Stereoselective synthesis of 2,3,4-highly substituted oxetanes by intramolecular $\mathbf{C}-\mathbf{C}$ bond forming Michael addition

Guo-Ming Ho, ${ }^{[a],[b]}$ and Yu-Jang Li* ${ }^{[a]}$${ }^{\text {[a] }}$ Department of Applied Chemistry, National Chiayi university, 300, Syuefu Road, Chiayi City600, Taiwan${ }^{[b]}$ Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115,Taiwan
TABLE OF CONTENTS
I. General Experimental S2
II. Experimental Procedures. S4
Table S1 Preparations of ketoesters and their corresponding vinylogous urethanes S4
Table S2 Preparations of acetylenic esters and their corresponding vinylogous urethanes S5
General procedure for the synthesis of ketoesters S5
General procedure for the synthesis of acetylenic esters S8
General procedure for the synthesis of vinylogous urethanes from ketoesters. S13
General procedure for the synthesis of vinylogous urethanes from acetylenic esters S16
General procedure for the synthesis of 2,3,3,4-tetrasubstituted oxetanes 521
General procedure for the Cope elimination reaction S31
General procedure for the conjugate addition of primary amine S43
III. References S45
IV. NMR Spectra S46
V. X-Ray Structure and Crystallographic Data S149

I. General Experimental

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury $300(300 \mathrm{MHz}$, ${ }^{1} \mathrm{H} ; 75 \mathrm{MHz},{ }^{13} \mathrm{C}$), Bruker AVIII $500\left(500 \mathrm{MHz},{ }^{1} \mathrm{H} ; 126 \mathrm{MHz},{ }^{13} \mathrm{C}\right)$ or Bruker $600\left(600 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$; $\left.151 \mathrm{MHz},{ }^{13} \mathrm{C}\right) \mathrm{MHz}$ nuclear magnetic resonance spectrometers. Spectra are referenced relative to residual $\mathrm{CDCl}_{3}\left(\delta=7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; 77.00 \mathrm{ppm},{ }^{13} \mathrm{C}\right)$ or $\mathrm{C}_{6} \mathrm{D}_{6}\left(\delta=7.15 \mathrm{ppm},{ }^{1} \mathrm{H} ; 128.00 \mathrm{ppm}\right.$, ${ }^{13} \mathrm{C}$). Data are reported as follows: chemical shift (multiplicity [$\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ mutiple], integration, coupling constant (Hz) and assignment.) (J) refers to the observed coupling constant(s) in Hz. The chemical shift difference in Hz between the signals for protons A and B of an AB quartet is Du . As described in Silverstein, Bassler and Morririll's text, a four line two spin pattern was analyzed as shown in the figure below and by using the equation; $(a-c)=\left[(D u)^{2}+J A B^{2}\right]^{0.5}$. Letting $(a-c)=x$ and rearranging the equation solves for $\mathrm{Du}=\left[(\mathrm{x})^{2}-\mathrm{JAB}^{2}\right]^{0.5}$. For those examples where multiples were recognized as the A and B protons of ABmx pattern, the chemical shift is reported as the midpoint of the multiplet.

Infrared Spectroscopy: Infrared spectra were recorded using a Bruker ALPHA FT-IR spectrometer equipped with an ATR accessory. Total reflection spectra (specular and diffuse reflection) were collected in-situ in the range of $4000-500 \mathrm{~cm}^{-1}$ at a resolution of $4 \mathrm{~cm}-1$ over 24 scans, and were converted into transmission by Bruker OPUS 6.5 software. The time measurement was of 18 s (24 scans) per spectrum. After each measurement the ATR plate was washed with ethanol and dried using tissue paper. Infrared frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.

Mass Spectrometry: Mass spectra were recorded on a VG-7035 mass spectrometer at an ionizing voltage of either 70 or 20 eV ; alternatively, samples were analyzed by the Instrumental center of National Science Consul at National Chung Hsing University. Mass spectra are reported as m / z values for the parent peak $\mathrm{M}+$ and /or the major fragments. The values in parentheses refer to the relative peak intensities.

Chromatography: Reaction progress was monitored by analytical thin-layer chromatography on Analtech 250 nm hard layer silica gel $60 \mathrm{~F}-250$ plates cut into $1 \mathrm{~cm} \times 5 \mathrm{~cm}$ sections. Visualization was effected by ultraviolet light (254 nm), followed by dipping the plate into the appropriate stain
and then charring on a hot plate. [15\% (w/v) solvent of phosphoromolybdic acid and 95% ethanol (PMA)]. Flash chromatography was performed on silica gel 230-400 mesh, eluted with appropriate solvents.

Reaction Setup: Reactions requiring heating were immersed in thermostat-controlled silicon-oil baths. The low temperature baths were dry ice/acetone ($-78{ }^{\circ} \mathrm{C}$) and ice water ($4{ }^{\circ} \mathrm{C}$). Reactions, which maintained at low temperature for extended periods of time, were kept in Neslab thermostat-controlled Cryobath with stirrer. Reactions other than those in which water was present as a solvent, reagent or by-product were normally performed under a slight positive pressure of nitrogen in vessels, which had been flame-dried under a slow nitrogen flow and sealed with rubber septa. The nitrogen gas was dried by passing it through a drying tube filled with Drierite ${ }^{\circledR}$. Additions of liquid to the vessels were made via syringe or cannula through septa. Solid were added through open septa. All reactions were stirred with Teflon-coated magnetic stir bars. Removal of solvents was normally accomplished using a Jasco rotary evaporator connected to a vacuum pump.

Solvents and reagents: The following solvents were distilled directly before use, under a slight positive pressure of nitrogen. Diethyl ether, tetrahydrofuran and benzene were distilled from sodium benzophenone ketyl. Dichloromethane and diisopropyl amine were distilled from calcium hydride prior to use. Reagents were purchased from the Aldrich, Fluka, and Acros chemical companies.

II. Experimental Procedures

Secondary γ-allyloxy substituted vinylogous urethanes were prepared from two different sequential approaches. As depicted in Table S1 and S2. Williamson ether synthesis of methyl 4bromoketoester S1 with alcohols S2-6 provided ketoesters K1-5 in 72\%-83\% yields, respectively (Table S1, entries 1-5). Subsequent condensed with pyrrolidine utilizing Dean-Stark apparatus to provide desired vinylogous urethanes 11b, 11e, 11g, 11i and 11j in 98\%-99\% yields (Table S1, entries 1-5). Alternatively, an efficient one-pot reaction can directly convert propargylic alcohols S7, S8, S9 and S10 to corresponding acetylenic esters E1-9 in $65 \%-83 \%$ yields, respectively (Table S2, entries 1-9). Following exposed to pyrrolidine to give desired vinylogous urethanes 11a, 11c, 11d, 11f, 11h, 11k, 111, 11m and 11n in $98 \%-99 \%$ yields (Table S2, entries 1-9).

Table S1 | Preparations of ketoesters and their corresponding vinylogous urethanes.

[a] The ketoesters K1-5 and S1 were prepared according to literature procedure ${ }^{[1]}$. [b] Yields of isolated ketoesters K1-5 were given after column chromatograph. [c] Pyrrolidine added to a solution of ketoester in benzene followed by heating to reflux for 30 minutes, and yields of VUs were given by directly removed solvent under vacuo without further purifications.

Table $\mathbf{S} 2 \mid$ Preparations of acetylenic esters and their corresponding vinylogous urethanes.

[a] The acetylenic esters $\mathbf{E 1 - 9}{ }^{[2]}$ and propargylic alcohols $\mathbf{S} 7^{[3]}, \mathbf{S}{ }^{[4]}, \mathbf{S 9}{ }^{[3]}$ as well as $\mathbf{S 1 0}{ }^{[5]}$ were prepared according to literature procedures. [b] Yields of isolated acetylenic esters E1-9 were given after column chromatograph. [c] Pyrrolidine added to a solution of acetylenic ester in tertbutanol followed by heating to reflux for 30 minutes, and yields of VUs were given by directly removed solvent under vacuo without further purifications.

General procedure for the synthesis of ketoesters.

Synthesis of methyl 4-(allyloxy)-3-oxopentanoate (K1). Ketoesters were prepared by literature reported procedure ${ }^{[1]}$. To $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%, 10.6 \mathrm{mmol}$, pre-washed with n-hexane) in a flame-
dried 50 mL round-bottomed three-necked flask with THF $(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of methyl 4-bromo-3-oxopentanoate $\mathbf{S 1}$ ($1.0 \mathrm{~g}, 4.81 \mathrm{mmol}, 1.0$ equiv.) in THF (4 mL). The reaction mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, after which a solution of allyl alcohol $\mathbf{S 2}$ ($0.36 \mathrm{~mL}, 5.30 \mathrm{mmol}, 1.1$ equiv.) in THF (2 mL) was added dropwise into the reaction. The reaction mixture was allowed to warm to room temperature slowly, and stirred for additional 6 hours at ambient temperature. The reaction was quenched by the slow addition of water (20 mL), the reaction mixture was acidified with aqueous $\mathrm{HCl}(1 \mathrm{M})$ to pH 4.0 , and then extracted with EtOAc ($10 \mathrm{~mL} \times 2$). The combined organic layer was washed with brine, then dried over anhydrous sodium sulfate, and concentrated to give crude material. Purification by flash column chromatography (n-hexane/EtOAc, 10:1) afforded product K1 as a pale-yellow oil in 80% yield $(0.72 \mathrm{~g}) . \mathbf{R}_{f}=0.46\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 3012, 2985, 2954, 2870, 1749, 1722, 1659, 1631, 1438, 1321, 1264, 1228, 1117, 997, 841, $741 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta 5.89(\mathrm{ddt}, J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.29(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.21(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $4.02(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $3.96\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, methine-H), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.64(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene- H), $3.56\left(\mathrm{~A} \underline{\mathrm{~B} q}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, methylene- H), $1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 205.5(\mathrm{C}), 167.8(\mathrm{C}), 133.7(\mathrm{CH}), 117.7\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{CH}), 70.8$ $\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}, 186.0892$ found 186.0899.

Methyl 4-(2-methylallyloxy)-3-oxopentanoate (K2). Prepared according to the general procedure with $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%, 10.6 \mathrm{mmol})$, methyl 4-bromo-3-oxopentanoate $\mathbf{S 1}(1.0 \mathrm{~g}, 4.81$ $\mathrm{mmol}, 1.0$ equiv.) and methallyl alcohol $\mathbf{S 3}(0.45 \mathrm{~mL}, 5.30 \mathrm{mmol}, 1.1$ equiv.) for 6 hours to give product $\mathbf{K 2}$ as a pale-yellow oil in 77% yield $(0.74 \mathrm{~g}) . \mathbf{R}_{f}=0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 3010, 2984, 2951, 1752, 1723, 1659, 1461, 1441, 1322, 1259, 1228, 1149, 1003, 902, $813 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 4.97(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), $4.91(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), $3.97\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, methine-H), $3.90(\mathrm{~s}, 2 \mathrm{H}$, allylic H$), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.65(\underline{\mathrm{ABq}}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), $3.58(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), 1.74 (s, 3 H , vinylic Me),
$1.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.5$ (C), 167.8 (C), 141.1 (C), $112.7\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{CH}), 73.7\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}, 200.1049$ found 200.1040.

Methyl 4-[(E)-hex-2-enyloxy]-3-oxopentanoate (K3). Prepared according to the general procedure with $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%, 10.6 \mathrm{mmol})$, methyl 4-bromo-3-oxopentanoate $\mathbf{S 1}(1.0 \mathrm{~g}, 4.81$ mmol, 1.0 equiv.) and trans-2-hexen-1-ol S4 ($0.63 \mathrm{~mL}, 5.30 \mathrm{mmol}, 1.1$ equiv.) for 6 hours to give product $\mathbf{K 3}$ as a pale-yellow oil in 74% yield $(0.82 \mathrm{~g}) . \mathbf{R}_{f}=0.51\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}\right.$, n hexane/EtOAc); FT-IR (neat) v 3010, 2958, 2934, 2872, 1749, 1722, 1659, 1632, 1438, 1320, $1263,1226,1146,972,814 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.71$ (dt, $J=14.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.52(\mathrm{dt}, J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 4.01-3.96(m, 3 H , allylic and mathine-H), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.64(\underline{\mathrm{ABq}}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene- H$), 3.56(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), 2.03 (dd, $J=13.9,6.2 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), 1.42-1.37 (m, 2H, homoallylic H), 1.33 $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, methine-Me), $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta$ $205.5(\mathrm{C}), 167.8(\mathrm{C}), 135.7(\mathrm{CH}), 125.4(\mathrm{CH}), 79.8(\mathrm{CH}), 70.8\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right)$, $34.3\left(\mathrm{CH}_{2}\right)$, $22.1\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}, 228.1362$ found 228.1356.

Methyl 4-[(Z)-hex-2-enyloxy]-3-oxopentanoate (K4). Prepared according to the general procedure with $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%, 10.6 \mathrm{mmol})$, methyl 4-bromo-3-oxopentanoate $\mathbf{S 1}(1.0 \mathrm{~g}, 4.81$ mmol, 1.0 equiv.) and cis-2-hexen-1-ol S5 ($0.63 \mathrm{~mL}, 5.30 \mathrm{mmol}, 1.1$ equiv.) for 6 hours to give product $\mathbf{K 4}$ as a pale-yellow oil in 72% yield $(0.79 \mathrm{~g}) . \mathbf{R}_{f}=0.52\left(\mathrm{SiO}_{2}, 4: 1 v / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 3013, 2959, 2934, 2873, 1745, 1723, 1659, 1632, 1438, 1369, 1317, 1263, 1225, 1147, 1004, $813 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.66-5.47(\mathrm{~m}, 2 \mathrm{H}$, vinylic H), 4.09-4.05 $(\mathrm{m}, 2 \mathrm{H}$, allylic H$), 3.97\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, mathine-H), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.65(\underline{\mathrm{ABq}}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), $3.56(\mathrm{~A} \underline{B} q, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), $2.03(\mathrm{dd}, J=14.3,7.3$
$\mathrm{Hz}, 2 \mathrm{H}$, allylic H), 1.42-1.38 (m, 2H, homoallylic H), 1.32 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, methine-Me), $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl ${ }_{3}$) $\delta 205.5$ (C), 167.8 (C), 134.4 (CH), $125.1(\mathrm{CH}), 80.0(\mathrm{CH}), 65.6\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 44.3\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right)$, $13.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}, 228.1362$ found 228.1357.

Methyl 4-(benzyloxy)-3-oxopentanoate (K5). Prepared according to the general procedure with $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%, 10.6 \mathrm{mmol})$, methyl 4-bromo-3-oxopentanoate $\mathbf{S 1}(1.0 \mathrm{~g}, 4.81 \mathrm{mmol}, 1.0$ equiv.) and benzyl alcohol $\mathbf{S 6}$ ($0.55 \mathrm{~mL}, 5.30 \mathrm{mmol}, 1.1$ equiv.) for 6 hours to give product $\mathbf{K 5}$ as a pale-yellow oil in 83% yield $(0.94 \mathrm{~g}) . \mathbf{R}_{f}=0.55\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 2983, 2953, 1741, 1721, 1655, 1632, 1497, 1319, 1262, 1227, 1148, 1114, 1002, 740, 698 $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $4.58(\underline{\mathrm{ABq}}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $4.50(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$), 4.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, mathine-H), 3.70 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.66(\underline{\mathrm{ABq}}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H$), 3.58(\mathrm{~A} \underline{\mathrm{~B}} \mathrm{q}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), 1.37 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 205.3$ (C), 167.8 (C), $137.2(\mathrm{C}), 128.5(\mathrm{CH} \times 2), 128.0(\mathrm{CH} \times 2), 127.7(\mathrm{CH}), 80.2(\mathrm{CH}), 71.9\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 44.4$ $\left(\mathrm{CH}_{2}\right), 16.7\left(\mathrm{CH}_{3}\right) ;$ HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}, 236.1049$ found 236.1043.

