XRD patterns of the as-synthesized samples TEA-1, TEA-2, TEA-3, and TEA-4.

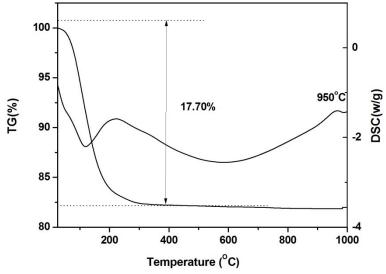



Fig. S2 TG-DSC curves of the sample Na-Y.

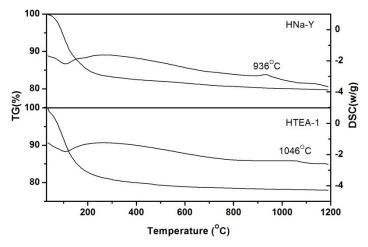



Fig. S3 TG-DSC curves of the H-form zeolites Na-Y and TEA-1.

| Run | X   | у   | Cryst. Time (d) | Cryst. temp. (°C) | Products |
|-----|-----|-----|-----------------|-------------------|----------|
| 1   | 2.2 | 1.0 | 14              | 120               | FAU+GIS  |
| 2   | 1.7 | 1.5 | 14              | 120               | FAU+GIS  |
| 3   | 1.8 | 1.4 | 14              | 120               | FAU+GIS  |
| 4   | 1.0 | 1.8 | 21              | 120               | FAU+BEA  |
| 5   | 1.1 | 1.7 | 21              | 120               | FAU+BEA  |
| 6   | 1.2 | 1.6 | 21              | 120               | FAU+BEA  |
| 7   | 1.2 | 1.8 | 14              | 120               | FAU+BEA  |
| 8   | 1.3 | 1.5 | 14              | 120               | FAU      |
| 9   | 1.5 | 1.5 | 14              | 120               | FAU      |
| 10  | 1.5 | 1.3 | 14              | 120               | FAU      |
| 11  | 1.8 | 1.2 | 12              | 120               | FAU      |
| 12  | 1.8 | 1.0 | 12              | 120               | FAU      |
| 13  | 2.0 | 1.0 | 8               | 120               | FAU      |
| 14  | 2.1 | 0.7 | 8               | 120               | FAU      |
| 15  | 2.1 | 0.9 | 4               | 120               | FAU      |
| 16  | 2.3 | 0.7 | 4               | 120               | FAU+MOR  |
| 17  | 2.3 | 0.5 | 4               | 120               | FAU+MOR  |
| 18  | 2.5 | 0.5 | 4               | 120               | FAU+MOR  |
| 19  | 2.5 | 0.3 | 8               | 120               | MOR      |
| 20  | 1.8 | 0.8 | 14              | 120               | Amor     |
| 21  | 1.2 | 1.4 | 14              | 120               | Amor     |
| 22  | 1.4 | 1.2 | 14              | 120               | Amor     |
| 23  | 1.6 | 1.0 | 14              | 120               | Amor     |

Table S1. Products synthesized under various conditions from the gel. Composition of the starting gels is x  $Na_2O/y$  TEA<sub>2</sub>O/10 SiO<sub>2</sub>/1 Al<sub>2</sub>O<sub>3</sub>/90 H<sub>2</sub>O.