Supporting information for;

S(VI) Lewis Acids: Fluorosulfoxonium Cations

Fu An Tsao^a, Alexander E. Waked^a, Levy Cao^a, Jordan Hofmann^a, Lei Liu^b, Stefan Grimme^b and Douglas W. Stephan^a*

^aDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada, Email: <u>dstephan@chem.utoronto.ca</u>

^bMulliken Center for Theoretical Chemistry, Institut fuer Physikalische und Theoretische Chemie,Universitaet Bonn, Beringstrasse 4, D-53115 Bonn, Germany

^TThese authors have contributed equally.

Table of Contents

1. Synthesis of Sulfur Compounds	3
1.1 General Experimental Procedure	3
1.2 Synthesis of $[Ph(p-tol)SOF][B(C_6F_5)_4](1)$	3
1.3 Preparation of Crystals of $C_{12}H_8SOF_2$ (3)	4
1.4 Synthesis of $[Ph_2SOF][B(C_6F_5)_4]$ (4)	5
1.5 Synthesis of [Ph ₂ SOF][BF ₄] (5)	7
1.6 Synthesis of $[C_{12}H_8SOF][B(C_6F_5)_4]$ (6)	9
1.7 Synthesis of $[(C_{12}H_8)SOF][BF_4]$ (7)	11
2. Gutmann-Beckett tests	13
2.1 Reaction of [Ph ₂ SOF][B(C ₆ F ₅) ₄] (4) with Et ₃ PO	13
2.2 Reaction of $[C_{12}H_8SOF][B(C_6F_5)_4]$ (6) with Et_3PO	13
3. Lewis Acid Catalysis with [Ph ₂ SOF][B(C ₆ F ₅) ₄] (4)	15
3.1 Hydroarylation of Diphenylamine with 1,1-diphenylethylene	15
3.2 Hydroarylation of Pyrrole with 1,1-diphenylethylene	16
3.3 Hydrothiolation of 1,1-diphenylethylene with Thiophenol	17

4. X-ray Crystallography	
5. Computational Details	20
6. References	24

1. Synthesis of Sulfur Compounds

1.1 General Experimental Procedure

All manipulations were performed under an atmosphere of dry, oxygen-free N₂ by means of standard Schlenk or glovebox techniques (MBraun LABmaster SP dry box and Vacuum Atmospheres glovebox both equipped with a -35 °C freezer). Toluene, pentane, and dichloromethane (DCM) were collected from a Grubbs-type column system manufactured by Innovative Technology. These solvents, along with cyclohexane, were dried over 4 Å molecular sieves. Molecular sieves, type 4 Å (pellets, 3.2 mm diameter) purchased from Sigma Aldrich were activated prior to usage by iteratively heating with 1050 W Haier microwave for 5 minutes and cooling under vacuum. The process was repeated until no further moisture was released upon heating. Benzene- d_6 and dichloromethane- d_2 , purchased from Cambridge Isotope Laboratories, were degassed and stored over 4 Å molecular sieves in the glovebox for at least 8 h prior to use. Chloroform-d, purchased from Cambridge Isotope Laboratories, was degassed and dried over calcium hydride. Unless otherwise mentioned, reagents were purchased from Sigma Aldrich or TCI America and used without further purification. Dibenzothiophene sulfoxide^[1] and $[SiEt_3 \bullet tol][B(C_6F_5)_4]^{[2]}$ were prepared using literature methods. Combustion analyses were performed in-house employing a Flash 2000 from Thermo Instruments CHN Analyzer. Spectra were recorded on a Bruker Avance III 400 MHz, an Agilent DD2 500 MHz, and an Agilent DD2 600 MHz spectrometer and spectra were referenced to residual solvents of CD_2Cl_2 (¹H = 5.32 ppm; ${}^{13}C = 53.84$ ppm), CDCl₃ (${}^{1}H = 7.26$ ppm), or C₆D₆ (${}^{1}H = 7.16$ ppm), or externally (${}^{11}B$: (Et₂O)BF₃ (δ 0.00), ¹⁹F: CFCl₃ (δ 0.00), ³¹P: 85% H₃PO₄ (δ 0.00)). Chemical shifts (δ) are reported in ppm and the absolute values of the coupling constants (J) are in Hz. In some instances, signal and/or coupling assignment was derived from 2D NMR experiments.

