Electronic Supplementary Information (ESI)

Reversible Water Activation Driven by Contraction and Expansion of

the 12-vertex-*closo*-12-vertex-*nido* Biscarborane Cluster.

Yuen Onn Wong, Mark D. Smith and Dmitry V. Peryshkov*

Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, United States

Experimental.

NMR spectra were recorded using Varian spectrometers at 400 (¹H), 100 (¹³C), 162 (³¹P), 128 (¹¹B) MHz, reported in δ (parts per million) and referenced to the residual ¹H/¹³C signals of the deuterated solvent or an external 85% phosphoric acid (³¹P (δ): 0.0 ppm) and BF₃(Et₂O) (¹¹B(δ): 0.0 ppm) standards. Midwest Microlab, Indianapolis, Indiana provided the elemental analysis results.

1,1'-bis(*o*-carborane) $(C_2B_{10}H_{11})(C_2B_{10}H_{11})$ (biscarborane) was prepared according to the reported procedure¹. *Closo*- $(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)$ -*nido*- $(C_2B_{10}H_9)(PH\{N(i-Pr)_2\}_2)$ cluster (1) was prepared according to the reported procedure². $P\{N(i-Pr)\}_2Cl$, MeLi solution in hexanes, and *o*-carborane were used as received. ACS-grade acetonitrile was used as received, containing ca. 0.5 % water according to the manufacturer's analysis.

- 1. S. Ren, Z. Xie, Organometallics 2008, 27, 5167–5168.
- 2. Y. O. Wong, M. D. Smith, D. V. Peryshkov, Chem.-Eur. J. 2016, 22, 6764-6767.

Synthesis of *closo*-(C₂B₁₀H₁₀)(P{N(*i*-Pr)₂})-*nido*-(CB₉H₁₀)(CB(H)(OH)(PH{N(*i*-Pr)₂}) (2).

A portion of solution of $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(C_2B_{10}H_9)(PH\{N(i-Pr)_2\}_2)$ (1) (25 mg, 0.033 mmol) was added to 1 mL of acetonitrile containing ca. 0.5 % wt. of water. The mixture was stirred at room temperature for 2 h. The volatiles were removed under vacuum at room temperature producing a white crystalline solid 2 (25 mg, 0.033 mmol, 97% yield). The compound 2 was found to convert back to 1 upon heating at 50 °C in CDCl₃ solution in the presence of MgSO₄.

¹**H NMR** (CDCl₃): δ 5.93 (d, 1H, ¹*J*_{PH} = 527 Hz, P*H*{N(*i*-Pr)₂}₂), 5.62 (d, 1H, ³*J*_{HH} = 3 Hz, (C)(B)(H)(O*H*)), 4.67 (m, 2H, P{N(C*H*(CH₃)₂)₂}₂), 4.44 (m, 2H, P{N(C*H*(CH₃)₂)₂}₂), 3.97 (m, 2H, P{N(C*H*(CH₃)₂)₂}₂), 3.80 (m, 2H, P{N(C*H*(CH₃)₂)₂}₂), 4.00–1.00 (br m, 19H, B*H*), 1.42 to 1.30 (overlapping m, 48H, P(N{CH(C*H*₃)₂)₂}₂), -2.26 (br, 1H, B(*H*)B). ³¹P{¹H} **NMR** (CDCl₃): δ 86.2 (br, 1P, (C)(B)P{N(*i*-Pr)₂}₂), 56.8 (s, 1P, (C)(H)P{N(*i*-Pr)₂}₂). ¹¹B{¹H} NMR (CDCl₃): δ 13.8 (br), 10.0, -0.3, -7 to -15 (overlapping signals), -18.3, -29.7, -31.4, -35.9. ¹³C **NMR** (CDCl₃): δ 108.4 (B₁₀CC–CCB₁₀), 98.5 (d, ²*J*_{PC} = 20 Hz, B₁₀CC–P{N(*i*-Pr)₂}₂), 80.7 (d, ¹*J*_{PC} = 44 Hz, B₁₀CC–P{N(*i*-Pr)₂}₂), 53.3 (d, P{N(CH(CH₃)₂)₂}₂), 50.7 (d, P{N(CH(CH₃)₂)₂)₂), 48.5 (d, P{N(CH(CH₃)₂)₂)₂), 25.2 (d, P{N(CH(CH₃)₂)₂)₂), 27.3 (d, P{N(CH(CH₃)₂)₂)₂), 26.4 (d, P{N(CH(CH₃)₂)₂)₂), 25.2 (d, P{N(CH(CH₃)₂)₂)₂), 22.5 (d, P{N(CH(CH₃)₂)₂)₂), 12.0 (d, ¹*J*_{PC} = 63 Hz, (OH)(H)BC–P{N(*i*-Pr)₂}₂). Calcd. for C₂₈H₇₈B₂₀N₄OP₂: C, 43.74; H, 10.22. Found: C, 43.91; H, 9.90.