General procedure for the synthesis of acetylenic esters

Synthesis of methyl 4-(allyloxy)-5-methylhex-2-ynoate (E1). Acetylenic esters were prepared by modified reported procedure ${ }^{[2]}$. To $\mathrm{NaH}(640 \mathrm{mg}, 60 \%, 16.1 \mathrm{mmol}, 1.5$ equiv., pre-washed with n-hexane) in a 50 mL round-bottomed three-necked flask with THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 4-methyl-pent-1-yn-3-ol $\mathbf{S 7}^{[3]}(1.05 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.0$ equiv.) in THF (15 mL). The reaction mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$. Allyl bromide $\mathbf{S 1 1}(1.02$ $\mathrm{mL}, 11.8 \mathrm{mmol}$, 1.1 equiv) in THF (6 mL) was added dropwise into the reaction, followed by the addition of $\mathrm{KI}(1.77 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was allowed to warm to
ambient temperature slowly and stirred for additional 6 hours. Upon TLC showed complete consumption of the starting material, the reaction was cooled to $-78^{\circ} \mathrm{C}$ and added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in n-hexane, $8.1 \mathrm{~mL}, 12.8 \mathrm{mmol}, 1.2$ equiv.) dropwise over a period of 30 minutes. The reaction mixture was allowed to stir for 1 hour at $-78^{\circ} \mathrm{C}$, and then the anion was quenched with methyl chloroformate ($1.3 \mathrm{~mL}, 16.1 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was allowed to warm to ambient temperature, and stirred for 1 hour. Water was added and the reaction mixture extracted with diethyl ether $(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated to give crude material. Purification by flash column chromatography (n-hexane/ethyl acetate, 10:1) afforded product E1 as a colorless oil in 76% yield (1.60 g). $\mathbf{R}_{f}=0.46\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 3010, 2962, 2934, 2875, 2233, 1754, 1720, 1599, 1585, 1468, 1434, 1249, 1129, 1071, 1000, 930, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl $\mathbf{C D}_{3}$) 5.89 (ddt, $J=17.3,10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 5.31 (dd, $J=17.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 5.20 (dd, $J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 4.26 (dd, $J=12.6,5.1 \mathrm{~Hz}$, 1 H , allylic H), 3.97 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), 3.96-3.90 (m, 1H, allylic H), 3.78 (s, 3 H , $\mathrm{CO}_{2} \mathrm{Me}$), 2.04-1.98(m, 1H, methine-H), $1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.7(\mathrm{C}), 133.9(\mathrm{CH}), 117.6\left(\mathrm{CH}_{2}\right), 85.9(\mathrm{C}), 77.8(\mathrm{C}), 73.9$ $(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 18.4\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$, 196.1099 found 196.1106.

Methyl 4-(allyloxy)-4-cyclohexylbut-2-ynoate (E2). Prepared according to the general procedure with $\mathrm{NaH}(610 \mathrm{mg}, 60 \%, 15.31 \mathrm{mmol}), 1$-cyclohexyl-prop-2-yn-1-ol $7 \mathbf{7 2}^{[4]}(1.41 \mathrm{~g}$, $10.2 \mathrm{mmol})$, KI ($1.69 \mathrm{~g}, 10.20 \mathrm{mmol}$), allyl bromide $\mathbf{S 1 1}$ ($0.97 \mathrm{~mL}, 11.2 \mathrm{mmol}$), $n-\mathrm{BuLi}(7.7 \mathrm{~mL}$, 12.2 mmol) and methyl chloroformate ($1.2 \mathrm{~mL}, 15.3 \mathrm{mmol}$) to provide product $\mathbf{E} 2$ as a paleyellow oil in 81% yield (1.95 g). $\mathbf{R}_{f}=0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 3012, 2932, 2856, 2234, 1721, 1450, 1351, 1333, 1251, 1174, 1071, 980, 821, 750, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl \mathbf{H}_{3}) $\delta 5.88$ (ddt, $J=17.3,10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.30(\mathrm{dd}, J=17.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.20(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $4.25(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}$, 1 H , allylic H), $3.96(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), $3.88-3.83(\mathrm{~m}, 1 \mathrm{H}$, allylic H), $3.78(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{CO}_{2} \mathrm{Me}\right), 1.82-1.76(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl-H), 1.80-1.60(m,5H, cyclohexyl-H), 1.38-1.12(m, 4H, cyclohexyl-H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 153.8$ (C), $133.9(\mathrm{CH}), 117.8\left(\mathrm{CH}_{2}\right), 86.1(\mathrm{C})$, $77.8(\mathrm{C}), 73.3(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 42.3(\mathrm{CH}), 28.7\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $25.8\left(\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{CH}_{2}\right)$; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}, 236.1412$ found 236.1406.

Methyl 4-(allyloxy)-6-methylhept-2-ynoate (E3). Prepared according to the general procedure with $\mathrm{NaH}(610 \mathrm{mg}, 60 \%, 15.3 \mathrm{mmol})$, 5-methyl-hex-1-yn-3-ol S8 ${ }^{[3]}$ ($1.14 \mathrm{~g}, 10.20 \mathrm{mmol}$), KI $(1.69 \mathrm{~g}, 10.2 \mathrm{mmol})$, allyl bromide $\mathbf{S 1 1}(0.97 \mathrm{~mL}, 11.2 \mathrm{mmol}), n-\mathrm{BuLi}(7.7 \mathrm{~mL}, 12.2 \mathrm{mmol})$ and methyl chloroformate ($1.2 \mathrm{~mL}, 15.3 \mathrm{mmol}$) to provide product $\mathbf{E} 3$ as a colorless oil in 74% yield $(1.58 \mathrm{~g}) . \mathbf{R}_{f}=0.50\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3011,2958,2871,2234$, 1764, 1720, 1599, 1585, 1468, 1434, 1240, 1128, 1083, 1019, 999, 933, $751 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 5.89$ (ddt, $J=17.2,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 5.31 (dd, $J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.19(\mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 4.27-4.20 (m, 2 H , allylic and propargylic H), 3.94 (dd, $J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, allylic H), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 1.87-1.83(\mathrm{~m}$, 1 H , methine-H), 1.72 (ddd, $J=14.5,8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), 1.57 (ddd, $J=14.5,6.7,6.1$ $\mathrm{Hz}, 1 \mathrm{H}$, methylene-H), $0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.6(\mathrm{C})$, $133.7(\mathrm{CH}), 117.8\left(\mathrm{CH}_{2}\right), 86.8(\mathrm{C}), 77.0(\mathrm{C}), 70.0(\mathrm{CH}), 66.8\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 43.7\left(\mathrm{CH}_{2}\right)$, $24.4(\mathrm{CH}), 22.5\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1251.

Methyl 4-(2-methylallyloxy)-5-methylhex-2-ynoate (E4). Prepared according to the general procedure with $\mathrm{NaH}(640 \mathrm{~g}, 60 \%, 16.1 \mathrm{mmol})$, 4-methyl-pent-1-yn-3-ol $\mathbf{S 7}(1.05 \mathrm{~g}, 10.7 \mathrm{mmol})$, KI ($1.77 \mathrm{~g}, 10.7 \mathrm{mmol}$), methallyl bromide $\mathbf{S 1 2}(1.19 \mathrm{~mL}, 11.8 \mathrm{mmol}), n-\mathrm{BuLi}(8.1 \mathrm{~mL}, 12.8$ $\mathrm{mmol})$ and methyl chloroformate ($1.3 \mathrm{~mL}, 16.1 \mathrm{mmol}$) to provide product $\mathbf{E 4}$ as a colorless oil in 76% yield (1.71 g). $\mathbf{R}_{f}=0.46\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3012$, 2962, 2934, 2875, 2233, 1754, 1720, 1599, 1585, 1468, 1434, 1249, 1129, 1071, 1000, 930, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$

NMR ($300 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.99(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), $4.91(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), 4.13 ($\mathrm{ABq}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}$, allylic H), $3.93(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), $3.89(\mathrm{ABq}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, allylic H), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 2.05-1.98 (m, 1 H , methine-H), 1.74 ($\mathrm{s}, 3 \mathrm{H}$, vinylic Me), $1.04(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.8(\mathrm{C})$, $141.4(\mathrm{C}), 113.0\left(\mathrm{CH}_{2}\right), 86.0(\mathrm{C}), 77.7(\mathrm{C}), 73.7(\mathrm{CH}), 73.2\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 19.6$ $\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1247.

Methyl 4-((E)-hex-2-enyloxy)non-2-ynoate (E5). Prepared according to the general procedure with $\mathrm{NaH}(610 \mathrm{mg}, 60 \%, 15.4 \mathrm{mmol})$, oct-1-yn-3-ol S10 ${ }^{[5]}$ ($1.30 \mathrm{~g}, 10.3 \mathrm{mmol}$), KI ($1.69 \mathrm{~g}, 10.3$ mmol), allyl bromide $\mathbf{S 1 3}$ ($1.82 \mathrm{~g}, 11.3 \mathrm{mmol}$), n - $\mathrm{BuLi}(7.7 \mathrm{~mL}, 12.3 \mathrm{mmol}$) and methyl chloroformate ($1.2 \mathrm{~mL}, 15.4 \mathrm{mmol}$) to provide product $\mathbf{E 5}$ as a colorless oil in 70% yield (1.92 g). $\mathbf{R}_{f}=0.45\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 3010, 2957, 2931, 2863, 2233, 1754, 1721, 1599, 1585, 1462, 1451, 1247, 1097, 1069, 972, $751 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}\right) \delta 5.73(\mathrm{dt}, J=15.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.51(\mathrm{dt}, J=15.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 4.23-4.18 (m, 1H, allylic H), $4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), $3.90(\mathrm{dd}, J=11.6,6.7 \mathrm{~Hz}$, 1 H , allylic H), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.02(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H$), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H}$, homopropargylic H), $1.46-1.22(\mathrm{~m}, 8 \mathrm{H}$, pentyl and homoallylic H$), 1.91-1.85(\mathrm{~m}, 6 \mathrm{H}$, terminal$\mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 153.7$ (C), 135.7 (CH), 125.4 (CH), 87.0 (C), 76.9 (C), 69.9 $(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{CH}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}, 266.1882$ found 266.1889.

Methyl 4-(benzyloxy)-5-methylhex-2-ynoate (E6). Prepared according to the general procedure with $\mathrm{NaH}(670 \mathrm{mg}, 60 \%, 16.8 \mathrm{mmol}), 4-m e t h y l-p e n t-1-y n-3-\mathrm{ol} \mathbf{S 7}(1.10 \mathrm{~g}, 11.2 \mathrm{mmol}), \mathrm{KI}(1.85$ $\mathrm{g}, 11.2 \mathrm{mmol}$), benzyl bromide $\mathbf{S} 14$ ($1.5 \mathrm{~mL}, 12.3 \mathrm{mmol}$), $n-\mathrm{BuLi}(8.5 \mathrm{~mL}, 13.4 \mathrm{mmol})$ and methyl chloroformate $(1.3 \mathrm{~mL}, 16.8 \mathrm{mmol})$ to provide product $\mathbf{E 6}$ as a pale-yellow oil in 82%
yield (2.27 g). $\mathbf{R}_{f}=0.53\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2962,2874,2234$, 1754, 1720, 1599, 1586, 1465, 1452, 1440, 1383, 1349, 1250, 1088, 1069, 750, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $4.83(\underline{\mathrm{ABq}}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $4.50(\mathrm{ABq}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$), 3.97(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), $3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}$, methine-H$), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.7(\mathrm{C}), 137.4(\mathrm{C}), 128.3(\mathrm{CH} \times 2), 127.9(\mathrm{CH} \times 2), 127.7$ $(\mathrm{CH}), 85.8(\mathrm{C}), 78.0(\mathrm{C}), 73.8(\mathrm{CH}), 71.1\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$ found 246.1250.

Methyl 4-(benzyloxy)-4-cyclohexylbut-2-ynoate (E7). Prepared according to the general procedure with $\mathrm{NaH}(610 \mathrm{mg}, 60 \%, 15.3 \mathrm{mmol})$, 1-cyclohexyl-prop-2-yn-1-ol S8 $(1.41 \mathrm{~g}, 10.2$ mmol), KI ($1.70 \mathrm{~g}, 10.2 \mathrm{mmol}$), benzyl bromide $\mathbf{S 1 4}$ ($1.34 \mathrm{~mL}, 11.2 \mathrm{mmol}$), n-BuLi (7.7 mL , 12.2 mmol) and methyl chloroformate ($1.18 \mathrm{~mL}, 15.3 \mathrm{mmol}$) to provide product $\mathbf{E} 7$ as a paleyellow oil in 83% yield (2.42 g). $\mathbf{R}_{f}=0.51\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}\right.$, n-hexane/EtOAc); FT-IR (neat) v 2929, 2854, 2232, 1718, 1451, 1435, 1249, 1103, 1089, 1071, 750, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $4.81(\underline{\mathrm{ABq}}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), 4.48 $(\mathrm{AB} \underline{\mathrm{B}}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$), 3.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H$), 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), 1.87-1.86 (m, 2H, cyclohexyl-H), 1.73-1.67 (m, 3H, cyclohexyl-H), 1.25-1.10 (m, 6H, cyclohexyl-H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.7(\mathrm{C}), 137.3(\mathrm{C}), 128.3(\mathrm{CH} \times 2), 127.9(\mathrm{CH}$ $\times 2), 127.7(\mathrm{CH}), 86.0(\mathrm{C}), 78.1(\mathrm{C}), 73.1(\mathrm{CH}), 71.1\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 42.3(\mathrm{CH}), 28.8\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2} \times 2\right)$; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}, 286.1569$ found 286.1574.

Methyl 4-(benzyloxy)-6-methylhept-2-ynoate (E8). Prepared according to the general procedure with $\mathrm{NaH}(610 \mathrm{~g}, 60 \%, 15.31 \mathrm{mmol})$, 5-methyl-hex-1-yn-3-ol S9 ($1.14 \mathrm{~g}, 10.2 \mathrm{mmol}$),

KI ($1.69 \mathrm{~g}, 10.2 \mathrm{mmol}$), benzyl bromide $\mathbf{S 1 4}(1.34 \mathrm{~mL}, 11.2 \mathrm{mmol}), n-\mathrm{BuLi}(7.7 \mathrm{~mL}, 12.2 \mathrm{mmol})$ and methyl chloroformate $(1.18 \mathrm{~mL}, 15.3 \mathrm{mmol})$ to provide product $\mathbf{E 8}$ as a pale-yellow oil in 77% yield (2.04 g). $\mathbf{R}_{f}=0.51\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2958,2871,2234$, $1754,1738,1721,1599,1585,1467,1441,1383,1329,1250,1087,1072,1025,749,698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $4.81(\underline{\mathrm{ABq}}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), 4.49 (ABq, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $4.23(\mathrm{dd}, J=8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, propargylic H), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}$, methine-H), 1.72 (ddd, $J=14.5,8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, methylene-H), $1.59-1.55(\mathrm{~m}, 1 \mathrm{H}$, methylene-H), $0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.86(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.8(\mathrm{C}), 137.3(\mathrm{C}), 128.4(\mathrm{CH} \times 2), 128.0(\mathrm{CH} \times$ 2), $127.9(\mathrm{CH}), 86.9(\mathrm{C}), 77.0(\mathrm{C}), 71.1(\mathrm{CH}), 66.7\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 43.8\left(\mathrm{CH}_{2}\right), 24.4(\mathrm{CH})$, $22.6\left(\mathrm{CH}_{3}\right)$, $21.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}, 260.1412$ found 260.1421.

Methyl 4-[(naphthalen-3-yl)methoxy]-5-methylhex-2-ynoate (E9). Prepared according to the general procedure with $\mathrm{NaH}(670 \mathrm{mg}, 60 \%, 16.8 \mathrm{mmol})$, 4-methyl-pent-1-yn-3-ol $\mathbf{S 7}$ (1.10 g , $11.2 \mathrm{mmol})$, KI ($1.85 \mathrm{~g}, 11.2 \mathrm{mmol}$), 2-bromomethyl-naphthalene $\mathbf{S 1 5}(2.70 \mathrm{~g}, 12.3 \mathrm{mmol}), n-$ $\operatorname{BuLi}(8.5 \mathrm{~mL}, 13.4 \mathrm{mmol})$ and methyl chloroformate $(1.3 \mathrm{~mL}, 16.8 \mathrm{mmol})$ to provide product E9 as a pale-yellow oil in 65% yield $(2.16 \mathrm{~g}) . \mathbf{R}_{f}=0.55\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR $\left(\mathrm{CHCl}_{3}\right)$ v 2960, 2932, 2873, 2232, 1754, 1720, 1600, 1585, 1468, 1441, 1251, 1071, 949, 856, $817,750 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.85-7.66(\mathrm{~m}, 4 \mathrm{H}$, naphthalene-H), 7.49-7.42 (m, 3 H , naphthalene-H), $4.97(\underline{\mathrm{ABq}}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$), 4.67(\mathrm{~A} \underline{\mathrm{~B}} \mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-$ benzylic H), $3.99\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, propargylic H), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}$, methine-H), 1.05 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 153.7(\mathrm{C}), 134.7(\mathrm{C}), 133.1(\mathrm{C}), 133.0(\mathrm{C}), 128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 126.1(\mathrm{CH}), 125.9(\mathrm{CH}), 125.8(\mathrm{CH}), 85.8(\mathrm{C}), 78.0(\mathrm{C}), 73.7(\mathrm{CH}), 71.3\left(\mathrm{CH}_{2}\right), 52.7$ $\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}, 296.1412$ found 296.1407.