1.2 Synthesis of [Ph(p-tol)SOF][B(C₆F₅)₄] (1)

Pentafluorosulfanylbenzene (143 mg, 0.7 mmol) in toluene (10 mL) was cooled to -35 °C, then [SiEt₃•tol][B(C₆F₅)₄] (619.3 mg, 0.7 mmol) in toluene (10 mL) was added to the former dropwise. The solution turned red-orange immediately, and was warmed up to room temperature slowly over 3 hours before all volatiles were removed *in vacuo*, leaving a brown residue, which was first washed with pentane (2 x 5 mL) then re-dissolved in DCM and layered with cyclohexane. Letting the solution stand at room temperature for over 24 hours yielded a small crop of colorless crystals, which was confirmed to be the title compound by ¹⁹F NMR spectroscopy and single crystal X-ray diffraction analysis. However, as this is only a minor product in a complicated reaction mixture, this species was not fully characterized by ¹H and ¹³C NMR. ¹⁹F{¹H} NMR (376 MHz, C₆D₆, 298 K): δ 33.4 (s, 1F, S-F), -132.0 (m, 8F, *o*-C₆F₅), -162.5 (t, 4F, ³J_{F-F} = 26.0 Hz, *p*-C₆F₅), -166.5 (m, 8F, *m*-C₆F₅).

Figure S1. ¹H NMR Spectrum of 1

Figure S2. ¹⁹F{¹H} NMR Spectrum of 1

1.3 Preparation of Crystals of C₁₂H₈SOF₂ (3)

At room temperature, XeF_2 (15 mg, 0.089 mmol) was added as a solid to a solution of dibenzothiophene sulfoxide (17 mg, 0.085 mmol) and $[NEt_4][Cl]$ (3 mg, 0.02 mmol) in DCM (0.5 mL) in a 1 dram glass scintillation vial. The vial was placed in a 20 mL glass scintillation vial containing pentane (5 mL), which was then sealed to allow for slow pentane vapor diffusion into the DCM solution. Crystals of compound **3** were obtained after 24 hours and were suitable for X-ray crystallography.

1.4 Synthesis of [Ph₂SOF][B(C₆F₅)₄] (4)

At room temperature, XeF₂ (168.3 mg, 0.9942 mmol) in DCM (5 mL) was added dropwise to a solution of diphenylsulfoxide (196.1 mg, 0.9695 mmol) in DCM (5 mL) in a Teflon vial charged with a stir bar. The solution remained clear and colourless and was allowed to stir for 24 hours at room temperature. All volatiles were then removed in vacuo, leaving behind a crystalline, colourless solid. The solid was then re-dissolved in toluene (5 mL) and cooled to -35 °C. Freshly prepared [SiEt₃•tol][B(C₆F₅)₄] (840.0 mg, 0.95 mmol) in toluene (5 mL) was added to the above solution dropwise, leading to an immediate change of color of the solution to dark red/brown. The solution was allowed to warm to room temperature over 4 hours and then transferred to a glass scintillation vial. When the stirring was stopped the solution separated into two layers (colourless top layer and red bottom layer), the top layer was decanted using a pipette and the bottom layer was triturated 3 times using pentane to give 4 as a white powder (684.4 mg, 80%) yield). Single crystals suitable for X-ray diffraction analysis were grown from a solution of 4 in DCM layered with cyclohexane. ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ 8.24 (tm, ³J_{H-H} = 7 Hz, 2H, *p*-Ph), 8.16 (d, ${}^{3}J_{H-H} = 8$ Hz, 4H, *o*-Ph), 7.98 (tm, ${}^{3}J_{H-H} = 8$ Hz, 4H, *m*-Ph). ${}^{13}C{^{1}H}$ NMR (125 MHz, CD₂Cl₂, 298 K): δ ([B(C₆F₅)₄] peaks not included) 142.4 (s, *p*-Ph), 132.8 (s, *m*-Ph), 129.9 (s, o-Ph), 126.1 (d, ${}^{3}J_{C-F} = 11 \text{ Hz}$, *i*-Ph). ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CD₂Cl₂, 298 K): δ 32.2 (s, 1F, S-F), -133.1 (m, 8F, $o-C_6F_5$), -163.6 (t, 4F, ${}^{3}J_{F-F} = 19.8$ Hz, $p-C_6F_5$), -167.5 (m, 8F, m- $C_{6}F_{5}$). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 298 K): δ -16.7 (s). Anal. Calc. for $C_{36}H_{10}BF_{21}OS$: C 48.03 %, H 1.12 %. Found: C 48.72%, H 1.47%.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S3. ¹H NMR Spectrum of 4