The mass-spectrum of 2 (EI) contained the molecular ion peak at 748 m/z (corresponding to 1) indicating dehydration under instrument conditions.

Figure S-1. The numbering scheme for the icosahedral biscarborane cluster. For the 1,1'-bis(*o*-carborane) $(C_2B_{10}H_{11})(C_2B_{10}H_{11})$ cluster (biscarborane), carbon atoms are at positions 1, 2, 1', and 2' (shaded circles).

Figure S-2. Displacement ellipsoid plot (50% probability) of the *closo*-(C₂B₁₀H₁₀)(P{N(*i*-Pr)₂}₂)-*nido*-(CB₉H₁₀)(CB(H)(OH)(PH{N(*i*-Pr)₂}₂) acetonitrile solvate **2**•CH₃CN. Carbon atoms belonging to P(N(*i*-Pr)₂)₂ groups and all hydrogen atoms, except for the protonated phosphonium cation, the B(H)(OH) group, the endo proton on the *nido* cage, and in the acetonitrile molecule have been omitted for clarity. Selected interatomic distances (Å) and angles (°): N1S···O1 = 2.787(5), N1S···H1A = 1.95(5), B11-O1 = 1.339(5), B11-C4 = 1.547(5), C1-C2 = 1.708(5), C2-C3 = 1.505(5), C3···C4 = 3.235(5), P2-C4 = 1.749(4), N1S···H1A-O1 = 172(5), C1S-N1S···O1 = 178.0(4), H1A-O1-B11 = 116(4).

The interatomic distances and angles in $2 \cdot CH_3 CN$ (above) can be compared to those in $2 \cdot CD_2 Cl_2$ (below):

Figure S-3. The ¹H NMR spectrum of *closo*- $(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)$ -*nido*- $(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)$ (**2**) in CDCl₃.

¹H NMR (CDCl₃): δ 5.93 (d, 1H, ¹*J*_{PH} = 527 Hz, P*H*{N(*i*-Pr)₂}₂), 5.62 (d, 1H, ³*J*_{HH} = 3 Hz, (C)(B)(H)(O*H*)), 4.67 (m, 2H, P{N(C*H*(CH₃)₂)₂}), 4.44 (m, 2H, P{N(C*H*(CH₃)₂)₂}), 3.97 (m, 2H, P{N(C*H*(CH₃)₂)₂}), 3.80 (m, 2H, P{N(C*H*(CH₃)₂)₂}), 4.00–1.00 (br m, 19H, B*H*), 1.42 to 1.30 (overlapping m, 48H, P(N{CH(CH₃)₂)₂), -2.26 (br, 1H, B(*H*)B).

Figure S-4. Portions of ¹H and ¹H{³¹P} NMR spectra of *closo*-(C₂B₁₀H₁₀)(P{N(*i*-Pr)₂}₂)-*nido*-(CB₉H₁₀)(CB(H)(OH)(PH{N(*i*-Pr)₂}₂) (**2**) in CDCl₃. The signal from the PH{N(*i*-Pr)₂}₂ group (doublet in ¹H NMR spectrum, ¹J_{PH} = 527 Hz) is converted to the singlet in the ¹H{³¹P} spectrum.

Figure S-5. The ${}^{31}P{}^{1}H$ NMR spectrum of *closo*-(C₂B₁₀H₁₀)(P{N(*i*-Pr)₂}₂)-*nido*-(CB₉H₁₀)(CB(H)(OH)(PH{N(*i*-Pr)₂}₂) (**2**) in CDCl₃.