General procedure for the synthesis of vinylogous urethanes from ketoesters

Synthesis of (E)-methyl 4-(allyloxy)-3-(pyrrolidin-1-yl)pent-2-enoate (11b). To ketoester K1 ($0.30 \mathrm{~g}, 1.61 \mathrm{mmol}, 1.0$ equiv.) in 10 mL round-bottom flask was added benzene (4 mL) and pyrrolidine ($0.16 \mathrm{~mL}, 1.94 \mathrm{mmol}, 1.2$ equiv.), warmed to reflux under Dean-Stark apparatus to remove water. After 30 minutes of stirring, the solvent was removed under vacuo to give 11b as a brown oil in 98% yield $(0.38 \mathrm{~g})$ and then used in the next reaction without further purifications. FT-IR (neat) v 2975, 2946, 2870, 1681, 1565, 1445, 1421, 1394, 1343, 1185, 1138, 1099, 1076, $924,794 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 6.06(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), 5.89 (ddt, J $=17.2,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.23(\mathrm{dd}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.21(\mathrm{dd}, J=$ $10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 4.45 (s, $1 \mathrm{H}, \alpha$-vinylic H), 3.90 (ddt, $J=5.6,3.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.42-3.18(\mathrm{br}, 4 \mathrm{H}$, pyrrolidine-H), 1.85-1.78 (m, 4 H , pyrrolidine-H), 1.42 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 168.7$ (C), 162.3 (C), $134.6(\mathrm{CH}), 116.7\left(\mathrm{CH}_{2}\right), 84.2(\mathrm{CH}), 70.9(\mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2} \times 2\right)$, $25.1\left(\mathrm{CH}_{2} \times 2\right)$, $19.2\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}, 239.1521$ found 239.1525 .

(E)-methyl 4-(2-methylallyloxy)-3-(pyrrolidin-1-yl)pent-2-enoate (11e). Prepared according to the general procedure with ketoester $\mathbf{K} 2(0.32 \mathrm{~g}, 1.61 \mathrm{mmol})$ and pyrrolidine $(0.16 \mathrm{~mL}, 1.94$ mmol) to give product 11e as a brown oil in 99% yield (0.40 g). FT-IR (neat) v 2974, 2944, 2871, 1680, 1565, 1444, 1422, 1390, 1343, 1314, 1185, 1136, 1078, 900, $794 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.05(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, methine- H$), 4.94(\mathrm{~s}, 1 \mathrm{H}$, geminal- H$), 4.84(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), 4.45 ($\mathrm{s}, 1 \mathrm{H}$, α-vinylic H), 3.80 ($\mathrm{s}, 2 \mathrm{H}$, allylic H), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.42-3.18 (br, 4H, pyrrolidine-H), 1.90-1.85 (m, 4H, pyrrolidine-H), 1.71 (s , 3 H , vinylic Me), 1.43 (d, $J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 168.7(\mathrm{C}), 162.3(\mathrm{C}), 142.2(\mathrm{C}), 111.6\left(\mathrm{CH}_{2}\right), 84.2$ $(\mathrm{CH}), 72.9(\mathrm{CH}), 70.9\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.1\left(\mathrm{CH}_{2} \times 2\right), 25.1\left(\mathrm{CH}_{2} \times 2\right), 19.7\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}, 253.1678$ found 253.1681.

(2E)-methyl 4-((E)-hex-2-enyloxy)-3-(pyrrolidin-1-yl)pent-2-enoate (11g). Prepared according to the general procedure with ketoester $\mathbf{K 3}(0.37 \mathrm{~g}, 1.61 \mathrm{mmol})$ and pyrrolidine $(0.16$ $\mathrm{mL}, 1.94 \mathrm{mmol}$) to give product $\mathbf{1 1 g}$ as a brown oil in 98% yield (0.45 g). FT-IR (neat) v 2975 , 2946, 2871, 1681, 1565, 1445, 1421, 1394, 1343, 1138, 1099, 1076, 924, $794 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.04(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $5.68(\mathrm{dt}, J=14.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 5.52 (dt, $J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $4.45(\mathrm{~s}, 1 \mathrm{H}, \alpha$-vinylic H), $3.84(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.42-3.18 (br, 4H, pyrrolidine-H), 2.03-1.99 (m, 2H, allylic H), $1.91-1.83(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine-H), $1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.32-1.28(\mathrm{~m}, 2 \mathrm{H}$, homoallylic $\mathrm{H}), 0.88\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, terminal-Me); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 168.6$ (C), 162.6 (C), $134.6(\mathrm{CH}), 126.2(\mathrm{CH}), 84.1(\mathrm{CH}), 70.8(\mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2} \times 2\right), 34.4$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2} \times 2\right)$, $22.1\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}$, 281.1991 found 281.1985.

K4

.

(\boldsymbol{E})-methyl 4-(benzyloxy)-3-(pyrrolidin-1-yl)pent-2-enoate (11j). Prepared according to the general procedure with ketoester K5 $(0.38 \mathrm{~g}, 1.61 \mathrm{mmol})$ and pyrrolidine $(0.16 \mathrm{~mL}, 1.94 \mathrm{mmol})$ to give product $\mathbf{1 1 j}$ as a brown oil in 98% yield (0.46 g). FT-IR (neat) v 2977, 2946, 2873, 1717, 1681, 1635, 1565, 1455, 1267, 1139, 1101, 1075, 1043, 795, 735, $699 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z , ~}$ CDCl $\left._{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $6.20(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $4.49(\mathrm{~s}, 1 \mathrm{H}, \alpha-$ vinylic H), 4.47 ($\underline{A B q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $4.41(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.42-3.38(\mathrm{br}, 4 \mathrm{H}$, pyrrolidine-H), 1.86-1.81 (m, 4H, pyrrolidine-H), 1.47 ($\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.7$ (C), 162.2 (C), 138.3 (C), 128.3 $(\mathrm{CH} \times 2), 127.7(\mathrm{CH} \times 2), 127.5(\mathrm{CH}), 84.3(\mathrm{CH}), 71.5\left(\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{3}\right), 49.1\left(\mathrm{CH}_{2} \times\right.$ 2), $25.1\left(\mathrm{CH}_{2} \times 2\right), 19.2\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}, 289.1678$ found 289.1684.

General procedure for the synthesis of vinylogous urethanes from acetylenic esters

Synthesis of (E)-methyl 4-(allyloxy)-5-methyl-3-(pyrrolidin-1-yl)hex-2-enoate (11a). To a solution of acetylenic ester $\mathbf{E} 1(1.05 \mathrm{~g}, 5.35 \mathrm{mmol})$ in a 25 mL round-bottom flask with tertbutanol (8 mL) as solvent was added pyrrolidine ($0.54 \mathrm{~mL}, 6.42 \mathrm{mmol}$). The reaction mixture was heated to reflux at $100^{\circ} \mathrm{C}$ for 40 min . After removal of solvent under vacuo, product 11a as a pale-yellow oil was obtained in 99% yield $(1.41 \mathrm{~g})$ and then used in the next reaction without further purifications. FT-IR (neat) v 3011, 2964, 2873, 1680, 1569, 1462, 1443, 1423, 1391, 1344, 1257, 1230, 1185, 1138, 1063, 998, 823, $\left.798 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~ M H z , ~ C D C l ~} \mathbf{C l}_{3}\right) 5.89$ (ddt, $J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.68(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), 5.23 (dd, $J=17.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $5.10(\mathrm{dd}, J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $4.59(\mathrm{~s}, 1 \mathrm{H}, \alpha$-vinylic H), 3.92 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.60-3.57 (br, 2 H , pyrrolidine-H), 3.28 (br, 2H, pyrrolidine-H), 2.00-1.65 (m, 5 H , pyrrolidine- and methine-H), $1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$,

Me), 0.84 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 168.9$ (C), 160.3 (C), 134.9 $(\mathrm{CH}), 116.3\left(\mathrm{CH}_{2}\right), 86.9(\mathrm{CH}), 79.9(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2} \times 2\right), 30.9(\mathrm{CH})$, $25.0\left(\mathrm{CH}_{2} \times 2\right), 20.4\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}, 267.1834$ found 267.1823.

(E)-methyl 4-(allyloxy)-4-cyclohexyl-3-(pyrrolidin-1-yl)but-2-enoate (11c). Prepared according to the general procedure with acetylenic ester $\mathbf{E} 2(1.20 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine $(0.50 \mathrm{~mL}, 6.12 \mathrm{mmol})$ to give product $\mathbf{1 1 c}$ as a brown oil in 99% yield (1.55 g). FT-IR (neat) v $3009,2928,2853,1738,1727,1710,1680,1658,1631,1606,1568,1450,1423,1392,1344$, 1181, 1130, 1084, 1060, 994, 922, 796, 766, $734 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~ M H z , ~ C D C l ~}{ }_{3}$) $\delta 5.89$ (ddt, $J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.75(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $5.22(\mathrm{dd}, J=17.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 5.11 (dd, $J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), $4.58(\mathrm{~s}, 1 \mathrm{H}, \alpha$-vinylic H), $3.92\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, allylic H), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.58(\mathrm{br}, 2 \mathrm{H}$, pyrrolidine- H$), 3.28-3.26$ (br, 2 H , pyrrolidine -H), $2.22-2.18(\mathrm{~m}, 1 \mathrm{H}$, methine -H$), 1.85-1.78(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine- H$), 1.75-$ $1.62\left(\mathrm{~m}, 4 \mathrm{H}\right.$, cyclohexyl-H), $1.44-1.20\left(\mathrm{~m}, 6 \mathrm{H}\right.$, cyclohexyl-H); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $168.8(\mathrm{C}), 159.9(\mathrm{C}), 134.8(\mathrm{CH}), 116.3\left(\mathrm{CH}_{2}\right), 86.8(\mathrm{CH}), 78.8(\mathrm{CH}), 70.2\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{3}\right)$, $48.9\left(\mathrm{CH}_{2} \times 2\right)$, $40.4(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 24.9$ $\left(\mathrm{CH}_{2} \times 2\right)$; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3}, 307.2147$ found 307.2153.

(\boldsymbol{E})-methyl 4-(allyloxy)-6-methyl-3-(pyrrolidin-1-yl)hept-2-enoate (11d). A Prepared according to the general procedure with acetylenic ester $\mathbf{E} 3(1.07 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine ($0.50 \mathrm{~mL}, 6.12 \mathrm{mmol}$) to give product 11d as a pale-yellow oil in 99% yield (1.42 g). FT-IR (neat) v 2953, 2870, 1681, 1566, 1483, 1462, 1443, 1422, 1391, 1344, 1267, 1185, 1137, 1085, $1064,1041,990,923,907,795 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.03(\mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}$, 1 H , methine-H), 5.90 (ddt, $J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), $5.23(\mathrm{dd}, J=17.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$,
geminal-H), $5.12(\mathrm{dd}, J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, geminal-H), 4.47 (s, $1 \mathrm{H}, \alpha$-vinylic H), 3.90 (d, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), 3.61 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.60-3.57 (br, 2H, pyrrolidine-H), 3.38-3.36 (br, 2 H , pyrrolidine -H), $1.98-1.62(\mathrm{~m}, 6 \mathrm{H}$, methine-, methylene- and pyrrolidine- H), $1.41-1.39(\mathrm{~m}$, 1 H , methylene-H), $0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 168.6(\mathrm{C}), 162.0(\mathrm{C}), 134.8(\mathrm{CH}), 116.6\left(\mathrm{CH}_{2}\right), 84.7(\mathrm{CH}), 73.3(\mathrm{CH}), 70.2$ $\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2} \times 2\right), 42.4\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2} \times 2\right), 23.5\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}, 281.1991$ found 281.1998.

(E)-methyl 4-(2-methylallyloxy)-5-methyl-3-(pyrrolidin-1-yl)hex-2-enoate (11f). Prepared according to the general procedure with acetylenic ester E4 ($1.07 \mathrm{~g}, 5.10 \mathrm{mmol}$) and pyrrolidine ($0.50 \mathrm{~mL}, 6.12 \mathrm{mmol}$) to give product $\mathbf{1 1 f}$ as a pale-yellow oil in 99% yield (1.42 g). FT-IR (neat) v 2955, 2871, 1681, 1568, 1483, 1462, 1443, 1422, 1391, 1344, 1267, 1185, 1137, 1064, 998, 923, $798 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $5.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $4.92(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), $4.81(\mathrm{~s}, 1 \mathrm{H}$, geminal-H), $4.59(\mathrm{~s}, 1 \mathrm{H}, \alpha$-vinylic H$), 3.80(\mathrm{~s}, 2 \mathrm{H}$, allylic H$), 3.59(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.60-3.58 (br, 2H, pyrrolidine-H), 3.30-3.28 (br, 2H, pyrrolidine-H), 2.00-1.65 (m, 5 H , pyrrolidine- and methine-H), $1.71(\mathrm{~s}, 3 \mathrm{H}$, vinylic Me), $1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.84(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 168.9(\mathrm{C}), 160.3(\mathrm{C}), 142.5$ (C), 111.5 $\left(\mathrm{CH}_{2}\right), 87.0(\mathrm{CH}), 79.9(\mathrm{CH}), 73.4\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2} \times 2\right), 31.0(\mathrm{CH}), 25.0\left(\mathrm{CH}_{2} \times 2\right)$, $20.4\left(\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3}\right)$, $18.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}$, 281.1991 found 281.1998 .

(2E)-methyl 4-((E)-hex-2-enyloxy)-3-(pyrrolidin-1-yl)non-2-enoate (11h). Prepared according to the general procedure with acetylenic ester $\mathbf{E 5}(1.35 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine $(0.50 \mathrm{~mL}$, 6.12 mmol) to give product $\mathbf{1 1 h}$ as a pale-yellow oil in 99% yield (1.70 g). FT-IR (neat) v 2956, 2930, 2871, 1687, 1567, 1462, 1443, 1422, 1383, 1344, 1184, 1138, 1090, 1064, 1042, 970, 796 ;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.89(\mathrm{dd}, J=9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $5.64(\mathrm{dt}, J=15.4,6.3$
$\mathrm{Hz}, 1 \mathrm{H}$, vinylic H), 5.52 (dt, $J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 4.47 (s, 1H, α-vinylic H), 3.85 (d, J $=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.52-3.50 (br, 2H, pyrrolidine-H), 3.38-3.36 (br, 2 H , pyrrolidine-H), $1.99(\mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}$, allylic H), $1.90-1.85(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine-H), 1.78-1.75 (m, 2H, methylene-H), 1.62-1.22 (m, 8H, homoallylic and pentyl-H), 0.88 (t, $J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl ${ }_{3}$) $\delta 168.5$ (C), 161.9 (C), $134.2(\mathrm{CH}), 126.2(\mathrm{CH}), 84.7(\mathrm{CH}), 74.2(\mathrm{CH}), 70.1\left(\mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2} \times 2\right), 34.2$ $\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2} \times 2\right), 22.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$, $13.5\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{3}, 337.2617$ found 337.2626.

(E)-methyl 4-(benzyloxy)-5-methyl-3-(pyrrolidin-1-yl)hex-2-enoate (11k). Prepared according to the general procedure with acetylenic ester $\mathbf{E 6}(1.25 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine $(0.50 \mathrm{~mL}$, 6.12 mmol) to give product $\mathbf{1 1 k}$ as a pale-yellow oil in 98% yield (1.59 g). FT-IR (neat) v 2963, 2870, 1680, 1568, 1462, 1452, 1423, 1383, 1344, 1265, 1185, 1136, 1063, 998, 948, 896, 797, $748,736,699 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.18(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $5.83(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $4.64(\mathrm{~s}, 1 \mathrm{H}, \alpha$-vinylic H), 4.53 ($\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic-H), 4.47 (ABq, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic-H), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.62-3.58$ (br, 2 H , pyrrolidine- H), 3.31-3.28 (br, 2H, pyrrolidine-H), 2.04-1.20 (m, 1H, methine-H), 1.88-1.80 (m, 4H, pyrrolidineH), 1.17 ($\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$), $0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}){ }^{13}{ }^{\mathbf{3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 168.9 (C), 160.1 (C), 138.7 (C), $128.1(\mathrm{CH} \times 2), 127.7(\mathrm{CH} \times 2), 127.3(\mathrm{CH}), 87.1(\mathrm{CH}), 80.4$ $(\mathrm{CH}), 71.8\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2} \times 2\right), 30.9(\mathrm{CH}), 25.0\left(\mathrm{CH}_{2} \times 2\right), 20.4\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}, 317.1991$ found 317.1992.

(E)-methyl 4-(benzyloxy)-4-cyclohexyl-3-(pyrrolidin-1-yl)but-2-enoate (111). Prepared according to the general procedure with acetylenic ester $\mathbf{E} 7(1.46 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine $(0.50 \mathrm{~mL}, 6.12 \mathrm{mmol})$ to give product $\mathbf{1 1 1}$ as a brown oil in 99% yield (1.81 g). FT-IR (neat) v

2927, 2852, 1743, 1726, 1682, 1568, 1451, 1422, 1389, 1344, 1265, 1182, 1137, 1086, 1060, 906, 889, 797, 736, $699 \mathrm{~cm}^{-1}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $5.88(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, methine- H$), 4.61(\mathrm{~s}, 1 \mathrm{H}, \gamma$-vinylicH $), 4.49(\underline{\mathrm{ABq}}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$)$, $4.44\left(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, benzylic H), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.60-3.57$ (br, 2H, pyrrolidineH), 3.31-3.26 (br, 2H, pyrrolidine-H), 2.23-2.18 (m, 1H, cyclohexyl-H), 1.85-1.80 (m, 4H, pyrrolidine-H), 1.80-1.62 (m, 4H, cyclohexyl-H), 1.43-1.41 (m, 2H, cyclohexyl-H), 1.16-1.13 (m, 4H, cyclohexyl-H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.9$ (C), 159.9 (C), 138.7 (C), 128.2 $(\mathrm{CH} \times 2), 127.7(\mathrm{CH} \times 2), 127.3(\mathrm{CH}), 87.0(\mathrm{CH}), 79.5(\mathrm{CH}), 71.8\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2}\right.$ $\times 2), 40.5(\mathrm{CH}), 30.9\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2} \times 2\right)$; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3}, 357.2304$ found 357.2307.