1.5 Synthesis of [Ph₂SOF][BF₄] (5)

At room temperature, XeF₂ (46 mg, 0.27 mmol) in DCM (2 mL) was added dropwise to a solution of diphenylsulfoxide (55 mg, 0.27 mmol) in DCM (2 mL) in a Teflon vial charged with a stir bar. The solution remained clear and colourless and was allowed to stir for 24 hours at room temperature. All volatiles were then removed *in vacuo*, leaving behind a crystalline, colourless solid. The solid was then re-dissolved in toluene (2 mL) and cooled to -35 °C. BF₃·OEt₂ (33 µL, 0.27 mmol) was added and the solution was stirred for two hours at room temperature. The pale yellow solution was transferred to a glass scintillation vial and the solvent was removed *in vacuo*. The solid was dissolved in DCM (2 mL) and crystals were obtained by slow pentane vapor diffusion in the DCM solution. The crystals were washed with pentane (3 x 2 mL) and dried *in vacuo* to give **5** as a colourless powder (65 mg, 79% yield). ¹H NMR (400 MHz, CD₂Cl₂, 300 K): δ 8.40 (d, ³*J*_{H-H} = 8 Hz, 4H, *o*-Ph), 8.19 (tm, ³*J*_{H-H} = 8 Hz, 2H, *p*-Ph), 7.98 (tm, ³*J*_{H-H} = 7.7 Hz, 4H, *m*-Ph). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ 141.9 (s, *p*-Ph), 132.7 (s, *m*-Ph), 130.6 (s, *o*-Ph), 127.0 (d, ³*J*_{C-F} = 11 Hz, *i*-Ph). ¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂, 300 K): δ 30.9 (s, 1F), -151.7 (s, 4F, B*F*₄). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 300 K): δ