³¹P{¹H} NMR (CDCl₃): δ 86.2 (br, 1P, (C)(B)P{N(*i*-Pr)₂}₂), 56.8 (s, 1P, (C)(H)P{N(*i*-Pr)₂}₂). The signal at 6.9 ppm corresponds to an unidentified impurity. The signal at 38.2 ppm corresponds to a trace of starting material **1**.

The signal at 86.2 ppm corresponds to the boronated phosphorus atom in **2** (signal shape due to ${}^{31}P{}^{-11}B$ coupling) and the signal at 56.8 ppm corresponds to the protonated phosphorus atom.

Figure S-6. The ³¹P NMR spectrum of *closo*- $(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)$ -*nido*- $(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)$ (**2**) in CDCl₃.

³¹P NMR (CDCl₃): δ 86.2 (br, 1P, (C)(B)P{N(*i*-Pr)₂}), 56.8 (d, ¹J_{PH} = 516 Hz 1P, (C)(H)P{N(*i*-Pr)₂}).

Figure S-7. The ¹¹B{¹H} NMR spectrum of $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2) (2) in CDCl_3.$

¹¹B{¹H} NMR (CDCl₃): δ 13.8 (br), 10.0, -0.3, -7 to -15 (overlapping signals), -18.3, -29.7, -31.4, -35.9.

Figure S-8. The ¹³C NMR spectrum of $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2) (2) in CDCl_3.$

¹³C NMR (CDCl₃): δ 108.4 (B₁₀CC–CCB₁₀), 98.5 (d, ²*J*_{PC} = 20 Hz, B₁₀CC–P{N(*i*-Pr)₂}₂), 80.7 (d, ¹*J*_{PC} = 44 Hz, B₁₀CC–P{N(*i*-Pr)₂}₂), 53.3 (d, P{N(CH(CH₃)₂)₂}₂), 50.7 (d, P{N(CH(CH₃)₂)₂}₂), 48.5 (d, P{N(CH(CH₃)₂)₂}₂), 46.5 (d, P{N(CH(CH₃)₂)₂}₂), 27.3 (d, P{N(CH(CH₃)₂)₂}₂), 26.4 (d, P{N(CH(CH₃)₂)₂}₂), 25.2 (d, `` P{N(CH(CH₃)₂)₂}₂), 24.9 (d, P{N(CH(CH₃)₂)₂}₂), 23.9 (d, P{N(CH(CH₃)₂)₂}₂), 23.0 (d, P{N(CH(CH₃)₂)₂}₂), 22.5 (d, P{N(CH(CH₃)₂)₂}₂), 12.0 (d, ¹*J*_{PC} = 63 Hz, (OH)(H)BC–P{N(*i*-Pr)₂}₂).

Figure S-9. The ²H NMR spectrum of *closo*- $(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)$ -*nido*- $(CB_9H_9D)(CB(H)(OD)(PH\{N(i-Pr)_2\}_2)$ (**2**-*d*) in CH₃CN. The sample of **2**-*d* was prepared by addition of an excess D₂O and CD₃CN to a sample of **1** at room temperature. Note the appearance of the signal corresponding to the B-OD group. The signal from the B–D–B group on the boron cage is not observed, possibly because of broadening due to coupling to ¹¹B nuclei.

Figure S-10. Comparison of the ¹H NMR spectra of samples of $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)$ (**2**, bottom) and $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_9D)(CB(H)(OD)(PH\{N(i-Pr)_2\}_2)$ (**2**-*d*, top). The sample of **2**-*d* was prepared by addition of an excess D₂O and CD₃CN to a sample of **1** at room temperature. Note the absence of signals from (B)(*H*)(OH) and (B)(*H*)(B) protons in the spectrum of **2**-*d*.