(E)-methyl 4-(benzyloxy)-6-methyl-3-(pyrrolidin-1-yl)hept-2-enoate (11m). Prepared according to the general procedure with acetylenic ester $\mathbf{E 8}(1.33 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine $(0.50 \mathrm{~mL}, 6.12 \mathrm{mmol})$ to give product $\mathbf{1 1 m}$ as a brown oil in 99% yield (1.68 g). FT-IR (neat) v 2954, 2869, 1679, 1566, 1462, 1423, 1384, 1265, 1184, 1138, 1088, 1041, 991, 923, 795, 748, $736,698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $6.15(\mathrm{dd}, J=9.8$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), $4.50(\mathrm{~s}, 1 \mathrm{H}, \gamma$-vinylicH$), 4.46(\underline{\mathrm{ABq}}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H$), 4.42$ (Aㅡ́q, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), 3.62 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $3.60-3.57$ (br, 2 H , pyrrolidine-H), 3.30-3.26 (br, 2H, pyrrolidine-H), 1.98-1.72 (m, 6H, methylene-, methine- and pyrrolidine-H), 1.43-1.41 (m, 1H, methylene-H), $0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6(\mathrm{C}), 161.9(\mathrm{C}), 138.5(\mathrm{C}), 128.2(\mathrm{CH} \times 2), 127.7(\mathrm{CH} \times 2)$, $127.4(\mathrm{CH}), 84.8(\mathrm{CH}), 73.8(\mathrm{CH}), 71.5\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2} \times 2\right), 42.4\left(\mathrm{CH}_{2}\right), 25.2$ $(\mathrm{CH}), 24.3\left(\mathrm{CH}_{2} \times 2\right)$, $23.4\left(\mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}, 331.2147$ found 331.2142.

(\boldsymbol{E})-methyl 4-[(naphthalen-3-yl)methoxy]-5-methyl-3-(pyrrolidin-1-yl)hex-2-enoate (11n). Prepared according to the general procedure with acetylenic ester $\mathbf{E 9}(1.52 \mathrm{~g}, 5.10 \mathrm{mmol})$ and pyrrolidine ($0.50 \mathrm{~mL}, 6.12 \mathrm{mmol}$) to give product 11 n as a brown oil in 98% yield $(1.85 \mathrm{~g})$. FTIR (neat) v 2963, 2871, 1754, 1687, 1567, 1442, 1423, 1383, 1345, 1265, 1137, 1063, 947, 895, 856, 817, 796, 752; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 7.85-7.66$ ($\mathrm{m}, 4 \mathrm{H}$, naphthalene-H), 7.51$7.42(\mathrm{~m}, 3 \mathrm{H}$, naphthalene-H), $5.81(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, methine-H), 4.51 ($\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $4.63(\mathrm{~s}, 1 \mathrm{H}, \gamma$-vinylicH), 4.45 ($\mathrm{A} \underline{\mathrm{B} q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic H), $3.62(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.60-3.58 (br, 2H, pyrrolidine-H), 3.30-3.27 (br, 2H, pyrrolidine-H), 2.02-2.00 (m, 1H, methine-H), 1.86-1.80 (m, 4H, pyrrolidine-H), $1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 168.9$ (C), 160.1 (C), 136.2 (C), 133.2 (C), 132.8 (C), $127.8(\mathrm{CH} \times 2), 127.6(\mathrm{CH}), 126.4(\mathrm{CH}), 126.0(\mathrm{CH}), 125.9(\mathrm{CH}), 125.7(\mathrm{CH}), 87.2(\mathrm{CH}), 80.5$ $(\mathrm{CH}), 72.0\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2} \times 2\right), 31.0(\mathrm{CH}), 25.0\left(\mathrm{CH}_{2} \times 2\right), 20.5\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3}, 367.2147$ found 367.2142.

General procedure for the synthesis of 2,3,3,4-tetrasubstituted oxetanes

Synthesis of [(2R,3R,4R)-2-isopropyl-3-pyrrolidin-1-yl-4-vinyl-oxetan-3-yl]-acetic acid methyl ester (12a). To compound 11a ($200 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv.) with THF (7.5 mL) at $-78{ }^{\circ} \mathrm{C}$ in a flame-dried 25 mL round-bottomed flask was added a solution of LDA ($1.9 \mathrm{~mL}, 1.87$ mmol, 2.5 equiv., 1.0 N in THF / n-hexane). The reaction mixture was stirred for 1 hour at $-78^{\circ} \mathrm{C}$, which was then removed the dry-ice bath and allowed to warm to ambient temperature over a period of 10 minutes. The reaction was quenched by the addition of aqueous ammonium chloride solution ($1.0 \mathrm{M}, 2.0 \mathrm{~mL}$), the reaction mixture was extracted with EtOAc ($6 \mathrm{~mL} \times 2$). The combined organic layer was washed with brine, then dried over anhydrous sodium sulfate, and concentrated to give crude material. Purification by flash column chromatography (n hexane/EtOAc, 10:1) to afford oxetane 12a ($152 \mathrm{mg}, 0.57 \mathrm{mmol}$) as a pale-yellow solid in 76%
yield. m.p. $44.5-47.5^{\circ} \mathrm{C}$ (recrystallized from hexanes: $\left.\mathrm{EtOAc}(4: 1)\right) ; \mathbf{R}_{f}=0.33\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n-\right.$ hexane/EtOAc); FT-IR (neat) v 2960, 2874, 2808, 1735, 1717, 1699, 1558, 1541, 1521, 1508, $1472,1457,1435,1387,1363,1338,1257,1196,1177,1153,1129,1057,995,935,923,884$ $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.39\left(\mathrm{ddd}, J=17.3,10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.39(\mathrm{ddd}, J=$ $\left.17.3,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.26\left(\mathrm{ddd}, J=10.3,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.11(\mathrm{ddd}, J=7.5,1.1,1.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.16\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{14}\right.$ and $\left.\mathrm{H}^{15}\right), 2.66-$ $2.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{9}\right), 2.50-2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 1.94-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 1.69-1.65(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}^{10}, \mathrm{H}^{11}, \mathrm{H}^{12}$ and $\left.\mathrm{H}^{13}\right), 0.95\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.83\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.7(\mathrm{C}), 136.3(\mathrm{CH}), 118.0\left(\mathrm{CH}_{2}\right), 91.4(\mathrm{CH}), 85.8(\mathrm{CH}), 65.3(\mathrm{C})$, $51.5\left(\mathrm{CH}_{3}\right), 46.8\left(\mathrm{CH}_{2} \times 2\right), 32.2(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2} \times 2\right), 18.5\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}, 267.1834$ found 267.1845.

11b

12b

Synthesis of [(2R,3R,4R)-2-methyl-3-pyrrolidin-1-yl-4-vinyl-oxetan-3-yl]-acetic acid methyl ester (12b). Prepared according to the representative procedure with compound 11b (180 mg, 0.75 mmol) and LDA to give oxetane $\mathbf{1 2 b}(112 \mathrm{mg}, 0.47 \mathrm{mmol})$ as a pale-yellow oil in 62% yield. $\mathbf{R}_{f}=0.25\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2966,2874,1736,1461,1367$, 1332, 1261, 1197, 1062, 919, $867 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{H}_{3}$) $\delta 6.39$ (ddd, $J=17.4,10.3$, $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.39$ (ddd, $\left.J=17.4,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.26(\mathrm{ddd}, J=10.3,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{5}\right), 5.08\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.87\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.79(\underline{\mathrm{ABq}}, J=$ $\left.15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 2.73\left(\mathrm{~A} \underline{B} q, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{15}\right), 2.63-2.60\left(\mathrm{~m}, 2 \mathrm{H}^{2} \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{9}\right), 2.51-2.49$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 1.77-1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{10}, \mathrm{H}^{11}, \mathrm{H}^{12}\right.$ and $\left.\mathrm{H}^{13}\right), 1.31(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.6(\mathrm{C}), 135.8(\mathrm{CH}), 117.8\left(\mathrm{CH}_{2}\right), 87.0(\mathrm{CH}), 82.5(\mathrm{CH}), 65.2(\mathrm{C})$, $51.6\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2} \times 2\right), 32.5\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2} \times 2\right), 17.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}, 239.1521$ found 239.1524.

Synthesis of [(2R,3R,4R)-2-cyclohexyl-3-pyrrolidin-1-yl-4-vinyl-oxetan-3-yl]-acetic acid methyl ester (12c). Prepared according to the representative procedure with compound 11c (230 $\mathrm{mg}, 0.75 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 c}(161 \mathrm{mg}, 0.52 \mathrm{mmol})$ as a pale-yellow oil in 70% yield. $\mathbf{R}_{f}=0.41\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2926,2852,2807,1735,1717$, 1699, 1684, 1652, 1636, 1558, 1541, 1521, 1508, 1449, 1436, 1338, 1258, 1196, 1176, 1153, 1129, 1056, 1046, 1016, 989, 923, $882 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.35$ (ddd, $J=17.6$, $\left.10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.34\left(\mathrm{ddd}, J=17.3,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.21(\mathrm{dd}, J=10.3,2.0,0.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{5}\right), 5.07\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.22\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.79(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}^{14}$ and $\left.\mathrm{H}^{15}\right), 2.62-2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{9}\right), 2.42-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 1.93-1.89(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}^{17}\right), 1.68-1.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{16}, \mathrm{H}^{18}-\mathrm{H}^{20}\right.$ and $\left.\mathrm{H}^{23}-\mathrm{H}^{26}\right), 1.12-1.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{10}, \mathrm{H}^{11}, \mathrm{H}^{12}\right.$ and $\left.\mathrm{H}^{13}\right)$, $0.85-0.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{21}\right.$ and H^{22}); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.6(\mathrm{C}), 136.2(\mathrm{CH}), 117.9$ $\left(\mathrm{CH}_{2}\right), 89.9(\mathrm{CH}), 85.8(\mathrm{CH}), 65.3(\mathrm{C}), 51.5\left(\mathrm{CH}_{3}\right), 46.7\left(\mathrm{CH}_{2} \times 2\right), 40.2(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2} \times 2\right), 23.4\left(\mathrm{CH}_{2} \times 2\right)$; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3}$, 307.2147 found 307.2141 .

Synthesis of [(2R,3R,4R)-2-isobutyl-3-pyrrolidin-1-yl-4-vinyl-oxetan-3-yl]-acetic acid methyl ester (12d). Prepared according to the representative procedure with compound 11d (210 $\mathrm{mg}, 0.75 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 d}(143 \mathrm{mg}, 0.51 \mathrm{mmol})$ as a pale-yellow oil in 68% yield. $\mathbf{R}_{f}=0.40\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2954,2872,2810,1736,1717$, $1699,1653,1636,1558,1541,1521,1508,1457,1435,1396,1386,1362,1338,1245,1197$, 1177, 1147, 1133, 1074, 1009, 987, 921, $879 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.39$ (ddd, $J=$
$\left.17.2,10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.39\left(\mathrm{ddd}, J=17.2,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.26(\mathrm{ddd}, J=10.3,2.0,1.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.09\left(\mathrm{ddd}, J=7.5,1.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.77\left(\mathrm{dd}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.65(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 2.79\left(\underline{\mathrm{ABq}}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 2.73\left(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{15}\right), 2.65-2.61(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}^{7}$ and H^{9}), 2.49-2.45 (m, 2H, H^{6} and $\left.\mathrm{H}^{8}\right), 1.73-1.60\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{17}, \mathrm{H}^{18}\right.$ and $\left.\mathrm{H}^{10}-\mathrm{H}^{13}\right), 1.31$ (ddd, $\left.J=13.7,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 172.8(\mathrm{C}), 135.9(\mathrm{CH}), 117.9\left(\mathrm{CH}_{2}\right), 86.8(\mathrm{CH}), 84.9(\mathrm{CH}), 65.2$ (C), $51.6\left(\mathrm{CH}_{3}\right), 46.3\left(\mathrm{CH}_{2} \times 2\right), 41.2\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 24.7(\mathrm{CH}), 23.7\left(\mathrm{CH}_{2} \times 2\right), 22.4\left(\mathrm{CH}_{3}\right)$, $22.1\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}, 281.1991$ found 281.1998.

Synthesis of [(2R,3R,4R)-2-isopropenyl-4-methyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12e). Prepared according to the representative procedure with compound 11e (190 $\mathrm{mg}, 0.75 \mathrm{mmol})$ and LDA to give oxetane $\mathbf{1 2 e}(127 \mathrm{mg}, 0.50 \mathrm{mmol})$ as a colorless oil in 67% yield. $\mathbf{R}_{f}=0.35\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 2967, 1736, 1460, 1437, 1379, 1331, 1263, 1196, 1141, 1062, 1023, 952, $897 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.15(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 5.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.98\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.86$ ($\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{13}$), $2.77\left(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 2.71-2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right)$, 2.51-2.47 (m, 2H, H^{5} and $\left.\mathrm{H}^{7}\right), 1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.68-1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{10}-\mathrm{H}^{13}\right), 1.31(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7(\mathrm{C}), 144.6(\mathrm{C}), 113.3\left(\mathrm{CH}_{2}\right), 89.6(\mathrm{CH}), 81.7$ $(\mathrm{CH}), 65.6(\mathrm{C}), 51.5\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2} \times 2\right), 34.7\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2} \times 2\right), 19.0\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 5.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.87(\mathrm{q}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{2}$), $3.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.67-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 2.60\left(\underline{\mathrm{ABq}}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{13}\right)$, $2.54\left(\mathrm{ABq}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 2.40-2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and H^{7}), $2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.44-1.42$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{10}-\mathrm{H}^{13}\right), 1.10\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 172.0(\mathrm{C}), 145.7$ $(\mathrm{C}), 113.1\left(\mathrm{CH}_{2}\right), 89.5(\mathrm{CH}), 81.2(\mathrm{CH}), 65.9(\mathrm{C}), 50.8\left(\mathrm{CH}_{3}\right), 46.5\left(\mathrm{CH}_{2} \times 2\right), 34.9\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{2} \times 2\right), 19.4\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right) ;$ HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}, 253.1678$ found 253.1670 .

Synthesis of [(2R,3R,4R)-2-isopropenyl-4-isopropyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12f). Prepared according to the representative procedure with compound $\mathbf{1 1 f}$ ($210 \mathrm{mg}, 0.75 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 f}(149 \mathrm{mg}, 0.53 \mathrm{mmol})$ as a colorless oil in 71% yield. $\mathbf{R}_{f}=0.50\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 2960, 2873, 2814, 1736, $1717,1699,1684,1652,1636,1558,1541,1521,1507,1457,1448,1387,1364,1338,1259$, 1195, 1176, 1155, 1131, 1057, 1036, 997, 963, 898, $752 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $5.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.28\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}$, OMe), $2.90\left(\underline{\mathrm{ABq}}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{13}\right), 2.83\left(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 2.72-2.68(\mathrm{~m}, 2 \mathrm{H}$, H^{6} and $\left.\mathrm{H}^{8}\right), 2.55-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{7}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.86(\mathrm{td}, J=12.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{15}\right), 1.65-1.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{9}-\mathrm{H}^{12}\right), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl \mathbf{H}_{3}) $\delta 172.7(\mathrm{C}), 145.2(\mathrm{C}), 113.4\left(\mathrm{CH}_{2}\right), 91.1(\mathrm{CH}), 88.2(\mathrm{CH}), 65.7(\mathrm{C})$, $51.5\left(\mathrm{CH}_{3}\right), 46.7\left(\mathrm{CH}_{2} \times 2\right), 34.2\left(\mathrm{CH}_{2}\right), 30.4(\mathrm{CH}), 23.8\left(\mathrm{CH}_{2} \times 2\right), 19.0\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}, 281.1991$ found 281.1996.