Figure S7. ¹H NMR Spectrum of 5

1.6 Synthesis of [C₁₂H₈SOF][B(C₆F₅)₄] (6)

At room temperature, XeF_2 (85 mg, 0.50 mmol) was slowly added as a solid to a solution of dibenzothiophene sulfoxide (98 mg, 0.49 mmol) and [NEt₄][Cl] (10 mg, 0.060 mmol) in DCM (5 mL) while stirring. The solution was stirred for 3 hours and the solvent was removed in vacuo. Toluene (5 mL) was added and the suspension was cooled to -35 °C. A -35 °C solution of freshly prepared [SiEt₃•tol][B(C₆F₅)₄] (354 mg, 0.446 mmol) in toluene (5 mL) was slowly added and the resulting yellow solution was stirred for 10 minutes. The solvent was removed in vacuo and the crude mixture was recrystallized by layering a concentrated dichloromethane solution of the solid with pentane. The crystals were washed with pentane (3 x 3 mL) and all volatiles were removed in vacuo to obtain the product as a yellow powder of a 1:1 mixture of compound 6 and dibenzothiophene sulfone (258 mg, 65% yield). The crystals obtained from the recrystallization were suitable for X-ray crystallography. ¹H NMR (400 MHz, CD₂Cl₂, 300 K): δ (Dibenzothiophene sulfone peaks not included) 8.35 (d, ${}^{3}J_{H-H} = 8$ Hz, 2H, H₄), 8.26 (t, ${}^{3}J_{H-H} = 8$ Hz, 2H, H₂), 8.14 (d, ${}^{3}J_{H-H} = 8$ Hz, 2H, H₁), 7.96 (t, ${}^{3}J_{H-H} = 8$ Hz, 2H, H₃). ${}^{13}C{^{1}H}$ NMR (125) MHz, CD₂Cl₂, 298 K): δ ([B(C₆F₅)₄] and dibenzothiophene sulfone peaks not included) 144.7 (s, C₂), 135.8 (d, ${}^{4}J_{C-F}$ = Hz, C₅), 134.6 (s, C₃), 128.9 (s, C₄), 126.1 (s, C₁), 122.3 (d, ${}^{3}J_{C-F}$ = 3 Hz, C₆). ¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂, 293 K): δ 24.9 (s, 1F, S-F), -133.1 (m, 8F, o-C₆F₅), -163.5 (t, 4F, ${}^{3}J_{F-F} = 20.3 \text{ Hz}$, $p-C_{6}F_{5}$), -167.4 (m, 8F, $m-C_{6}F_{5}$). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 293 K): δ -16.7 (s). Anal. Calc. for (C₃₆H₈BF₂₁OS)•(C₁₂H₈O₂S): C 51.73 %, H 1.45 %. Found: C 50.18 %, H 1.38 %.

Figure S11. ¹H NMR Spectrum of 6

1.7 Synthesis of [(C₁₂H₈)SOF][BF₄] (7)

Dibenzothiophene sulfoxide (60 mg, 0.30 mmol) and [NEt₄][Cl] (7 mg, 0.04 mmol) were dissolved in 1 mL DCM. XeF₂ (54 mg, 0.32 mmol) was slowly added as a solid to the solution while stirring. After stirring for 3 hours, the solution was cooled to -35 °C and BF₃·OEt₂ (37 μ L, 0.30 mmol) was added to form a yellow precipitate. The slurry was stirred for 10 minutes. The solid was filtered, washed with DCM (3 x 1 mL), and dried *in vacuo* to give 7 as a yellow powder (76 mg, 83% yield). A saturated DCM solution of 7 was placed in a -35 °C freezer for 24 hours to obtain crystals suitable for X-ray crystallography. ¹H NMR (400 MHz, CD₂Cl₂, 300 K): δ 8.39 (d, ³*J*_{H-H} = 8 Hz, 2H), 8.30 (d, ³*J*_{H-H} = 8 Hz, 2H), 8.26 (t, ³*J*_{H-H} = 8 Hz, 2H), 7.93 (tm, ³*J*_{H-H} = 8 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ 144.7 (s), 134.5 (s), 129.1 (s), 126.7 (s), (2 of the peaks could not be located in the ¹³C spectrum due to the decreased solubility of 7). ¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂, 298 K): δ 24.6 (s, 1F, S-F), -152.6 (s, 1F, BF₄). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 298 K): δ -1.1 (s). Anal. Calc. for C₁₂H₈BF₅OS: C 47.09 %, H 2.63 %. Found: C 46.86 %, H 2.55 %.

Figure S15. ¹H NMR Spectrum of 7

Figure S16. ¹³C{¹H} NMR Spectrum of 7

Figure S18. ${}^{11}B{}^{1H}$ NMR Spectrum of 7

2. Gutmann-Beckett tests

2.1 Reaction of [Ph₂SOF][B(C₆F₅)₄] (4) with Et₃PO

Compound 4 (42.7 mg, 0.047 mmol) and triethylphosphine oxide (2.1 mg, 0.015 mmol) were dissolved in CD_2Cl_2 (1 mL). The reaction mixture was investigated by ³¹P NMR spectroscopy after one hour at room temperature. ³¹P{¹H} NMR (162 MHz, CD_2Cl_2 , 298 K): δ 84.5 (s).