X-Ray Structure Determination, $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)\bullet CH_2Cl_2 (2\bullet CH_2Cl_2)$

X-ray intensity data from a colorless block crystal were collected at 100(2) K using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area detector and an Incoatec microfocus source (Mo K α radiation, $\lambda = 0.71073$ Å).¹ The raw area detector data frames were reduced and corrected for absorption effects using the SAINT+ and SADABS programs.¹ Final unit cell parameters were determined by least-squares refinement of 9778 reflections taken from the data set. The structure was solved by direct methods with SHELXT.² Subsequent difference Fourier calculations and full-matrix least-squares refinement against F^2 were performed with SHELXL-2014² using OLEX2.³

The compound crystallizes in the triclinic system. The space group P-1 (No. 2) was confirmed by structure solution. The asymmetric unit consists of one C₂₈H₇₈B₂₀N₄OP₂ molecule and one dichloromethane molecule. The dichloromethane is disordered over two positions with populations A/B = 0.890(7)/0.110(7). All non-hydrogen atoms were refined with anisotropic displacement parameters. Crystal and data quality were sufficient to permit unambiguous location and unconstrained refinement of all hydrogen atoms of both the closed and open well as the hydroxyl hydrogen H1A and bis(dicarborane cages, as the isopropylamino)phosphine hydrogen H2A. In particular, well-localized, strong electron density peaks corresponding to the bridging hydrogen H15A and the BH group hydrogen H11 were observed. Free refinement of these hydrogen atoms resulted in physically reasonable bonding geometries and displacement parameters. Hydrogen atoms bonded to carbon were also located in difference maps, but were placed in idealized positions and included as riding atoms with C-H = 1.00 Å and U(iso,H) = 1.2U(eq,C) for CH hydrogens, and C-H = 0.98 Å and U(iso,H) = 1.5U(eq,C) for methyl hydrogens. The largest residual electron density peak in the final difference map is 0.45 $e^{-}/Å^{3}$, located 0.23 Å from H21A.

(3) Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard J. A. K. and Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

⁽¹⁾ APEX2 Version 2014.9-0, SAINT Version 8.34A and SADABS Version 2014/4. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 2014.

^{(2) (}a) SHELXT: Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8. (b) SHELXL: Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.

Table S-1 Crystal data and structure refinement for $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)\bullet CH_2Cl_2 (2\bullet CH_2Cl_2).$

C1NPAmino
$C_{29}H_{80}B_{20}Cl_2N_4OP_2$
850.01
100(2)
triclinic
P-1
11.8867(4)
12.3732(4)
16.8070(6)
92.3050(10)
91.8090(10)
98.8840(10)
2438.50(14)
2
1.158
0.230
908.0
$0.36 \times 0.3 \times 0.25$
MoK α ($\lambda = 0.71073$)
4.31 to 60.154
$\textbf{-16} \leq h \leq 16, \textbf{-17} \leq k \leq 17, \textbf{-23} \leq l \leq 23$
126383
14334 [$R_{int} = 0.0391$, $R_{sigma} = 0.0249$]
14334/3/632
1.036
$R_1 = 0.0351, wR_2 = 0.0800$
$R_1 = 0.0461, wR_2 = 0.0846$
0.45/-0.35

X-Ray Structure Determination, $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)\bullet CD_3CN$ (2•CD₃CN)

X-ray intensity data from a colorless needle crystal were collected at 100(2) K using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area detector and an Incoatec microfocus source (Mo K α radiation, $\lambda = 0.71073$ Å).¹ The raw area detector data frames were reduced and corrected for absorption effects using the SAINT+ and SADABS programs.¹ Final unit cell parameters were determined by least-squares refinement of 9714 reflections taken from the data set. The structure was solved by direct methods with SHELXT.² Subsequent difference Fourier calculations and full-matrix least-squares refinement against F^2 were performed with SHELXL-2014² using OLEX2.³