Synthesis of [(2R,3R,4R)-2-methyl-4-(E)-pent-1-enyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic

 acid methyl ester (12g). Prepared according to the representative procedure with compound $\mathbf{1 1 g}$ ($210 \mathrm{mg}, 0.75 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 g}(137 \mathrm{mg}, 0.49 \mathrm{mmol})$ as a pale-yellow oil in 65% yield. $\mathbf{R}_{f}=0.28\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2960, 2931, 2873, 1733, 1456, 1436, 1374, 1196, 1140, 1070, 969, $945 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.02(\mathrm{dd}, J=$ $\left.15.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.73\left(\mathrm{dt}, J=15.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.97\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.81(\mathrm{q}, J$ $\left.=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 2.60-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{12}\right)$,2.46-2.44 (m, 2H, H^{9} and H^{11}), $2.03\left(\mathrm{dd}, J=13.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and H^{6}), 1.68-1.60 (m, 4H, $\left.\mathrm{H}^{13}-\mathrm{H}^{16}\right), 1.42-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 1.25\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Me^{1}); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.7$ (C), $135.2(\mathrm{CH}), 127.7(\mathrm{CH}), 86.8(\mathrm{CH}), 82.3(\mathrm{CH})$, $65.0(\mathrm{C}), 51.4\left(\mathrm{CH}_{3}\right), 46.0\left(\mathrm{CH}_{2} \times 2\right), 34.4\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2} \times 2\right), 22.0\left(\mathrm{CH}_{2}\right), 17.7$ $\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.600 \mathrm{MHz}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right) \delta 6.27\left(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.86(\mathrm{dt}, J$ $\left.=15.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.25\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.86\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.30(\mathrm{~s}, 3 \mathrm{H}$, OMe), 2.61-2.58 (m, 2H, H^{10} and $\left.\mathrm{H}^{12}\right), 2.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 2.44-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{11}\right)$, $1.99\left(\mathrm{dd}, J=13.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{6}\right), 1.52-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{13}-\mathrm{H}^{16}\right), 1.35-1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and H^{8}), $1.14\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.82\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right)$ $\delta 172.3(\mathrm{C}), 134.0(\mathrm{CH}), 129.3(\mathrm{CH}), 86.8(\mathrm{CH}), 81.9(\mathrm{CH}), 65.4(\mathrm{C}), 50.9\left(\mathrm{CH}_{3}\right), 46.3\left(\mathrm{CH}_{2} \times 2\right)$, $34.8\left(\mathrm{CH}_{2}\right)$, $32.7\left(\mathrm{CH}_{2}\right)$, $24.1\left(\mathrm{CH}_{2} \times 2\right)$, $22.5\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}, 281.1991$ found 281.1989.

Synthesis of [(2R,3R,4R)-2-(E)-pent-1-enyl-4-pentyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12h). Prepared according to the representative procedure with compound $\mathbf{1 1 h}$ ($250 \mathrm{mg}, 0.74 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 h}(167 \mathrm{mg}, 0.50 \mathrm{mmol})$ as a pale-yellow oil in 67% yield. $\mathbf{R}_{f}=0.52\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2957, 2931, 2872, 1737, $1665,1641,1632,1461,1436,1374,1334,1195,1178,1151,1132,, 1102,1005,968,945,910$, $893 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 6.04\left(\mathrm{ddt}, J=15.4,8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.76(\mathrm{dt}, J=$ $\left.15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.01\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.61\left(\mathrm{dd}, J=9.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}$, OMe), $2.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 2.50-2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{12}\right), 2.63-2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{11}\right)$, $2.05\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{6}\right), 1.70-1.62\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{13}-\mathrm{H}^{16}\right.$ and $\left.\mathrm{H}^{18}\right), 1.54-1.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{19}\right)$, 1.44-1.40 (m, $3 \mathrm{H}, \mathrm{H}^{7}, \mathrm{H}^{8}$ and $\left.\mathrm{H}^{21}\right), 1.30-1.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{22}-\mathrm{H}^{26}\right), 0.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right)$, $0.87\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right)$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.8(\mathrm{C}), 135.5(\mathrm{CH}), 127.8(\mathrm{CH})$, $86.6(\mathrm{CH}), 86.3(\mathrm{CH}), 65.0(\mathrm{C}), 51.5\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2} \times 2\right), 34.5\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right)$,
$31.8\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2} \times 2\right), 22.5\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 6.30\left(\mathrm{ddt}, J=15.5,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right.$), $5.89(\mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{4}\right), 5.28\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.75\left(\mathrm{dd}, J=9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.68-$ $2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{12}\right), 2.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 2.51-2.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{11}\right), 1.98(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}$ and $\left.\mathrm{H}^{6}\right), 1.67-1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{20}\right), 1.56-1.50\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{13}-\mathrm{H}^{16}\right.$ and $\left.\mathrm{H}^{21}\right), 1.45-1.41$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{19}\right), 1.35-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 1.28-1.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{22}-\mathrm{H}^{26}\right), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Me^{2}), $0.83\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta 172.3(\mathrm{C}), 133.9(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 86.6(\mathrm{CH}), 85.9(\mathrm{CH}), 65.6(\mathrm{C}), 50.9\left(\mathrm{CH}_{3}\right), 46.6\left(\mathrm{CH}_{2} \times 2\right), 34.8\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 32.7$ $\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2} \times 2\right)$, $22.9\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{3}, 337.2617$ found 337.2608.

Synthesis of [(2R,3R,4R)-2-methyl-4-(Z)-pent-1-enyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12i). Prepared according to the representative procedure with compound 11i ($210 \mathrm{mg}, 0.75 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 i}$ ($130 \mathrm{mg}, 0.46 \mathrm{mmol}$) as a pale-yellow oil in 62% yield. $\mathbf{R}_{f}=0.28\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2961,2930,2873,1736$, 1461, 1440, 1266, 1198, 1141, 1066, $942 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.12(\mathrm{ddt}, J=$ $\left.11.1,9.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.66\left(\mathrm{dt}, J=11.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.43\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.89$ $\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 2.62-2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{12}\right)$, 2.46-2.42 (m, 2H, H^{9} and $\left.\mathrm{H}^{11}\right), 2.21-2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{6}\right), 1.68-1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{13}-\mathrm{H}^{16}\right)$, $1.43-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 1.28\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl ${ }_{3}$) $\delta 172.9$ (C), 134.6 (CH), $126.9(\mathrm{CH}), 82.9(\mathrm{CH}), 80.6(\mathrm{CH}), 65.1(\mathrm{C})$, $51.6\left(\mathrm{CH}_{3}\right), 45.8\left(\mathrm{CH}_{2} \times 2\right), 32.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2} \times 2\right), 22.8\left(\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right)$, $13.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}, 281.1991$ found 281.1984.

Synthesis of [(2R,3R,4R)-2-methyl-4-phenyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12j). Prepared according to the representative procedure with compound $\mathbf{1 1 j} \mathbf{j} \mathbf{(2 2 0}$ $\mathrm{mg}, 0.76 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2} \mathbf{j}(176 \mathrm{mg}, 0.61 \mathrm{mmol})$ as a colorless oil in 80% yield. $\mathbf{R}_{f}=0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2966,2874,2809,1735,1711$, $1602,1558,1541,1588,1460,1435,1379,1333,1264,1196,1178,1140,1069,983,890,747$, $697 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.58\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}^{5}, \mathrm{H}^{6}$ and $\left.\mathrm{H}^{7}\right), 5.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.08\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.93(\underline{\mathrm{ABq}}, J=$ $\left.15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 2.83\left(\mathrm{ABq}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 2.25\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{10}\right), 2.17\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}^{9}\right.$ and H^{11}), $1.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.42-1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{12}-\mathrm{H}^{15}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 172.6(\mathrm{C}), 139.3(\mathrm{C}), 127.6(\mathrm{CH} \times 3), 127.4(\mathrm{CH} \times 2), 87.5(\mathrm{CH}), 82.7(\mathrm{CH}), 65.6(\mathrm{C}), 51.6$ $\left(\mathrm{CH}_{3}\right), 45.8\left(\mathrm{CH}_{2} \times 2\right), 33.5\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2} \times 2\right)$, $18.2\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$, 289.1678 found 289.1685 .

Synthesis of [(2R,3R,4R)-2-isopropyl-4-phenyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12k). Prepared according to the representative procedure with compound $\mathbf{1 1 k}$ (240 $\mathrm{mg}, 0.76 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 k}(204 \mathrm{mg}, 0.64 \mathrm{mmol})$ as a colorless oil in 85% yield. $\mathbf{R}_{f}=0.53\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2959,2872,2808,1735,1717$, $1698,1684,1653,1558,1541,1521,1496,1472,1457,1436,1387,1363,1339,1314,1259$, 1195, 1176, 1154, 1120, 1095, 1053, 1001, 934, 892, 750, $698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.62\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 7.34-7.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 5.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.37(\mathrm{~d}$, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.98\left(\underline{\mathrm{ABq}}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 2.88(\mathrm{ABq}, J=15.3$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 2.24-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{10}\right), 2.11-2.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{9}, \mathrm{H}^{11}\right.$ and $\left.\mathrm{H}^{18}\right)$, 1.46-1.31(m, $4 \mathrm{H}, \mathrm{H}^{12}-\mathrm{H}^{15}$), $1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 172.7(\mathrm{C}), 139.7(\mathrm{C}), 128.1(\mathrm{CH} \times 2), 127.4(\mathrm{CH}), 127.3(\mathrm{CH} \times 2), 91.9(\mathrm{CH}), 86.0$ $(\mathrm{CH}), 65.4(\mathrm{C}), 51.6\left(\mathrm{CH}_{3}\right), 46.1\left(\mathrm{CH}_{2} \times 2\right), 32.6\left(\mathrm{CH}_{2}\right), 30.7(\mathrm{CH}), 23.4\left(\mathrm{CH}_{2} \times 2\right), 18.5\left(\mathrm{CH}_{3} \times\right.$ 2); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 7.92\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 7.25(\mathrm{dd}, J=7.6,7.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}^{5}$ and H^{7}), 7.15-7.13 (m, 1H, $\left.\mathrm{H}^{6}\right), 6.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.34\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.31(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 2.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{16}\right.$ and $\left.\mathrm{H}^{17}\right), 2.20-2.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8}-\mathrm{H}^{11}\right), 1.84-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 1.28-$ $1.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{12}-\mathrm{H}^{15}\right), 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 172.3(\mathrm{C}), 140.9(\mathrm{C}), 128.5(\mathrm{CH} \times 2), 127.6(\mathrm{CH}), 127.5(\mathrm{CH} \times 2), 91.4$ $(\mathrm{CH}), 86.2(\mathrm{CH}), 65.9(\mathrm{C}), 51.0\left(\mathrm{CH}_{3}\right), 46.5\left(\mathrm{CH}_{2} \times 2\right), 33.1\left(\mathrm{CH}_{2}\right), 30.9(\mathrm{CH}), 23.7\left(\mathrm{CH}_{2} \times 2\right)$, $18.7\left(\mathrm{CH}_{3}\right)$, $18.5\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}, 317.1991$ found 317.1999.

Synthesis of [(2R,3R,4R)-2-cyclohexyl-4-phenyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (121). Prepared according to the representative procedure with compound 111 (260 $\mathrm{mg}, 0.73 \mathrm{mmol}$) and LDA to give oxetane $\mathbf{1 2 1}(214 \mathrm{mg}, 0.60 \mathrm{mmol})$ as a pale-yellow oil in 82% yield. $\mathbf{R}_{f}=0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2925,2851,2806,1735,1699$, 1684, 1559, 1450, 1436, 1338, 1263, 1194, 1174, 1154, 1131, 1030, 996, 887, 752, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.62\left(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 7.32-7.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 5.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.47\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.00(\underline{\mathrm{ABq}}, J=15.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 2.89\left(\mathrm{ABq}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 2.22-2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{10}\right), 2.11-2.05(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}^{9}, \mathrm{H}^{11}$ and $\left.\mathrm{H}^{19}\right), 1.78-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{18}, \mathrm{H}^{21}, \mathrm{H}^{22}\right.$ and $\left.\mathrm{H}^{26}\right), 1.58-1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{28}\right), 1.45-$ $1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{12}\right.$ and $\left.\mathrm{H}^{13}\right), 1.35-1.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{14}, \mathrm{H}^{15}, \mathrm{H}^{23}, \mathrm{H}^{24}\right.$ and $\left.\mathrm{H}^{25}\right), 0.94-0.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{19}\right.$ and H^{27}); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.8(\mathrm{C}), 139.7(\mathrm{C}), 128.1(\mathrm{CH} \times 2), 127.4(\mathrm{CH})$, $127.3(\mathrm{CH} \times 2), 90.6(\mathrm{CH}), 86.3(\mathrm{CH}), 65.6(\mathrm{C}), 51.6\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2} \times 2\right), 40.5(\mathrm{CH}), 32.7$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2} \times 2\right), 23.4\left(\mathrm{CH}_{2} \times 2\right)$; HRMS-EI calcd for
$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3}, 357.2304$ found 357.2312.

Synthesis of [(2R,3R,4R)-2-isobutyl-4-phenyl-3-pyrrolidin-1-yl-oxetan-3-yl]-acetic acid methyl ester (12m). Prepared according to the representative procedure with compound $\mathbf{1 1 m}$ $(250 \mathrm{mg}, 0.76 \mathrm{mmol})$ and LDA to give oxetane $\mathbf{1 2 m}(198 \mathrm{mg}, 0.60 \mathrm{mmol})$ as a pale-yellow oil in 79% yield. $\mathbf{R}_{f}=0.51\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 2954, 2930, 2807, 1734, $1717,1699,1653,1617,1558,1541,1507,1489,1457,1435,1363,1339,1260,1196,1176$, 1147, 1075, 1030, 985, 892, 884, 750, $698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{3}$ and H^{4}), 7.25-7.18 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{H}^{6}$ and H^{7}), $5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.90(\mathrm{dd}, J=9.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}^{2}$), $3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.86\left(\underline{\mathrm{ABq}}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 2.72\left(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{17}\right)$, 2.19-2.14 (m, 2H, H ${ }^{8}$ and H^{10}), 2.10-2.06 (m, 2H, H ${ }^{9}$ and $\left.\mathrm{H}^{11}\right), 1.77-1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{20}\right), 1.68-$ $1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 1.39-1.24\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{19}\right.$ and $\left.\mathrm{H}^{12}-\mathrm{H}^{15}\right), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.91(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl $_{3}$) $\delta 172.7$ (C), $139.6(\mathrm{C}), 127.8(\mathrm{CH} \times 2), 127.5$ $(\mathrm{CH}), 127.4(\mathrm{CH} \times 2), 87.4(\mathrm{CH}), 85.2(\mathrm{CH}), 65.6(\mathrm{C}), 51.6\left(\mathrm{CH}_{3}\right), 45.8\left(\mathrm{CH}_{2} \times 2\right), 41.6\left(\mathrm{CH}_{2}\right)$, $33.2\left(\mathrm{CH}_{2}\right), 24.9(\mathrm{CH}), 23.6\left(\mathrm{CH}_{2} \times 2\right), 23.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}$, 331.2147 found 331.2140 .

Synthesis of [(2R,3R,4R)-2-isopropyl-4-naphthalen-2-yl-3-pyrrolidin-1-yl-oxetan-3-yl]acetic acid methyl ester (12n). Prepared according to the representative procedure with compound $\mathbf{1 1 n}(270 \mathrm{mg}, 0.74 \mathrm{mmol})$ and LDA to give oxetane $\mathbf{1 2 n}(176 \mathrm{mg}, 0.48 \mathrm{mmol})$ as a
pale-yellow oil in 65% yield. $\mathbf{R}_{f}=0.55\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2959$, 2872, 2808, 1735, 1631, 1601, 1509, 1461, 1435, 1365, 1332, 1262, 1195, 1175, 1154, 1125, 1053, 1001, 966, 952, 890, 857, 813, $745 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right)$, 7.89-7.78 (m, 4H, $\mathrm{H}^{4}, \mathrm{H}^{5}, \mathrm{H}^{6}$ and $\left.\mathrm{H}^{9}\right), 7.47-7.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 6.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.37(\mathrm{~d}, J$ $\left.=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.05\left(\underline{\mathrm{ABq}}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 2.95(\mathrm{~A} \underline{\mathrm{~B} q}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{19}$), $2.26\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{12}\right), 2.16-2.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{13}\right.$ and $\left.\mathrm{H}^{20}\right), 1.39-1.28(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}^{14}-\mathrm{H}^{17}$), $1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 172.7(\mathrm{C}), 137.4(\mathrm{C}), 133.0(\mathrm{C}), 132.8(\mathrm{C}), 128.2(\mathrm{CH}), 127.5(\mathrm{CH}), 126.9(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 125.6(\mathrm{CH}), 125.5(\mathrm{CH}), 91.9(\mathrm{CH}), 86.2(\mathrm{CH}), 65.8(\mathrm{C}), 51.6\left(\mathrm{CH}_{3}\right), 46.3$ $\left(\mathrm{CH}_{2} \times 2\right), 32.9\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{CH}), 23.5\left(\mathrm{CH}_{2} \times 2\right), 18.5\left(\mathrm{CH}_{3} \times 2\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta$ $8.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 8.16\left(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.75-7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{9}\right), 7.66-7.64(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}^{6}\right), 7.24-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 6.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.45\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.35(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 2.76\left(\underline{\mathrm{ABq}}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 2.75\left(\mathrm{~A} \underline{B} q, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{19}\right), 2.78-2.14(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}^{10}-\mathrm{H}^{13}\right), 1.89-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{20}\right), 1.17-1.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{14}-\mathrm{H}^{15}\right), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$, $1.12-1.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{16}-\mathrm{H}^{17}\right), 0.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right) \delta 172.3$ (C), 138.8 (C), 133.6 (C), 133.5 (C), $128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 125.9(\mathrm{CH}), 125.8(\mathrm{CH}), 91.5(\mathrm{CH}), 86.5(\mathrm{CH}), 66.2(\mathrm{C}), 51.1\left(\mathrm{CH}_{3}\right), 46.6\left(\mathrm{CH}_{2} \times 2\right), 33.2$ $\left(\mathrm{CH}_{2}\right), 30.9(\mathrm{CH}), 23.7\left(\mathrm{CH}_{2} \times 2\right)$, $18.7\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3}$, 367.2147 found 367.2141 .