Figure S19. ³¹P $\{^{1}H\}$ NMR spectrum of the reaction mixture in CD₂Cl₂

2.2 Reaction of [C₁₂H₈SOF][B(C₆F₅)₄] (6) with Et₃PO

Compound **6** (12 mg, 0.013 mmol) and triethylphosphine oxide (2 mg, 0.015 mmol) were dissolved in CD₂Cl₂ (1 mL). The formation of dibenzothiophene sulfoxide and [Et₃PF][B(C₆F₅)₄]^[3] were observed in the ¹H and ³¹P NMR spectra after one hour at room temperature. ¹H NMR (400 MHz, CD₂Cl₂, 298 K δ 7.83 (d, ³J_{H-H} = 8 Hz, 2H), 7.78 (d, ³J_{H-H} = 8 Hz, 2H), 7.65 (td, ³J_{H-H} = 8 Hz, ⁴J_{H-H} = 1 Hz, 2H), 7.54 (td, ³J_{H-H} = 8 Hz, ⁴J_{H-H} = 1 Hz, 2H). ³¹P{¹H} NMR (162 MHz, CH₂Cl₂, 298 K): δ 147.8 (d, ¹J_{P-F} = 973 Hz).

Figure 20. ¹H NMR spectrum of the reaction mixture in CD₂Cl₂

Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction mixture in CD_2Cl_2

3. Lewis Acid Catalysis with [Ph₂SOF][B(C₆F₅)₄] (4)

3.1 Hydroarylation of Diphenylamine with 1,1-diphenylethylene

To a solution of catalyst 4 (4.4 mg, 0.0049 mmol, 4 mol %) in CDCl_3 (1 mL), diphenylamine (19.0 mg, 0.112 mmol) and 1,1-diphenylethylene (20.4 mg, 0.113 mmol) were added. The solution was transferred to an NMR tube and the reaction was monitored by ¹H NMR. Complete conversion to the desired product was observed after 24 hours. The ¹H resonances match those previously reported.^[4]

3.2 Hydroarylation of Pyrrole with 1,1-diphenylethylene

To a solution of catalyst 4 (7.1 mg, 0.0079 mmol, 5 mol %) in $CDCl_3$ (1 mL), pyrrole (11.5 mg, 0.171 mmol) and 1,1-diphenylethylene (56.5 mg, 0.314 mmol) were added. The solution was transferred to an NMR tube and the reaction was monitored by ¹H NMR. 91 % conversion to the desired product was observed after 24 hours. The ¹H resonances match those previously reported.^[4]

Figure S23. ¹H NMR spectra of the reaction mixture in CDCl₃ after a) 1h; b) 12h; c) 24h.

3.3 Hydrothiolation of 1,1-diphenylethylene with Thiophenol

To a solution of catalyst 4 (6 mg, 0.0067 mmol, 5 mol %) in $CDCl_3$ (1 mL), thiophenol (14 mg, 0.13 mmol) and 1,1-diphenylethylene (23 mg, 0.13 mmol) were added. The solution was transferred to an NMR tube and the reaction was monitored by ¹H NMR. After 12 hours, 85 % conversion to the desired product was observed, with no further significant increase in conversion after 24 hours. The ¹H resonances match those previously reported.^[4]

Figure S24. ¹H NMR spectra of the reaction mixture in CDCl₃ after a) 1h; b) 12h.

4. X-ray Crystallography

X-ray Data Collection and Reduction. Crystals were coated in Paratone-N oil in an N₂ filled glovebox, mounted on a MiTegen Micromount, and placed under a N₂ stream, thus maintaining a dry, O₂-free environment for each crystal. The data were collected on a Bruker Apex II diffractometer using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å). The data were collected at 150(2) K for all crystals. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the empirical multi-scan method (SADABS).

Structure Solution and Refinement. The structures were solved by direct methods using XS and subjected to full-matrix least-squares refinement on F^2 using XL as implemented in the SHELXTL suite of programs. All non-hydrogen atoms were refined with anisotropically thermal parameters. Carbon bound hydrogen atoms were placed in geometrically calculated positions and refined using an appropriate riding model and coupled isotropic thermal parameters.