The compound crystallizes in the orthorhombic system. The pattern of systematic absences in the intensity data was consistent with the space groups $Pna2_1$ and Pnma; intensity statistics suggested an acentric structure. $Pna2_1$ was eventually confirmed by obtaining a stable and reasonable structure, and was confirmed by checking for missed symmetry elements with the ADDSYM program in PLATON.⁴ The asymmetric unit consists of two crystallographically independent but chemically similar C₂₈H₇₈B₂₀N₄OP₂ molecules and two acetonitrile molecules of crystallization. The C₂₈H₇₈B₂₀N₄OP₂ molecules were numbered similarly except for label suffixes A(C) or B(D). Disorder of four $-N(^{i}Pr)_{2}$ substituents (two per independent molecule) was modeled with two components each. Minor disorder component atoms of molecule A were given label suffix C; likewise D for molecule B. Major disorder fractions refined within the range 0.60 - 0.76. 1,2- and 1,3- distances of the disordered groups were restrained to be similar to those of ordered -N(iPr)₂ groups by means of SHELX SAME instructions. In total, 346 restraints were used in disorder modeling. All non-hydrogen atoms were refined with anisotropic displacement parameters (ADPs). Displacement parameters of nearly superimposed, fractionally populated atoms were held equal during refinement. An enhanced rigid-bond restraint (RIGU) was applied to the ADPs of the disordered atoms. Hydrogen atoms bonded to carbon were placed in geometrically idealized positions included as riding atoms with d(C-H) =1.00 Å and Uiso(H) = 1.2Ueq(C) for methine hydrogen atoms and d(C-H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl hydrogens. The methyl hydrogens were allowed to rotate as a rigid group to the orientation of maximum observed electron density. Hydrogen atoms bonded to oxygen and phosphorus were located in difference maps and refined isotropically. O-H distances were restrained to 0.85(2) Å. Hydrogen atoms attached to boron atoms having five neighbors were placed in idealized positions and included as riding atoms with d(B-H) = 1.120Å and U iso(H) = 1.2Ueq(B). Those attached to boron atoms with fewer than five neighbors were located in difference maps and their coordinates refined. The largest residual electron density peak in the final difference map is 0.28 e⁻/Å³, located 0.89 Å from C4A. The absolute structure (Flack) parameter near convergence was 0.22(3), indicating the crystal is an inversion twin. The final refinement cycles included an inversion matrix, with the Flack parameter as the minor twin volume fraction.

(1) APEX2 Version 2014.9-0, SAINT+ Version 8.34A and SADABS Version 2014/4. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 2014.

(2) (a) **SHELXT**: Sheldrick, G.M. *Acta Cryst.* **2015**, *A71*, 3-8. (b) **SHELXL**: Sheldrick, G.M. *Acta Cryst.* **2008**, A64, 112-122.

(3) Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard J. A. K. and Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

(4) (a) LePage, Y. J. Appl. Crystallogr. 1987, 20, 264-269. (b) Spek, A. L. J. Appl. Crystallogr., 1988, 21, 578-579.
(c) Spek, A. L. Acta Crystallogr., Sect A 1990, 46, C34. (d) PLATON: Spek, A.L. Acta Cryst., 2009, D65, 148-155.

Identification code	pna21
Empirical formula	$C_{30}H_{81}B_{20}N_5OP_2$
Formula weight	806.13
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	44.006(2)
b/Å	9.8902(6)
c/Å	22.5051(13)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	9794.9(10)
Ζ	8
$\rho_{calc}g/cm^3$	1.093
μ/mm^{-1}	0.121
F(000)	3472.0
Crystal size/mm ³	$0.52 \times 0.12 \times 0.08$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.12 to 52.836
Index ranges	$\text{-55} \le h \le \text{55}, \text{-12} \le k \le \text{12}, \text{-28} \le \text{l} \le \text{28}$
Reflections collected	286896
Independent reflections	20096 [$R_{int} = 0.1432, R_{sigma} = 0.0745$]
Data/restraints/parameters	20096/346/1246
Goodness-of-fit on F ²	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0506, wR_2 = 0.0984$
Final R indexes [all data]	$R_1 = 0.0842, wR_2 = 0.1096$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.40
Flack parameter	0.22(8)

Table S-2. Crystal data and structure refinement for $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(CB_9H_{10})(CB(H)(OH)(PH\{N(i-Pr)_2\}_2)+CD_3CN$ (2+CD₃CN)

Details of Computational Study of **1**.

The partial atomic charges in the $closo-(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(C_2B_{10}H_9)(PH\{N(i-Pr)_2\}_2)$ biscarborane cluster **1** were calculated using DFT computational methods (BLYP/DZ) in the Amsterdam Density Functional (ADF) program suite.

Table S-3. The Mulliken charges at the selected atoms in *closo*- $(C_2B_{10}H_{10})(P\{N(i-Pr)_2\}_2)-nido-(C_2B_{10}H_9)(PH\{N(i-Pr)_2\}_2)$ biscarborane cluster **1**.