General procedure for the Cope elimination reaction

Synthesis of (Z)-[(2R,4R)-2-isopropyl-4-vinyl-oxetan-3-(Z)-ylidene]-acetic acid methyl ester (\boldsymbol{E}-13a). m-CPBA ($77 \% ; 100 \mathrm{mg}, 4.49 \mathrm{mmol}, 1.2$ equiv.) was added at $0^{\circ} \mathrm{C}$ to an oxetane 12a ($100 \mathrm{mg}, 3.74 \mathrm{mmol}, 1.0$ equiv.) in a 10 mL flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. The mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$, and then heated to $60^{\circ} \mathrm{C}$ for an additional 30 minutes by switching the ice/water bath to an oil bath. The reaction was quenched by the addition of saturated sodium
thiosulfate $(2.0 \mathrm{~mL})$ and washed with saturated sodium bicarbonate ($3 \mathrm{~mL} \times 2$), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL} \times 2)$. The combined organic layer was washed with brine, and dried over anhydrous sodium sulfate, followed by concentration to afford the crude material. Purification by flash column chromatography (n-hexane/EtOAc, 10:1) to provide a single diastereomer Z-13a $(66 \mathrm{mg}, 3.37 \mathrm{mmol})$ as colorless oil in 90% yield. $\mathbf{R}_{f}=0.56\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2962, 2931, 2874, 1724, 1699, 1653, 1636, 1558, 1541, 1533, 1457, 1436, 1397, 1386, 1363, 1341, 1269, 1219, 1197, 1102, 1032, 1008, 970, 926, 906, $890 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 6.22\left(\mathrm{ddd}, J=15.8,10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.74\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.66(\mathrm{dd}, J=2.5$, $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.52\left(\mathrm{dd}, J=15.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.29\left(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 5.03$ (ddd, $\left.J=6.4,4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.05-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.0$ (C), 163.5 (C), $134.1(\mathrm{CH}), 116.5\left(\mathrm{CH}_{2}\right), 110.7(\mathrm{CH}), 90.5(\mathrm{CH}), 86.7(\mathrm{CH}), 51.2\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 16.9\left(\mathrm{CH}_{3}\right)$, $16.8\left(\mathrm{CH}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta 6.47\left(\mathrm{ddd}, J=17.1,10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.86(\mathrm{br}, 1 \mathrm{H}$, $\left.\mathrm{H}^{1}\right), 5.71\left(\mathrm{ddd}, J=17.1,1.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.51\left(\mathrm{dd}, J=2.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.21(\mathrm{ddd}, J=$ $10.5,1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}$), 4.71 (ddd, $J=6.5,4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}$), $3.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.69(\mathrm{qqd}$, $\left.J=6.8,6.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, C $\mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 164.8$ (C), $164.4(\mathrm{C}), 134.9(\mathrm{CH}), 115.3\left(\mathrm{CH}_{2}\right), 110.7(\mathrm{CH}), 90.3(\mathrm{CH})$, $86.6(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 33.2(\mathrm{CH}), 17.0\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$, 196.1099 found 196.1105.

(Z)-[(2R,4R)-2-methyl-4-vinyl-oxetan-3-(Z)-ylidene]-acetic acid methyl ester (Z-13b). According to the general procedure, oxetane $\mathbf{1 2 b}(90 \mathrm{mg}, 3.76 \mathrm{mmol})$ was reacted to give a single diastereomer $\mathbf{Z - 1 3 b}\left(56 \mathrm{mg}, 3.31 \mathrm{mmol}\right.$) as a pale-yellow oil in 88% yield. $\mathbf{R}_{f}=0.40$ $\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2981, 2937, 1726, 1658, 1641, 1439, 1402, 1371, 1221, 1166, 1097, 1077, 1023, 954, $885 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.22$ (ddd, J $\left.=17.1,10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.86\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.59\left(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.53(\mathrm{dd}, J=$ $\left.17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.44-5.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.29\left(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, OMe), $1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 165.4$ (C), 165.2 (C), 133.9
$(\mathrm{CH}), 116.2\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{CH}), 86.9(\mathrm{CH}), 82.6(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}, 168.0786$ found 168.0791.

(Z)-[(2R,4R)-2-cyclohexyl-4-vinyl-oxetan-3-(Z)-ylidene]-acetic acid methyl ester (Z-13c). According to the general procedure, oxetane $\mathbf{1 2 c}(110 \mathrm{mg}, 3.60 \mathrm{mmol})$ was reacted to give a single diastereomer $\mathbf{Z} \mathbf{- 1 3} \mathbf{c}(77 \mathrm{mg}, 3.28 \mathrm{mmol})$ as a pale-yellow oil in 91% yield. $\mathbf{R}_{f}=0.58\left(\mathrm{SiO}_{2}\right.$, $4: 1 \mathrm{v} / v, n$-hexane/EtOAc); FT-IR (neat) v 3049, 2926, 2854, 1724, 1699, 1653, 1638, 1558, 1541, $1508,1449,1436,1341,1268,1218,1197,1144,1114,1087,1024,1001,988,968,924,890$, $749 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.21\left(\mathrm{ddd}, J=17.1,10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.73(\mathrm{ddd}, J$ $\left.=5.0,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.65\left(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.50\left(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right)$, $5.28\left(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 5.04\left(\mathrm{ddd}, J=6.5,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 1.80-1.67 (m, 5H, H ${ }^{7}-\mathrm{H}^{9}, \mathrm{H}^{16}$ and H^{17}), 1.24-0.90 (m, 6H, $\mathrm{H}^{10}-\mathrm{H}^{15}$); ${ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 165.1(\mathrm{C}), 163.7(\mathrm{C}), 134.2(\mathrm{CH}), 116.5\left(\mathrm{CH}_{2}\right), 110.7(\mathrm{CH}), 89.9(\mathrm{CH}), 86.9(\mathrm{CH})$, $51.2\left(\mathrm{CH}_{3}\right), 42.7(\mathrm{CH}), 29.6\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta 6.50\left(\mathrm{ddd}, J=17.0,10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.88\left(\mathrm{br}, \mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.73$ (ddd, J $\left.=17.0,1.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.54\left(\mathrm{dd}, J=2.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.22(\mathrm{dd}, J=10.3,1.9,1.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{6}\right), 4.76\left(\mathrm{ddd}, J=6.4,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.80-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{8}\right)$, $1.61-1.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{9}, \mathrm{H}^{10}, \mathrm{H}^{16}\right.$ and $\left.\mathrm{H}^{17}\right), 1.48-1.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.09-0.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{11}-\mathrm{H}^{15}\right)$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 164.9(\mathrm{C}), 164.6(\mathrm{C}), 135.0(\mathrm{CH}), 115.4\left(\mathrm{CH}_{2}\right), 110.6(\mathrm{CH}), 89.6$ $(\mathrm{CH}), 86.8(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 42.9(\mathrm{CH}), 27.6\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right) ;$ HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}, 236.1412$ found 236.1411.

(Z)-[(2R,4R)-2-isobutyl-4-vinyl-oxetan-3-(Z)-ylidene]-acetic acid methyl ester (Z-13d). According to the general procedure, oxetane $\mathbf{1 2 d}(100 \mathrm{mg}, 3.55 \mathrm{mmol})$ was reacted to give a single diastereomer Z-13d ($67 \mathrm{mg}, 3.20 \mathrm{mmol}$) as a pale-yellow oil in 90% yield. $\mathbf{R}_{f}=0.57$
$\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2965, 2876, 1724, 1699, 1653, 1638, 1559, 1542, 1436, 1341, 1269, 1219, 1197, 1032, 1008, 970, 927, $890 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (300 MHz, CDCl $\left._{3}\right) \delta 6.21\left(\mathrm{ddd}, J=17.1,10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.81\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.60(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{2}\right), 5.52\left(\mathrm{ddd}, J=17.1,1.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 5.49-5.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.29(\mathrm{ddd}, J=10.4,1.6$, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.89-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 1.61-1.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 0.96$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.2(\mathrm{C} \times$ 2), $134.0(\mathrm{CH}), 116.4\left(\mathrm{CH}_{2}\right), 110.1(\mathrm{CH}), 86.9(\mathrm{CH}), 84.9(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 44.5\left(\mathrm{CH}_{2}\right), 24.5$ $(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1248.

(Z) - and $(E)-[(2 R, 4 R)$-2-isopropenyl-4-methyl-oxetan-3-ylidene]-acetic acid methyl esters (Z-13e) and (E-13e). According to the general procedure, oxetane 12e ($90 \mathrm{mg}, 3.55 \mathrm{mmol}$) was reacted to give a 75:25 mixture of diastereomers $\mathbf{Z - 1 3 e}$ and \boldsymbol{E}-13e (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a pale-yellow oil in 88% yield ($57 \mathrm{mg}, 3.13 \mathrm{mmol}$). Z-13e: $\mathbf{R}_{\boldsymbol{f}}=0.52\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2986,2939,1736,1450,1357$, 1227, 1164, 1097, 1055, $954,885 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 5.59-5.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{1}\right.$, H^{2} and $\left.\mathrm{H}^{3}\right), 5.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.64(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.5$ (C), 165.2 (C), 142.3 (C), $113.8\left(\mathrm{CH}_{2}\right)$, $110.6(\mathrm{CH}), 88.1(\mathrm{CH}), 84.8(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}, 182.0943$ found $182.0945 ; \boldsymbol{E}-13 \mathrm{e}: \mathbf{R}_{f}=0.41\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2985, 2936, 1732, 1684, 1647, 1636, 1456, 1362, 1226, 1170, 1096, 1058, 953, $881 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 5.79\left(\mathrm{ddd}, J=4.1,2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.68(\mathrm{dd}, J=2.5,2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{2}\right), 5.44-5.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.88(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}^{1}$), $1.50\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right.$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right) \delta 165.2$ (C), 164.7 (C), $141.6(\mathrm{C}), 115.5\left(\mathrm{CH}_{2}\right), 111.5(\mathrm{CH}), 90.7(\mathrm{CH}), 82.9(\mathrm{CH}), 51.2\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}, 182.0943$ found 182.0945.

(Z) - and $(E)-[(2 R, 4 R)$-2-isopropenyl-4-isopropyl-oxetan-3-ylidene]-acetic acid methyl esters (Z-13f) and (E-13f). According to the general procedure, oxetane $\mathbf{1 2 f}(100 \mathrm{mg}, 3.55 \mathrm{mmol})$ was reacted to give a 72:28 mixture of diastereomers $\boldsymbol{Z}-\mathbf{1 3 f}$ and $\boldsymbol{E}-\mathbf{1 3 f}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a colorless oil in 85% yield ($64 \mathrm{mg}, 3.04 \mathrm{mmol}$). \mathbf{Z} 13f: $\mathbf{R}_{f}=0.53\left(\mathrm{SiO}_{2}, 4: 1 v / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3080,2963,2875,1725,1699$, $1652,1558,1541,1521,1508,1472,1457,1436,1363,1342,1274,1219,1197,1102,1039$, $1016,975,937,903,877 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 5.73\left(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right)$, $5.68\left(\mathrm{dd}, J=4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 4.98(\mathrm{ddd}, J=6.4,4.4,2.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.05-1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.0(\mathrm{C}), 162.6$ (C), $141.6(\mathrm{C}), 115.9(\mathrm{CH}), 112.0\left(\mathrm{CH}_{2}\right), 90.9(\mathrm{CH}), 90.7(\mathrm{CH}), 51.0\left(\mathrm{CH}_{3}\right), 33.1(\mathrm{CH}), 17.2\left(\mathrm{CH}_{3}\right)$, $17.0\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1263; \boldsymbol{E}-13f: $\mathbf{R}_{f}=$ $0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 3078, 2966, 2876, 1725, 1699, 1652, 1558, $1542,1524,1457,1436,1363,1343,1272,1219,1197,1102,1038,1016,976,935,903,879$ $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 5.60\left(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.42\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.40-$ $5.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.46-2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{6}\right)$, $1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 165.3(\mathrm{C}), 163.8(\mathrm{C}), 142.6(\mathrm{C}), 114.2(\mathrm{CH}), 111.2\left(\mathrm{CH}_{2}\right), 92.8(\mathrm{CH}), 89.3(\mathrm{CH})$, $51.3\left(\mathrm{CH}_{3}\right), 30.3(\mathrm{CH}), 18.2\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right)$. HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, 210.1256 found 210.1248 .

(Z) - and $(E)-[(2 R, 4 R)$-2-methyl-4-((E)-pent-1-enyl)-oxetan-3-ylidene]-acetic acid methyl
ester ($\boldsymbol{Z} \mathbf{- 1 3 g}$) and $(\boldsymbol{E} \mathbf{- 1 3 g})$. According to the general procedure, oxetane $\mathbf{1 2 g}(100 \mathrm{mg}, 3.55$ mmol) was reacted to give a 90:10 mixture of inseparable diastereomers $\boldsymbol{Z} \mathbf{- 1 3 g}$ and $\boldsymbol{E - 1 3 g}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a pale-yellow oil in 86% yield ($64 \mathrm{mg}, 3.04 \mathrm{mmol}$). $\mathbf{Z - 1 3 g}: \mathbf{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2960, 2935, 2874, 1725, 1678, 1658, 1642, 1439, 1352, 1257, 1095, 1030, 923, $883 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 6.05-6.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right), 5.96\left(\mathrm{ddd}, J=4.3,3.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right)$, $5.38\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.07\left(\mathrm{ddq}, J=6.5,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 1.99-1.96 (m, 2H, H^{6} and H^{7}), 1.35-1.29 (m, 2H, H ${ }^{8}$ and $\left.\mathrm{H}^{9}\right), 1.13\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.82$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$) $\delta 167.1$ (C), 164.9 (C), 132.8 (CH), 127.1 $(\mathrm{CH}), 109.9(\mathrm{CH}), 86.8(\mathrm{CH}), 81.9(\mathrm{CH}), 50.7\left(\mathrm{CH}_{3}\right), 34.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 13.7$ $\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1261; $\boldsymbol{E}-\mathbf{1 3 g}: \mathbf{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 4: 1\right.$ $v / v, n$-hexane/EtOAc); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 5.67-5.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.55-5.54(\mathrm{~m}, 1 \mathrm{H}$, H^{4} and $\left.\mathrm{H}^{5}\right), 5.50\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.39-5.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 3.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.83-$ $1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 1.68\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 1.23-1.18\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{9}\right), 0.76$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 167.7$ (C), 165.0 (C), 135.4 (CH), 128.7 $(\mathrm{CH}), 110.8(\mathrm{CH}), 85.7(\mathrm{CH}), 84.1(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 34.3\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right), 13.6$ $\left(\mathrm{CH}_{3}\right) ;$ HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1261.

(Z) - and $(E)-[(2 R, 4 R)-2-p e n t y l-4-((E)$-pent-1-enyl)-oxetan-3-ylidene]-acetic acid methyl ester ($\boldsymbol{Z}-\mathbf{1 3 h}$) and $(\boldsymbol{E}-\mathbf{1 3 h})$. According to the general procedure, oxetane $\mathbf{1 2 h}(120 \mathrm{mg}, 3.56$ $\mathbf{m m o l}$) was reacted to give a $93: 7$ mixture of inseparable diastereomers $\mathbf{Z} \mathbf{- 1 3 h}$ and $\boldsymbol{E} \mathbf{- 1 3 h}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a pale-yellow oil in 82% yield ($78 \mathrm{mg}, 2.92 \mathrm{mmol}$). $\mathbf{Z - 1 3 h}: \mathbf{R}_{f}=0.66\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}\right.$, n-hexane/EtOAc); FT-IR (neat) v 2957, 2390, 2872, 2861, 1726, 1701, 1461, 1436, 1343, 1267, 1209, 1195, 1126, 1105, 1032, $1022,973,925,900 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 6.12-6.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right), 5.97(\mathrm{br}$,
$\left.1 \mathrm{H}, \mathrm{H}^{1}\right), 5.59\left(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.07-5.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.00-1.98$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 1.66-1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 1.47-1.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.39-1.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{8}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{12}-\mathrm{H}^{14}\right), 1.22-1.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{15}-\mathrm{H}^{17}\right), 0.83\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Me^{2}); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$) $\delta 166.5$ (C), 164.9 (C), 132.9 (CH), 127.2 (CH), 110.0 (CH), $86.9(\mathrm{CH}), 85.7(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 35.6\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$, $13.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}, 266.1882$ found 266.1886 . $\boldsymbol{E}-13 \mathrm{~h}: \mathbf{R}_{f}=0.66\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 5.67-5.64(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}^{3}\right), 5.61-5.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{4}-\mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{3}\right), 5.39-5.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.20-2.17$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 2.10-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.85-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 1.37-1.15\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{8}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{12}-\mathrm{H}^{17}\right), 0.90\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 0.77\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 5 1} \mathbf{~ M H z}$, $\left.\mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 166.9(\mathrm{C}), 165.2(\mathrm{C}), 135.4(\mathrm{CH}), 128.8(\mathrm{CH}), 110.9(\mathrm{CH}), 87.8(\mathrm{CH}), 86.1(\mathrm{CH}), 50.8$ $\left(\mathrm{CH}_{3}\right)$, $34.4\left(\mathrm{CH}_{2}\right)$, $33.7\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 13.7$ $\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}, 266.1882$ found 266.1886.