Since compound 1 is chiral and there is no chemical reason to believe that it was synthesized with enantioselectivity, the molecular structure was refined as an inversion twin. The possibility of the crystal belonging to a centrosymmetric space group was explored by attempting to solve it in the next most suitable space group (Pnma), but no reasonable solution could be found this way. Compound 1 was thus solved in $Pna2_1$.

In the cases of compounds **4**, **6** and **7**, the possibility of substitutional disorder between the fluorine and the oxygen atoms was considered. Attempts to model potential disorder by splitting the site occupancies of the fluorine and oxygen atoms and allowing the structure to refine freely resulted in non-positive definite thermal parameters for one of the sulfur-fluorine sets in all cases. Even with restraints, the bond lengths and angles within the molecules became inconsistent with each other with large uncertainties. Based on these findings, disorder between the sulfur and fluorine atoms was dismissed.

	1	3	4	6	7
empirical formula	C ₃₇ H ₁₂ BF ₂₁ OS	C ₁₂ H ₈ F ₂ OS	C ₃₆ H ₁₀ BF ₂₁ OS	$C_{24}H_8B_{0.50}F_{11}OS$	C ₁₂ H ₈ BF ₅ OS
formula weight	914.34	238.24	900.31	558.77	306.05
crystal system	Orthorhombic	Triclinic	Orthorhombic	Monoclinic	Monoclinic
space group	$Pna2_1$	$P^{\overline{1}}$	Pbca	C2/c	$P2_1/n$
a (Å)	14.635(2)	6.924(5)	15.0990(3)	25.433(3)	6.9113(7)
b (Å)	9.785(1)	8.665(6)	18.8792(5)	8.7969(10)	10.7857(9)
c (Å)	23.547(3)	8.772(7)	23.1430(7)	18.856(2)	16.5078(17)
α (deg.)		108.778(18)			
β (deg.)		94.634(17)		97.150(5)	99.049(7)
γ (deg.)		90.550(16)			
vol (Å ³)	3371.9(7)	496.3(6)	6597.1(3)	4186.0(8)	1215.2(2)
Ž	4	2	8	8	4
ρ (calcd) (Mg·cm ³)	1.801	1.594	1.813	1.773	1.673
$\mu \text{ (mm}^{-1}\text{)}$	0.247	0.327	0.251	0.270	0.320
F(000)	1808	244	3552	2220	616
$T(\mathbf{K})$	150(2)	150(2)	150(2)	150(2)	150(2)
reflections collected	13441	15557	33498	23038	23694
unique reflections	6310	1631	7575	4812	2799
R _{int}	0.0619	0.1685	0.0501	0.0762	0.1017
R1 indices $[I \ge 2\sigma(I)]$	0.0463	0.1242	0.0416	0.0593	0.0502
wR2 indices (all data)	0.1153	0.3219	0.1002	0.1422	0.1097
CCDC No.	1500270	1500269	1500271	1500272	1500273

 Table S1. Summary of crystallographic data for compounds 1, 3, 4, 6 and 7

5. Computational Details

All density functional theory (DFT) calculations were performed by employing Turbomole $7.0^{[5]}$ ^{6]} software. The structures were optimized at the TPSS level of theory,^[7] with the BJ-damped variant of the DFT-D3 dispersion correction^[8, 9] in conjunction with the def2-TZVP basis set.^{[10,} ^{11]} Harmonic vibrational frequency calculations were conducted at the same level to characterize the nature of the stationary points along the reaction coordinates: no imaginary frequencies were found for the local minima. The thermostatistical contributions to the Gibbs energy in the gas phase were obtained from a modified rigid-rotor-harmonic oscillator approximation^[12] at temperatures of 298.15 K and 1 atm pressure. The density-fitting RI-J^[13, 14] approach for the Coulomb integrals was used to accelerate the geometry optimization and frequency calculations. Accurate electronic energies were obtained from single point calculations at the PW6B95-D3 level^[15] upon the optimized structures, with the same basis set of def2-TZVP. The COSMO-RS (Conductor-like Screening Model for Real Solvents) solvation model^[16, 17] was used to compute the solvation Gibbs energies by employing the gas-phase optimized structures, with toluene as the solvent. These calculations were done with the COSMOtherm program.^[18] The final Gibbs energies in solution were calculated from the gas-phase single point electronic energies plus the gas-phase thermostatistical contributions, and the COSMO-RS solvation Gibbs energies. The fluoride ion affinities (FIA) were calculated via the following equation:

 $FIA = \Delta G(LA-F^{-}) - \Delta G(LA) - \Delta G(F^{-})$

where LA stands for Lewis acid.