Atom	Orthogonal Atomic Coordinates			Mulliken Charge
P1	0.6330	-1.8937	1.7997	+0.588
P2	-0.8259	2.2029	-2.4036	+0.809
B11	0.5243	-0.1170	-1.1599	+0.255
B12	-0.2108	-1.6703	-0.0478	-0.081
B14	-2.5044	-0.8180	-0.9483	+0.215
B15	0.3060	-0.5968	-2.9157	+0.138
B16	0.7094	-1.7922	-1.6297	+0.092
B19	-1.5475	-0.5668	-2.7151	+0.157
C1	-0.5730	-0.6820	2.7100	-0.261
C2	-1.7961	-0.3330	1.5894	-0.073
C3	-1.5751	-0.9046	0.2448	-0.141
C4	-0.5152	0.5204	-2.0931	-0.341
N2	0.4838	-3.4276	2.4711	-0.424

The orthogonal atomic coordinates of the optimized model of $\mathbf{1}$ are listed below:

Р	0.63299927	-1.89371106	1.79972149
Р	-0.82596937	2.20292183	-2.40357893
Н	-0.73293630	-1.47611718	5.08340073
Ν	2.18814946	-1.28125297	1.97291649
Ν	0.48375067	-3.42757050	2.47106791
Ν	0.47991475	3.19697459	-2.12359624
Ν	-1.60598667	2.54059934	-3.84520166
С	-0.57297480	-0.68203429	2.71003327
С	-1.79607797	-0.33299988	1.58936732
С	-1.57513365	-0.90461423	0.24479206
С	-0.51523798	0.52041371	-2.09313546
С	2.67254107	-0.57501338	3.19767075
Η	1.83582461	-0.60402783	3.88822883
С	2.99386512	0.90870869	2.96126755
Н	3.95131478	1.04425755	2.46423881
Н	3.04797746	1.41819585	3.92534998
Η	2.22210993	1.39367292	2.36879063
С	3.84471384	-1.24769495	3.92565906
Η	3.66605274	-2.30287357	4.11822889
Η	3.98037451	-0.74786599	4.88668744
Н	4.78001909	-1.14849751	3.37730269
С	3.14605319	-1.70796812	0.89656745
Н	2.50712146	-1.98811939	0.06434744
С	4.03858938	-0.57896792	0.37446166
Н	3.47011124	0.32104530	0.16332088
Н	4.49792613	-0.91357553	-0.55747842
Н	4.84619201	-0.33939739	1.06601940
С	4.00466356	-2.94148196	1.21193557
Н	4.79714286	-2.73362952	1.92744126
Н	4.47861806	-3.27268142	0.28539127
Η	3.40603400	-3.76655622	1.58359358
С	0.90718956	-3.64852268	3.89095670
Н	1.25498472	-2.67271762	4.22905081
С	-0.22072520	-4.06527692	4.85587920
Η	-1.16213275	-3.57510042	4.63332938
Η	0.07021165	-3.78634162	5.87057510
Η	-0.38058702	-5.14072260	4.84766861
С	2.07949968	-4.62294521	4.06285242
Η	1.78316219	-5.64516455	3.83238618
Η	2.39657309	-4.60668632	5.10772653
Н	2.93450152	-4.36383187	3.44507962
С	0.02614713	-4.56673789	1.60221306