(Z) - and $(E)-[(2 R, 4 R)-2-m e t h y l-4-((Z)$-pent-1-enyl)-oxetan-3-ylidene]-acetic acid methyl esters (Z-13i) and (E-13i). According to the general procedure, oxetane $\mathbf{1 2 i}(100 \mathrm{mg}, 3.55 \mathrm{mmol})$ was reacted to give a $83: 17$ mixture of diastereomers $\mathbf{Z - 1 3 i}$ and $\boldsymbol{E - 1 3 i}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a pale-yellow oil in 80% yield ($60 \mathrm{mg}, 2.84$ $\mathrm{mmol}) . \mathbf{Z - 1 3 i}: \mathbf{R}_{f}=0.47\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 2961,2935,2875$, 1740, 1725, 1692, 1658, 1214, 1163, 1095, $1021 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 6.16$ (ddd, $\left.J=8.1,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.73-5.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{1}\right), 5.60\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right)$, 5.44 (ddq, $\left.J=6.5,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.27-2.10\left(\mathrm{~m}, 2 \mathrm{H}^{2} \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 1.49$ $\left(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 1.44-1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{9}\right), 0.94\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 166.6(\mathrm{C}), 165.1(\mathrm{C}), 135.8(\mathrm{CH}), 125.6(\mathrm{CH}), 110.7(\mathrm{CH}), 82.4(\mathrm{CH}), 82.2$ (CH), $51.3\left(\mathrm{CH}_{3}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{2}\right)$, $21.3\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, 210.1256 found $210.1253 ; \boldsymbol{E}-\mathbf{1 3 i}: \mathbf{R}_{f}=0.40\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 2960, 2935, 2874, 1724, 1692, 1659, 1216, 1162, 1093, $1025 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.04\left(\mathrm{ddd}, J=7.34 .3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.73-5.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{1}\right), 5.56(\mathrm{ddq}, J=6.5,4.3$,
$\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.52\left(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.23-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 1.63\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{2}\right), 1.44-1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{9}\right), 0.91\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{1}\right)$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 167.2$ (C), 165.3 (C), $135.8(\mathrm{CH}), 127.3(\mathrm{CH}), 110.7(\mathrm{CH}), 84.5$ $(\mathrm{CH}), 80.7(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}, 210.1256$ found 210.1261.

Z-13

(Z) - and $(E)-[(2 R, 4 R)$-2-methyl-4-phenyl-oxetan-3-ylidene]-acetic acid methyl esters (Z-13j) and (E-13j). According to the general procedure, oxetane $\mathbf{1 2 j}(100 \mathrm{mg}, 3.45 \mathrm{mmol})$ was reacted to give a 91:9 mixture of diastereomers $\mathbf{Z} \mathbf{- 1 3 j}$ and $\boldsymbol{E}-\mathbf{1 3 j}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a pale-yellow oil in 91% yield ($69 \mathrm{mg}, 3.15 \mathrm{mmol}$). $\mathbf{Z} \mathbf{- 1 3 j} \mathbf{:} \mathbf{R}_{\boldsymbol{f}}$ $=0.40\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3036,2981,2951,1722,1665,1642$, 1449, 1438, 1327, 1259, 1201, 1174, 1032, $700 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.52(\mathrm{dd}, J$ $=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}$ and H^{5}), 7.41-7.29 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 6.36(\mathrm{dd}, J=4.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{1}\right), 5.68\left(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.64\left(\mathrm{qdd}, J=6.4,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}$, OMe), 1.59 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.6$ (C), 164.8 (C), 138.8 (C), $128.4(\mathrm{CH}), 128.3(\mathrm{CH} \times 2), 127.2(\mathrm{CH} \times 2), 111.0(\mathrm{CH}), 88.5(\mathrm{CH}), 83.5(\mathrm{CH}), 51.2\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}, 218.0943$ found 218.0935; $\boldsymbol{E}-\mathbf{1 3} \mathbf{j}: \mathbf{R}_{f}=0.44\left(\mathrm{SiO}_{2}\right.$, $4: 1 \mathrm{v} / v, n$-hexane/EtOAc); FT-IR (neat) v 3032, 2950, 1724, 1669, 1646, 1447, 1438, 1325, 1260, 1201, 1176, 1032, 1023, $698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.40(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, H^{4} and H^{5}), 7.39-7.33 (m, 3H, $\mathrm{H}^{6}, \mathrm{H}^{7}$ and $\left.\mathrm{H}^{8}\right), 6.20\left(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.74(\mathrm{qdd}, J=$ $\left.6.4,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.52\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.74(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl ${ }_{3}$) $\delta 166.5$ (C), $165.3(\mathrm{C}), 139.2(\mathrm{C}), 128.7(\mathrm{CH} \times 2)$, $128.6(\mathrm{CH}), 126.0(\mathrm{CH} \times 2), 111.3(\mathrm{CH}), 86.3(\mathrm{CH}), 85.2(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 7.25\left(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and H^{5}), $7.13(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}^{6}$ and H^{8}), $7.06\left(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 5.87\left(\mathrm{dd}, J=4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.74(\mathrm{qdd}$, $\left.J=6.5,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.39\left(\mathrm{dd}, J=2.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.74(\mathrm{~d}, J=$
$6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (151 MHz, $\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 167.3(\mathrm{C}), 164.9(\mathrm{C}), 140.3(\mathrm{C}), 128.8(\mathrm{CH} \times 2)$, $128.4(\mathrm{CH}), 126.2(\mathrm{CH} \times 2), 111.2(\mathrm{CH}), 86.0(\mathrm{CH}), 85.1(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right)$; HRMSEI calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}, 218.0943$ found 218.0936.

(Z) - and $(E)-[(2 R, 4 R)$-2-isopropyl-4-phenyl-oxetan-3-ylidene]-acetic acid methyl esters (Z $\mathbf{1 3 k}$) and ($\boldsymbol{E} \mathbf{- 1 3 k}$). According to the general procedure, oxetane $\mathbf{1 2 k}(110 \mathrm{mg}, 3.47 \mathrm{mmol})$ was reacted to give a 90:10 mixture of diastereomers $\mathbf{Z - 1 3 k}$ and \boldsymbol{E}-13k (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a colorless oil in 93% yield ($80 \mathrm{mg}, 3.23 \mathrm{mmol}$). Z13k: $\mathbf{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 3032, 2962, 2930, 2892, 2873, $1722,1699,1653,1558,1541,1521,1507,1490,1456,1436,1339,1270,1220,1200,1101$, 1032, 1006, 999, 949, 906, 893, 867,748, 696, $661 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l ~}{ }_{3}$) $\delta 7.49(\mathrm{dd}$, $J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}$ and $\left.\mathrm{H}^{5}\right), 7.38-7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 7.32-7.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 6.23(\mathrm{dd}$, $\left.J=4.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.77\left(\mathrm{dd}, J=2.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.26(\mathrm{ddd}, J=6.8,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 3.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.15-2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3H, Me); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.6$ (C), 163.8 (C), 139.0 (C), 128.3 (CH), 128.2 $(\mathrm{CH} \times 2), 127.5(\mathrm{CH} \times 2), 111.6(\mathrm{CH}), 91.4(\mathrm{CH}), 88.6(\mathrm{CH}), 51.0\left(\mathrm{CH}_{3}\right), 33.1(\mathrm{CH}), 17.0\left(\mathrm{CH}_{3}\right)$, $16.9\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$ found 246.1254; $\boldsymbol{E}-\mathbf{1 3 k}: \mathbf{R}_{f}=0.45\left(\mathrm{SiO}_{2}\right.$, $4: 1 \mathrm{v} / v, n$-hexane/EtOAc); FT-IR (neat) v 3029, 2962, 2932, 2873, 1722, 1699, 1653, 1521, 1507, $1490,1456,1438,1338,1271,1222,1200,1100,1031,1005,999,949,907,893,867,698 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{4}-\mathrm{H}^{8}\right), 6.02\left(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right)$, $5.59\left(\mathrm{ddd}, J=4.5,2.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.55\left(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 2.54-2.49 (m, 1H, H ${ }^{9}$), $1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 165.4(\mathrm{C}), 164.9(\mathrm{C}), 139.3(\mathrm{C}), 128.7(\mathrm{CH} \times 2), 128.6(\mathrm{CH}), 126.2(\mathrm{CH} \times 2)$, $112.1(\mathrm{CH}), 93.3(\mathrm{CH}), 87.3(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 30.6(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$ found 246.1251.

(Z) - and $(E)-[(2 R, 4 R)-2$-cyclohexyl-4-phenyl-oxetan-3-ylidene]-acetic acid methyl esters (Z131) and (\boldsymbol{E}-131). According to the general procedure, oxetane $\mathbf{1 2 1}(120 \mathrm{mg}, 3.36 \mathrm{mmol})$ was reacted to give a 92:8 mixture of diastereomers $\mathbf{Z - 1 3 1}$ and $\boldsymbol{E - 1 3 1}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a colorless oil in 91% yield ($88 \mathrm{mg}, 3.06 \mathrm{mmol}$). Z13I: $\mathbf{R}_{f}=0.53\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3032,2927,2853,1723,1699$, 1451, 1435, 1339, 1270, 1219, 1199, 1114, 1031, 953, 886, 864, 748, $696 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.47\left(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right), 7.39-7.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right)$, $6.22\left(\mathrm{dd}, J=4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.76\left(\mathrm{dd}, J=2.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.28(\mathrm{ddd}, J=6.4,4.4,2.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.95-1.64\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{18}, \mathrm{H}^{10}, \mathrm{H}^{13}, \mathrm{H}^{17}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{15}\right), 1.32-1.15(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{19}, \mathrm{H}^{12}, \mathrm{H}^{14}$ and H^{16}); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 164.7$ (C), 163.9 (C), 139.1 (C), $128.4(\mathrm{CH}), 128.3(\mathrm{CH} \times 2), 127.5(\mathrm{CH} \times 2)$, $111.6(\mathrm{CH}), 90.7(\mathrm{CH}), 88.7(\mathrm{CH}), 51.1\left(\mathrm{CH}_{3}\right), 42.9$ $(\mathrm{CH}), 27.5\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta$ $7.59\left(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and H^{5}), 7.29 (dd, $J=7.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}$ and H^{8}), 7.11-7.09 (dd, $\left.J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 6.33\left(\mathrm{dd}, J=4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.62(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, H^{2}), 4.97 (ddd, $\left.J=6.4,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 1.66-1.62(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}^{10}, \mathrm{H}^{13}$ and $\left.\mathrm{H}^{17}\right), 1.58-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right.$ and $\left.\mathrm{H}^{15}\right), 1.15-1.08\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{19}, \mathrm{H}^{12}, \mathrm{H}^{14}\right.$ and H^{16}); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 164.8(\mathrm{C}), 164.4(\mathrm{C}), 140.2(\mathrm{C}), 128.3(\mathrm{CH} \times 2), 128.3(\mathrm{CH})$, $128.2(\mathrm{CH} \times 2), 111.6(\mathrm{CH}), 90.5(\mathrm{CH}), 88.7(\mathrm{CH}), 50.6\left(\mathrm{CH}_{3}\right), 43.1(\mathrm{CH}), 27.8\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{2}\right)$, $26.0\left(\mathrm{CH}_{2}\right)$; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}, 286.1569$ found 286.1567; E-13I: $\mathbf{R}_{f}=0.59\left(\mathrm{SiO}_{2}, 4 / 1, n\right.$-hexane/EtOAc); FT-IR (neat) v 3030, 2928, 2854, 1722, 1699, 1451, 1436, 1338, 1272, 1219, 1199, 1115, 1032, 953, 887, 864, 748, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.42-7.31\left(\mathrm{~m}, 5 \mathrm{H}^{2} \mathrm{H}^{4}-\mathrm{H}^{8}\right), 6.01\left(\mathrm{dd}, J=4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.56(\mathrm{ddd}, J$ $\left.=4.1,2.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.54\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.18-2.17(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}^{9}$), 1.90-1.55 (m, 4H, $\mathrm{H}^{11}, \mathrm{H}^{10}, \mathrm{H}^{18}$ and H^{19}), 1.43-1.22 (m, $6 \mathrm{H}, \mathrm{H}^{12}-\mathrm{H}^{17}$); ${ }^{13}$ C NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 165.4(\mathrm{C}), 164.9(\mathrm{C}), 139.3(\mathrm{C}), 128.7(\mathrm{CH} \times 2), 128.6(\mathrm{CH}), 126.3(\mathrm{CH} \times 2)$,
$112.0(\mathrm{CH}), 93.0(\mathrm{CH}), 87.4(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 40.3(\mathrm{CH}), 28.5\left(\mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right) \delta 7.28\left(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right)$, $7.13\left(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 7.11-7.09\left(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 5.82(\mathrm{dd}, J=$ $\left.4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.69\left(\mathrm{ddd}, J=4.5,3.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.50\left(\mathrm{dd}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right)$, $3.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.45-2.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 1.96-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{19}\right), 1.79-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{13}\right), 1.68-1.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{15}, \mathrm{H}^{17}\right.$ and $\left.\mathrm{H}^{18}\right), 1.31-1.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{12}, \mathrm{H}^{14}\right.$ and $\left.\mathrm{H}^{16}\right) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$) $\delta 165.6(\mathrm{C}), 165.1(\mathrm{C}), 140.5(\mathrm{C}), 128.9(\mathrm{CH} \times 2), 128.5(\mathrm{CH}), 126.3(\mathrm{CH} \times 2)$, $112.1(\mathrm{CH}), 92.8(\mathrm{CH}), 87.2(\mathrm{CH}), 50.8\left(\mathrm{CH}_{3}\right), 40.8(\mathrm{CH}), 28.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right)$; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}, 286.1569$ found 286.1562.

(Z) - and (E)-[($2 R, 4 R$)-2-isobutyl-4-phenyl-oxetan-3-ylidene]-acetic acid methyl esters (Z -
$\mathbf{1 3 m}$) and ($\boldsymbol{E}-\mathbf{1 3 m}$). According to the general procedure, oxetane $\mathbf{1 2 m}(110 \mathrm{mg}, 3.32 \mathrm{mmol})$ was reacted to give a 72:28 mixture of diastereomers $\boldsymbol{Z} \mathbf{- 1 3} \mathbf{m}$ and $\boldsymbol{E}-\mathbf{1 3 m}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a colorless oil in 89% yield ($77 \mathrm{mg}, 2.95 \mathrm{mmol}$). Z-13m: $\mathbf{R}_{f}=0.51\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / v, n\right.$-hexane/EtOAc); FT-IR (neat) v 3032, 2955, 2927, 2871, $1723,1699,1685,1653,1617,1558,1541,1521,1507,1489,1456,1436,1333,1218,1200$, 1137, 1107, 1020, 952, 935, 896, 865, 831, 767, 744, 697, $662 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l ~} \mathbf{N}_{3}$) $\delta 7.50\left(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{5}\right), 7.39-7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{8}\right), 7.33-7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right)$, $6.32\left(\mathrm{dd}, J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.71\left(\mathrm{dd}, J=2.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5,62-5.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.54$ (s, 3H, OMe), 1.98-1.90 (m, 1H, H ${ }^{10}$), 1.88-1.84 (m, 1H, H ${ }^{11}$), 1.68-1.63 (m, 1H, H ${ }^{9}$), $0.94(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 165.4(\mathrm{C})$, $164.8(\mathrm{C}), 139.0(\mathrm{C}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH} \times 2), 127.4(\mathrm{CH} \times 2), 110.9(\mathrm{CH}), 88.6(\mathrm{CH}), 85.8$ (CH), $51.1\left(\mathrm{CH}_{3}\right)$, $44.8\left(\mathrm{CH}_{2}\right)$, $24.6(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right)$, $22.3\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$, 260.1412 found 260.1416; $\boldsymbol{E}-13 \mathrm{~m}: \mathbf{R}_{f}=0.57\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 3030, 2953, 2928, 2869, 1722, 1699, 1686, 1653, 1617, 1558, 1541, 1522, 1507, 1489, 1457, 1436, 1336, 1218, 1200, 1137, 1106, 1021, 952, 935, 896, 865, 767, 744, $698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$
($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.43-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{4}-\mathrm{H}^{8}\right), 6.16\left(\mathrm{dd}, J=4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.72-5.69$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.50\left(\mathrm{dd}, J=2.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.00-1.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{9}-\mathrm{H}^{11}\right)$, $1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 166.4$ (C), 165.3 (C), $139.2(\mathrm{C}), 128.8(\mathrm{CH} \times 2), 128.7(\mathrm{CH}), 126.3(\mathrm{CH} \times 2), 111.2(\mathrm{CH}), 87.5(\mathrm{CH})$, $86.5(\mathrm{CH})$, $51.4\left(\mathrm{CH}_{3}\right), 42.3\left(\mathrm{CH}_{2}\right), 24.5(\mathrm{CH}), 23.6\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}, 260.1412$ found 260.1417.