	FIAg	FIA _{sol}
4	-132.5	-140.0
6	-144.5	-151.8

Table S2. Calculated fluoride ion affinities (FIAs) of the Lewis acids at the PW6B95-D3/def2-TZVP//TPSS-D3/def2-TZVP level of theory. All values are given in kcal mol⁻¹.

FIAg stands for FIA in gas phase and FIAsol stands for FIA in solution (toluene).

Figure S25. Calculated LUMOs of cations 4 (left) and 6 (right) at a contour surface value of 0.03 a.u. (computational level: TPSS-D3/def2-TZVP).

Cartesian coordinates

The Cartesian coordinates of the optimized structures at the TPSS-D3 level (in Å).

Cation 4

С	0.5069244	-2.2537093	0.7770704
С	0.4732845	-1.4527419	-0.3737484
С	-0.3506421	-1.7304647	-1.4741738
С	-1.1681939	-2.8531803	-1.4040619
С	-1.1555740	-3.6639433	-0.2650475
С	-0.3221095	-3.3696573	0.8170542
S	1.5059987	-0.0530202	-0.3517079
0	2.7415707	-0.2212069	0.3540786
С	0.6519740	1.3971859	0.0859675
С	-0.7331797	1.4882420	-0.1094639
С	-1.3623560	2.6774585	0.2396094
С	-0.6182124	3.7363813	0.7685620
С	0.7615410	3.6202458	0.9612651
С	1.4184432	2.4431890	0.6218851
F	1.7688493	0.1509445	-1.9015295
Н	-0.3352511	-1.1057373	-2.3599885
Η	-1.8071322	-3.1012353	-2.2450262
Η	-1.7958021	-4.5395596	-0.2250987
Η	2.4864454	2.3272594	0.7706886
Н	1.1719814	-2.0166462	1.6006779
Н	-1.3008090	0.6528098	-0.5041927
Η	-2.4343848	2.7754457	0.1058319
Η	-1.1208568	4.6590735	1.0409739
Η	1.3275272	4.4456571	1.3798201
Η	-0.3100362	-4.0127902	1.6905542

Cation 6

С	-0.0031876	0.0583426	-3.5157097
С	-1.1013370	-0.0289995	-2.6580588
С	-0.8259855	-0.0536847	-1.2955511
С	0.4680530	0.0158189	-0.7381973
С	1.5410352	0.1025173	-1.6187049
С	1.2943741	0.1193618	-2.9980036
С	0.4680530	0.0158189	0.7381973
С	-0.8259855	-0.0536847	1.2955511
S	-1.9776660	-0.1486258	0.0000000
С	-1.1013370	-0.0289995	2.6580588
С	-0.0031876	0.0583426	3.5157097
С	1.2943741	0.1193618	2.9980036
С	1.5410352	0.1025173	1.6187049
0	-3.1528862	0.6693594	0.0000000
F	-2.4433323	-1.6632973	0.0000000
Η	-2.1171780	-0.0732718	-3.0361014
Η	-0.1620956	0.0808091	-4.5882788
Η	2.1344973	0.1882959	-3.6817622
Η	2.5587665	0.1620924	-1.2473811
Η	2.5587665	0.1620924	1.2473811
Η	2.1344973	0.1882959	3.6817622
Η	-0.1620956	0.0808091	4.5882788
Η	-2.1171780	-0.0732718	3.0361014

[C₁₂H₈SOF][BF₄] (7)