Η	-0.51536792	-4.09475958	0.79570921
С	1.16960944	-5.34678031	0.94339905
Η	1.80679801	-4.68998847	0.35373057
Η	0.74060282	-6.07814337	0.25598585
Η	1.78661526	-5.88544344	1.66081780
С	-0.97690105	-5.51817758	2.25907754
Η	-0.51603626	-6.18369580	2.98852085
Η	-1.40160645	-6.14351838	1.47225735
Η	-1.79683465	-4.98452422	2.73482434
С	0.28452152	4.55451222	-1.52241078
Η	1.25736752	5.03498880	-1.61812084
С	-0.71128960	5.44476333	-2.27055262
Η	-0.45437002	5.53663230	-3.32392613
Η	-0.69970065	6.44185003	-1.82682100
Η	-1.73165726	5.06855827	-2.20198468
С	-0.04793197	4.48878402	-0.02742579
Η	-1.03152036	4.05336950	0.15254335
Н	-0.05454046	5.49559905	0.39505711
Η	0.68527954	3.89614205	0.51564931
С	1.88405827	2.79973245	-2.42821533
Η	1.83965926	1.74920347	-2.71030841
С	2.48721114	3.57954989	-3.60334651
Η	1.92494096	3.43027883	-4.52136603
Η	3.51076838	3.24266941	-3.77668567
Η	2.52757855	4.65129400	-3.39808274
С	2.79983151	2.90757710	-1.20358809
Η	2.98881392	3.94545307	-0.92401459
Η	3.76462536	2.45469635	-1.43705419
Η	2.37769997	2.38760345	-0.34739969
С	-0.77047631	2.32385216	-5.07256012
Η	0.17096146	1.90572483	-4.70758115
С	-0.41998831	3.62591676	-5.80825369
Η	-1.26876967	4.02967480	-6.35605327
Η	0.37172750	3.42813770	-6.53415199
Η	-0.06623411	4.39019895	-5.12033239
С	-1.33390435	1.28554106	-6.04789026
Η	-1.54285543	0.34055024	-5.55245564
Η	-0.59249144	1.10317372	-6.82705077
Η	-2.24160356	1.63662346	-6.54013803
С	-3.09480028	2.55727429	-4.00210561
Η	-3.36375148	1.65136491	-4.54963554
С	-3.87313389	2.50268315	-2.68540179
Η	-3.63650906	1.62365055	-2.08946567
Η	-4.93434717	2.44639714	-2.92935636

Η	-3.72937904	3.39957895	-2.07971302
С	-3.57098228	3.76900352	-4.81341206
Η	-3.26418382	4.70282263	-4.33968022
Η	-4.66081790	3.75627457	-4.87039915
Η	-3.19419862	3.76245113	-5.83273852
В	-2.11718109	-1.41621259	2.91398636
Η	-2.21813409	-2.55703779	2.67276184
В	-1.23016390	-0.75686175	4.30025805
Η	-1.74421001	2.66281709	-1.46832460
В	-0.36837327	0.68931234	3.77172403
Η	0.68521928	0.95615363	4.20699076
В	-0.68741118	0.91340064	2.04753395
Η	0.11556992	1.24143384	1.25975619
В	-3.30500312	-0.21684593	2.37657859
Η	-4.25027543	-0.60086600	1.79032454
В	-2.97407991	-0.46164889	4.11041729
Η	-3.76409436	-0.98374837	4.81665244
В	-1.89540027	0.85181524	4.64257226
Η	-1.89866884	1.26294284	5.75085014
В	-1.54525203	1.89140479	3.23810076
Η	-1.30291733	3.04552518	3.32342036
В	-2.42135409	1.23015046	1.84719620
Η	-2.77250542	1.82936336	0.89577619
В	-3.17292900	1.18855045	3.45177411
Η	-4.11604287	1.85605494	3.70006372
В	0.52433127	-0.11701455	-1.15988906
Η	1.39797430	0.46734755	-0.62160084
В	-0.21082160	-1.67033658	-0.04780487
В	-1.92543747	-2.40143618	-0.25461921
Η	-2.47805478	-3.22838885	0.38993906
В	-2.50442076	-0.81797387	-0.94831332
Η	-3.58784081	-0.33391268	-0.90574697
В	0.30597605	-0.59677203	-2.91572644
Η	1.00763053	-0.38955253	-3.85395419
В	0.70944340	-1.79216497	-1.62965683
Η	1.77500517	-2.31768827	-1.63455882
В	-0.63265876	-2.92836278	-1.33894038
Η	-0.40171176	-4.09033052	-1.32270569
В	-2.11461984	-2.14896386	-2.00945580
Η	-2.97665410	-2.71771017	-2.59558903
В	-1.54750402	-0.56678445	-2.71505950
Η	-2.23132095	-0.23310092	-3.62377028
В	-0.56387635	-2.11897092	-2.86908863
Η	-0.40998382	-2.79634880	-3.83003611