(Z) - and $(E)-[(2 R, 4 R)-2$-isopropyl-4-naphthalen-2-yl-oxetan-3-ylidene]-acetic acid methyl esters (Z-13n) and (E-13n). According to the general procedure, oxetane $\mathbf{1 2 n}(120 \mathrm{mg}, 3.27$ mmol) was reacted to give a $89: 11$ mixture of diastereomers $\boldsymbol{Z}-\mathbf{1 3 n}$ and $\boldsymbol{E}-\mathbf{1 3 n}$ (d.r. was determined from the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction) as a colorless oil in 88% yield (86 $\mathrm{mg}, 2.86 \mathrm{mmol}) . \mathbf{Z - 1 3 n}: \mathbf{R}_{f}=0.49\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2962, 2873, $1722,1698,1541,1507,1456,1435,1339,1270,1219,1199,1100,1032,998,949,893,867$, $747,696 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.88-7.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{H}^{6}\right.$ and H^{10}), $7.62\left(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 7.51-7.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{9}\right), 6.40(\mathrm{dd}, J=4.4,2.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{1}\right), 5.81\left(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.35\left(\mathrm{ddd}, J=6.8,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.48(\mathrm{~s}, 3 \mathrm{H}$, OMe), 2.20-2.13 (m, 1H, H ${ }^{11}$), $1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6$ (C), 163.8 (C), 136.5 (C), 133.4 (C), 133.1 (C), 128.2 (CH), $128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 126.9(\mathrm{CH}), 126.2(\mathrm{CH}), 126.0(\mathrm{CH}), 125.2(\mathrm{CH}), 111.8(\mathrm{CH}), 91.6$ $(\mathrm{CH}), 88.8(\mathrm{CH}), 51.2\left(\mathrm{CH}_{3}\right), 33.3(\mathrm{CH}), 17.1\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta$ $8.02\left(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.76\left(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 7.69-7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{10}\right)$, 7.62-7.60 (m, 1H, H ${ }^{7}$), 7.26-7.23 (m, 2H, H ${ }^{8}$ and $\left.\mathrm{H}^{9}\right), 6.49\left(\mathrm{dd}, J=4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.65$ (dd, $\left.J=2.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 5.00\left(\mathrm{ddd}, J=6.4,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.84$ (qqd, $J=6.8,6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{11}$), $0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 164.6$ (C), 164.3 (C), 137.5 (C), 133.9 (C), 133.7 (C), 128.5 (CH), $128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 125.8(\mathrm{CH}), 111.8(\mathrm{CH}), 91.3$
$(\mathrm{CH}), 88.8(\mathrm{CH}), 50.6\left(\mathrm{CH}_{3}\right), 33.5(\mathrm{CH}), 17.2\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$, 296.1412 found 296.1410; \boldsymbol{E}-13n: $\mathbf{R}_{f}=0.54\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2963, 2872, 1723, 1697, 1541, 1507, 1456, 1436, 1340, 1269, 1220, 1200, 1100, 1032, 997, 949, 893, 867, 746, $698 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.89-7.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4}-\mathrm{H}^{6}\right.$ and H^{10}), $7.54-7.47\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7}-\mathrm{H}^{9}\right), 6.18\left(\mathrm{dd}, J=4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 5.67(\mathrm{ddd}, J=4.5,2.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 5.57\left(\mathrm{dd}, J=2.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.59-2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.12(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 165.4$ (C), 164.9 (C), 136.7 (C), 133.4 (C), 133.1 (C), $128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 126.4(\mathrm{CH}), 126.3$ $(\mathrm{CH}), 125.5(\mathrm{CH}), 123.7(\mathrm{CH}), 112.2(\mathrm{CH}), 93.5(\mathrm{CH}), 87.5(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 30.6(\mathrm{CH}), 18.3$ $\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 7.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.63-7.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{H}^{10}\right.$ and $\left.\mathrm{H}^{7}\right), 7.40\left(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 7.27-7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right.$ and $\left.\mathrm{H}^{9}\right), 5.94(\mathrm{dd}, J=4.4,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{1}\right), 5.76\left(\mathrm{ddd}, J=4.4,2.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.52\left(\mathrm{dd}, J=2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.26(\mathrm{~s}, 3 \mathrm{H}$, OMe), 2.76 (qqd, $J=7.1,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{11}$), $1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$) $\delta 165.5$ (C), 165.1 (C), 137.8 (C), 133.9 (C), 133.8 (C), $128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 126.5(\mathrm{CH}), 126.4(\mathrm{CH}), 125.5(\mathrm{CH}), 124.0(\mathrm{CH}), 112.4$ $(\mathrm{CH}), 93.2(\mathrm{CH}), 87.3(\mathrm{CH}), 51.8\left(\mathrm{CH}_{3}\right), 31.0(\mathrm{CH}), 18.6\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}, 296.1412$ found 296.1420 .

General procedure for the conjugate addition of primary amine

Synthesis of $\boldsymbol{\beta}$-oxetanyl containing amino ester 17. Benzylamine ($0.21 \mathrm{~mL}, 1.92 \mathrm{mmol}, 10.0$ equiv) was added to the oxetane $\mathbf{Z - 1 3 m}(50 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (1.0 mL). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , and the cooled to ambient temperature. The solvent was removed by rotary evaporation. The crude residue was purified by flash-column chromatography (n-hexane/EtOAc, 10:1) to afford oxetane $17(48 \mathrm{mg}, 0.13 \mathrm{mmol})$ as a paleyellow oil in 68% yield. $\mathbf{R}_{f}=0.50\left(\mathrm{SiO}_{2}, 4: 1 \mathrm{v} / \mathrm{v}, n\right.$-hexane/EtOAc); FT-IR (neat) v 2953, 2928,

1736, 1454, 1436, 1200, 1176, 988, 745, $700 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 7.75(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.03-7.00(\mathrm{~m}, 4 \mathrm{H}$, Ph-H), 6.98-6.95 (m, 1H, Ph-H), $5.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.74\left(\mathrm{dd}, J=10.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.47(\underline{\mathrm{ABq}}$, $\left.J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 3.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.33\left(\mathrm{ABq}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 2.83(\underline{\mathrm{ABq}}, J=14.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 2.74\left(\mathrm{~A} \underline{B} q, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 1.82-1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 1.56(\mathrm{ddd}, J=13.3,10.3$, $\left.5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.08\left(\mathrm{ddd}, J=13.3,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 0.99\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta 171.5(\mathrm{C}), 140.8(\mathrm{C}), 139.2(\mathrm{C}), 128.5(\mathrm{CH}$ $\times 2), 128.4(\mathrm{CH} \times 2), 128.2(\mathrm{CH} \times 2), 127.8(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH} \times 2), 88.6(\mathrm{CH})$, $88.3(\mathrm{CH}), 62.8(\mathrm{C}), 51.0\left(\mathrm{CH}_{3}\right), 46.9\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 25.5(\mathrm{CH}), 23.5\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3}, 367.2147$ found 367.2141.

Synthesis of β-oxetanyl containing amino ester 18. Prepared according to the above procedure, compound $\mathbf{Z} \mathbf{- 1 3 m}$ ($50 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv) was reacted with propargylamine $(0.12 \mathrm{~mL}$, $1.92 \mathrm{mmol}, 10.0$ equiv) to give oxetane $\mathbf{1 8}(38 \mathrm{mg}, 0.12 \mathrm{mmol})$ as a pale-yellow oil in 63% yield. $\mathbf{R}_{f}=0.55\left(\mathrm{SiO}_{2}, 7: 1 v / v, n\right.$-hexane/EtOAc); FT-IR (neat) $v 3303,2955,2926,2232,2111,1735$, $1452,1206,1173,986,742,702 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, PhH), $7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 5.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 4.96(\mathrm{dd}, J=$ $\left.10.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.06\left(\underline{\mathrm{ABq}}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 2.09(\mathrm{ABq} \underline{\mathrm{B}}, J=17.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 2.79\left(\underline{\mathrm{ABq}}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 2.68\left(\mathrm{ABq}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 1.91-1.85(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}^{9}\right), 1.64\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, acetylene-H), $1.55\left(\mathrm{ddd}, J=13.6,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.38$ (ddd, $\left.J=13.6,7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 1.03\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$) $\delta 171.3(\mathrm{C}), 138.8(\mathrm{C}), 128.5(\mathrm{CH} \times 2), 127.8(\mathrm{CH}), 127.0(\mathrm{CH} \times$ 2), $89.3(\mathrm{CH}), 88.3(\mathrm{CH}), 83.3(\mathrm{C}), 71.4(\mathrm{CH}), 62.5(\mathrm{C}), 51.0\left(\mathrm{CH}_{3}\right), 41.8\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right)$, $25.6(\mathrm{CH})$, $23.6\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{3}\right)$; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}, 338.1732$ found 338.1726.

III. References

[1] Y.-J. Li, G.-M. Ho, P.-Z. Chen, Tetrahedron: Asymmetry 2009, 20, 1854-1863.
[2] I. D. Jurberg, Y. Odabachian, F. Gagosz, J. Am. Chem. Soc. 2010, 132, 3543-3552.
[3] S. Braverman, T. Pechenick-Azizi, H. E. Gottlieb, M. Sprecher, Synthesis 2011, 2011, 1741-1750.
[4] J. Barluenga, F. J. Fañanás, R. Sanz, C. Marcos, Chem. Eur. J. 2005, 11, 5397-5407.
[5] Y. K. Booth, W. Kitching, J. J. De Voss, ChemBioChem 2011, 12, 155-172.
[6] V. K. Aggarwal, C. G. Sheldon, G. J. Macdonald, W. P. Martin, J. Am. Chem. Soc. 2002, 124, 10300-10301.
[7] R. P. Hanzlik, A. R. Schaefer, J. B. Moon, C. M. Judson, J. Am. Chem. Soc. 1987, 109, 4926-4930.

IV. NMR spectra

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{K} \mathbf{1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{K} \mathbf{2}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{K} \mathbf{3}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{K 4}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{K 5}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E} 1$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 1$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E} 2$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 2$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E} \mathbf{3}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 3$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E} 4$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 4$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E 5}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E 5}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E 6}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 7$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E 8}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E 8}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{E 9}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{E} 9$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1} \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 11a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1} \mathbf{c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1} \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 1}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1 m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1} \mathbf{n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 1 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 a}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2} \mathbf{a}$ in CDCl_{3}

HSQC Spectrum of 12a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2} \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 d}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2 d}$ in CDCl_{3}

HCOC Snestrum of 17d in $\mathrm{CNCl} \mathbf{1}_{\text {, }}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 e}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 2 e}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 2 e}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 f}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 2 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSNC Snectrum of 1 2a in C- C .

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 2 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 2 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2} \mathbf{i}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2 i}$ in CDCl_{3}

HSQC Spectrum of $\mathbf{1 2 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2} \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 k}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 2 k}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 2 k}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 1}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2 1}$ in CDCl_{3}

HSQC Spectrum of $\mathbf{1 2 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2 m}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{1 2 m}$ in CDCl_{3}

HSOC Snertrum of 17 m in $\Gamma \mathrm{Cl}$ 。

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 n}$ in CDCl_{3}

${ }^{13}$ C NMR Spectrum of $\mathbf{1 2 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 2 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 2 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z - 1 3 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{Z}-\mathbf{1 3 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{Z}-\mathbf{1 3 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{Z} \mathbf{- 1 3 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{Z} \mathbf{- 1 3 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3} \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3} \mathbf{c}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{Z} \mathbf{- 1 3 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of \mathbf{Z}-13e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3} \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3 f}$ in CDCl_{3}

ถั่		\%\%	\% \%	8	\%			
\% \%	\ddagger	\# \#	¢		幺			

NOESY Spectrum of $\mathbf{Z - 1 3 f}$ in CDCl_{3}

HSQC Spectrum of $\mathbf{Z} \mathbf{- 1 3 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectra of $\boldsymbol{Z} \mathbf{- 1 3 g}$ and $\boldsymbol{E}-\mathbf{1 3 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{Z - 1 3 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{Z}-\mathbf{1 3} \mathbf{g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\boldsymbol{Z} \mathbf{- 1 3 h}$ and $\boldsymbol{E}-\mathbf{1 3 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{Z} \mathbf{- 1 3} \mathbf{h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{Z}-\mathbf{1 3} \mathbf{h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3 j}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{Z - 1 3} \mathbf{j}$ in CDCl_{3}

HSQC Spectrum of $\mathbf{Z - 1 3 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 j}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{E}-\mathbf{1 3 j}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{E}-\mathbf{1 3} \mathbf{j}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z - 1 3 k}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{Z} \mathbf{- 1 3} \mathbf{k}$ in CDCl_{3}

HSOC Snectrim of $7.12 k$ in $C \cap C 1$,

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3 1}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z}-\mathbf{1 3 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{Z}-\mathbf{1 3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{Z}-\mathbf{1 3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{Z - 1 3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 1}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 I}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{E}-\mathbf{1 3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{E}-\mathbf{1 3 I}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3} \mathbf{m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z} \mathbf{- 1 3} \mathbf{m}$ in CDCl_{3}

NOESY Spectrum of $\mathbf{Z - 1 3 m}$ in CDCl_{3}

HSQC Spectrum of $\mathbf{Z - 1 3 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3} \mathbf{m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3} \mathbf{m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{Z} \mathbf{- 1 3 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{Z - 1 3 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{Z - 1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{Z}-\mathbf{1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{Z}-\mathbf{1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{E}-\mathbf{1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\boldsymbol{E}-\mathbf{1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\boldsymbol{E}-\mathbf{1 3 n}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 7}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 7}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 7}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

NOESY Spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

HSQC Spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

V. X-Ray Structure and Crystallographic Data

Single crystal X-ray structure (ORTEP) of oxetane 25a. The crystals were grown from hexanes: EtOAc (4:1), using a slow evaporation method (ellipsoids are set at 50% probability). X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 1437743.

Table 1. Crystal data and structure refinement for $\mathbf{i 1 5 9 5 5}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
i15955
C15 H25 N O3
267.36
100.0(2) K
0.71073 Å

Monoclinic
P 21/n
$a=11.3879(3) \AA \quad \alpha=90^{\circ}$.
$b=10.6012(3) \AA \quad \beta=98.506(2)^{\circ}$.
$\mathrm{c}=12.1055(3) \AA \quad \gamma=90^{\circ}$.

4
$1.229 \mathrm{Mg} / \mathrm{m}^{3}$
$0.084 \mathrm{~mm}^{-1}$
584
$0.320 \times 0.180 \times 0.120 \mathrm{~mm}^{3}$
2.292 to 27.101°.
$-14<=\mathrm{h}<=14,-13<=\mathrm{k}<=13,-15<=1<=15$
55506
$3195[\mathrm{R}($ int $)=0.0498]$
100.0 \%

Semi-empirical from equivalents
0.9705 and 0.9044

Full-matrix least-squares on F^{2}
3195/0/176
1.035

Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{R} 1=0.0347, \mathrm{wR} 2=0.0777$
$\mathrm{R} 1=0.0495, \mathrm{wR} 2=0.0877$
0.0029(7)
0.309 and - 0.181 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for i15955. U(eq) is defined as one third of the trace of the orthogonalized $\mathbf{U i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$7935(1)$	$5323(1)$	$3980(1)$	$22(1)$
$\mathrm{O}(2)$	$5524(1)$	$6117(1)$	$6245(1)$	$23(1)$
$\mathrm{O}(3)$	$5433(1)$	$4495(1)$	$7417(1)$	$21(1)$
$\mathrm{N}(1)$	$8684(1)$	$5050(1)$	$6606(1)$	$16(1)$
$\mathrm{C}(1)$	$8351(1)$	$5730(1)$	$7566(1)$	$19(1)$
$\mathrm{C}(2)$	$9472(1)$	$5654(1)$	$8434(1)$	$22(1)$
$\mathrm{C}(3)$	$10085(1)$	$4429(1)$	$8136(1)$	$23(1)$
$\mathrm{C}(4)$	$9293(1)$	$3919(1)$	$7103(1)$	$20(1)$
$\mathrm{C}(5)$	$7736(1)$	$4829(1)$	$5673(1)$	$15(1)$
$\mathrm{C}(6)$	$8241(1)$	$4213(1)$	$4673(1)$	$16(1)$
$\mathrm{C}(7)$	$7477(1)$	$5988(1)$	$4879(1)$	$16(1)$
$\mathrm{C}(8)$	$8130(1)$	$7179(1)$	$5185(1)$	$20(1)$
$\mathrm{C}(9)$	$7616(1)$	$8284(1)$	$5218(1)$	$29(1)$
$\mathrm{C}(10)$	$6613(1)$	$4207(1)$	$6001(1)$	$18(1)$
$\mathrm{C}(11)$	$5821(1)$	$5068(1)$	$6550(1)$	$17(1)$
$\mathrm{C}(12)$	$4619(1)$	$5226(1)$	$7971(1)$	$24(1)$
$\mathrm{C}(13)$	$7720(1)$	$3017(1)$	$4117(1)$	$18(1)$
$\mathrm{C}(14)$	$8058(1)$	$1873(1)$	$4861(1)$	$21(1)$
$\mathrm{C}(15)$	$8156(1)$	$2841(1)$	$2994(1)$	$22(1)$