S	-0.561212	0.997728	0.652068
0	-0.322672	1.664304	1.892938
F	-1.590720	1.751142	-0.272511
F	0.409248	3.137039	-0.297171
F	0.650920	4.571426	1.513621
F	2.497875	3.502894	0.612896
F	1.440227	5.184401	-0.573775
В	1.267096	4.161312	0.342358
С	0.717892	0.304833	-0.353911
С	1.913523	0.895417	-0.743056
Η	2.159542	1.913577	-0.454666
С	2.787822	0.104953	-1.496626
Η	3.730614	0.533827	-1.819533
С	2.461950	-1.208999	-1.832137
Η	3.152143	-1.799351	-2.427425
С	1.269166	-1.792296	-1.391379
Н	1.045455	-2.828142	-1.626195
С	0.381699	-1.041373	-0.627912
С	-0.858697	-1.504186	0.014630
С	-1.455237	-2.764089	-0.018486

Η	-1.024385	-3.567204	-0.607658
С	-2.617244	-2.984524	0.726869
Η	-3.082519	-3.965153	0.703848
С	-3.188312	-1.973797	1.506259
Η	-4.084981	-2.174419	2.082999
С	-2.607894	-0.703579	1.549611
Η	-3.030865	0.096011	2.148706
С	-1.460435	-0.511753	0.795637

6. References

- [1] K. Bahrami, Tetrahedron Lett., 2006, 47, 2009-2012.
- [2] J. B. Lambert, S. Zhang and S. M. Ciro, Organometallics, 1994, 13, 2430-2443.
- [3] M. H. Holthausen, M. Mehta and D. W. Stephan, *Angewandte Chemie*, 2014, **126**, 6656-6659.
- [4] M. Perez, T. Mahdi, L. J. Hounjet and D. W. Stephan, *Chemical Communications*, 2015, 51, 11301-11304.
- [5] R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chemical Physics Letters*, 1989, **162**, 165-169.
- [6] R. Ahlrichs, M. K. Armbruster, R. A. Bachorz, M. Bär, H.-P. Baron, R. Bauernschmitt, F. A. Bischoff, S. Böcker, N. Crawford, P. Deglmann, F. D. Sala, M. Diedenhofen, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, A. Glöß, F. Haase, M. Häser, C. Hättig, A. Hellweg, S. Höfener, H. Horn, C. Huber, U. Huniar, M. Kattannek, W. Klopper, A. Köhn, C. Kölmel, M. Kollwitz, K. May, P. Nava, C. Ochsenfeld, H. Öhm, M. Pabst, H. Patzelt, D. Rappoport, O. Rubner, A. Schäfer, U. Schneider, M. Sierka, D. P. Tew, O. Treutler, B. Unterreiner, M. v. Arnim, F. Weigend, P. Weis, H. Weiss and N. Winter, *TURBOMOLE V7.0*, TURBOMOLE GmbH, 2015.
- [7] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Physical Review Letters*, 2003, **91**, 146401.
- [8] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of Chemical Physics*, 2010, 132, 154104.
- [9] S. Grimme, S. Ehrlich and L. Goerigk, *Journal of Computational Chemistry*, 2011, 32, 1456-1465.
- [10] F. Weigend, *Physical Chemistry Chemical Physics*, 2006, **8**, 1057-1065.
- [11] F. Weigend and R. Ahlrichs, Physical Chemistry Chemical Physics, 2005, 7, 3297-3305.
- [12] S. Grimme, Chemistry A European Journal, 2012, 18, 9955-9964.
- [13] K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chemical Physics Letters*, 1995, 240, 283-290.
- [14] K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theoretical Chemistry Accounts*, 1997, 97, 119-124.
- [15] Y. Zhao and D. G. Truhlar, The Journal of Physical Chemistry A, 2005, 109, 5656-5667.
- [16] A. Klamt, The Journal of Physical Chemistry, 1995, 99, 2224-2235.
- [17] A. Klamt and G. Schuurmann, *Journal of the Chemical Society, Perkin Transactions 2*, 1993, 799-805.
- [18] F. Eckert and A. Klamt, COSMOtherm, COSMOlogic GmbH & Co. KG, Leverkusen,

Germany, 2010