## **Supporting Information**

## *N*-(Acetoxy)phthalimide motif as a visible-light

## pro-photosensitizer in photoredox decarboxylative arylthiation

Yunhe Jin, Haijun Yang and Hua Fu\*

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Email: fuhua@mail.tsinghua.edu.cn

#### Contents

| 1. General Information.              | S2  |
|--------------------------------------|-----|
| 2. Optimization of Conditions        | S3  |
| 3. Experimental Procedures           | S4  |
| 4. Mechanism Investigations          | S6  |
| 5. Characterizations of the Products | S16 |
| 6. NMR Spectra of the Products       | S27 |

#### **1.** General Information

Commercial reagents, aryl thiols and N,N-Dimethylformamide (DMF) were purchased from J&K Chemical and Beijing Ouhe Technology, and they were used directly without further purification. Organic solutions were concentrated under reduced pressure on a Heidolph rotary evaporator using an alcohol-ice bath. Chromatographic purification of products was accomplished by column chromatography on silica gel (Qingdao Haiyang, 200-300 mesh). Thin layer chromatography (TLC) was performed on Shandong Jiangyou 0.2 mm silica gel plates. Visualization of the developed chromatogram was performed by fluorescence quenching, p-anisaldehyde, potassium permanganate, or ceric ammonium molybdate stain. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on JEOL 300 MHz, 400 MHz (100 MHz) and 600 MHz (150 MHz) instruments, and are internally referenced to TMS and residual portion solvent signals (note: TMS referenced at 0.00 ppm; CDCl<sub>3</sub> referenced at 7.26 and 77.0 ppm respectively; DMSO-d<sub>6</sub> referenced at 2.54 and 40.4 ppm respectively; Because the probe for CDCl<sub>3</sub> on the 400 MHz instrument was slightly polluted, there was a needless signal at 168.2 ppm in <sup>13</sup>C spectra). <sup>15</sup>N NMR spectra were recorded on JEOL 600 (60.8 MHz) instrument by using  $Me^{15}NO_2$  (0.0 ppm) as the external standard. Data for <sup>1</sup>H NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, h = heptet, m = multiplet, dd = doublet of doublets, dt = heptetdoublet of triplets, br = broad), coupling constant (J Hz). Data for  ${}^{13}C$  and  ${}^{15}N$  are reported in terms of chemical shift and no special nomenclature is used for equivalent carbons. Melting points were recorded on a Beijing Tech X-4 melting point apparatus. High resolution mass spectra were obtained on LCMS-IT/TOF (SHIMADZU, Japan) with electrospray ionization method.

#### 2. Optimization of Conditions

Table S1 Optimization of conditions for visible-light photoredox decarboxylative arylthiation<sup>a</sup>



| entry           | PC | base                            | solvent | yield of <b>3n</b> (%) <sup>b</sup> | yield of <b>3n'</b> (%) <sup>b</sup> |
|-----------------|----|---------------------------------|---------|-------------------------------------|--------------------------------------|
| 1               | А  | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 90                                  | trace                                |
| 2               | В  | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 58                                  | trace                                |
| 3               | -  | $Cs_2CO_3$                      | DMF     | 93 (91°)                            | trace                                |
| 4               | -  | $K_2CO_3$                       | DMF     | 89                                  | trace                                |
| 5               | -  | Na <sub>2</sub> CO <sub>3</sub> | DMF     | 85                                  | 7                                    |
| 6               | -  | NaHCO <sub>3</sub>              | DMF     | 70                                  | 22                                   |
| 7               | -  | DIPEA                           | DMF     | 13                                  | 63                                   |
| 8               |    | $Cs_2CO_3$                      | DMSO    | 91                                  | trace                                |
| 9               |    | Cs <sub>2</sub> CO <sub>3</sub> | MeCN    | 35                                  | 38                                   |
| 10              |    | Cs <sub>2</sub> CO <sub>3</sub> | DCE     | trace                               | 31                                   |
| 11 <sup>d</sup> |    | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 61                                  | 15                                   |
| 12 <sup>e</sup> |    | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 0                                   | 82                                   |
| 13 <sup>f</sup> |    | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 92                                  | trace                                |

<sup>a</sup> Reaction conditions: under Ar atmosphere and irradiation of visible light, *N*-Boc-Pro-OPht (**1k**) (0.15 mmol), 4-isopropylbenzenethiol (**2e**) (0.18 mmol), photocatalyst (PC) (1.5  $\mu$ mol), base (0.225 mmol), solvent (1.5 mL), temperature (rt, ~25 °C), time (10 h) in a sealed Schlenk tube. <sup>b</sup> Conversion yields were determined by <sup>1</sup>H NMR using trichloroethylene as the internal standard. <sup>c</sup> Isolated yield. <sup>d</sup> 4-Isopropylbenzenethiol (**2e**) (0.3 mmol). <sup>e</sup> No light. <sup>f</sup> 3 W blue LED was used as the light source for 20 h. PC = photocatalyst. DIPEA = diisopropylethylamine. DCE = 1,2-dichloroethane. CFL = compact fluorescent light.

First, coupling of *N*-Pro-OH with *N*-hydroxyphthalimide (PhtOH) in the presence of coupling agent (*N*,*N'*-dicyclohexylcarbodiimide (DCC)) led to corresponding active esters, *N*-Boc-Pro-OPht (Pht = phthalimide) (**1k**). Next, coupling of **1k** with 4-isopropylbenzenethiol (**2e**) was selected as the model to optimize conditions of visible-light photoredox catalysis including photocatalysts, bases and solvents. As shown in Table 1, two common transition-metal photocatalysts, [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> and [*fac*-Ir(ppy)<sub>3</sub>], were tested using 1.5 equiv of Cs<sub>2</sub>CO<sub>3</sub> as the base and DMF as the solvent under Ar atmosphere and irradiation of visible light with 40 W compact

fluorescent light (CFL) (entries 1 and 2), and  $[Ru(bpy)_3]Cl_2$  provided the target product (**3n**) in 90% conversion yield (determination by <sup>1</sup>H NMR using trichloroethylene as the internal standard) together with trace amount of substituted product (**3n'**) (entry 1). However, [*fac*-Ir(ppy)<sub>3</sub>] afforded a weak result (entry 2). Interestingly, the reaction gave target product **3n** in 93% conversion (91% isolated yield) in the absence of photocatalyst (entry 3). We also attempted K<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> and NaHCO<sub>3</sub> as the bases (entries 4-6), and the results exhibited that Cs<sub>2</sub>CO<sub>3</sub> was optimal (compare entries 3, 4-6). **3n'** became the major product when diisopropylethylamine (DIPEA) was used as the base (entry 7). Effect of solvents was investigated, and we found that DMF was a suitable solvent (compare entries 3, 8-10). When amount of 4-isopropylbenzenethiol (**2e**) increased from 1.2 equivalents to 2.0 equivalents (relative to amount of **1k**), yield of **3n** decreased with that of **3n'** increasing (entry 11). Only substituted product **3n'** was observed without irradiation of visible light (entry 12). When 3 W blue LED was used as the light source for 20 h, **3n** was observed in 92% conversion (entry 13).

#### **3. Experimental Procedures**

#### (1) Synthesis of <sup>15</sup>N-Labeled c-Hex-COOPht (1h')



**Synthesis of <sup>15</sup>N-hydroxyphthalimide.** Synthesis of <sup>15</sup>N-hydroxyphthalimide was performed according to the previous reference.<sup>1</sup> A flask fitted with a Dean-Stark trap was charged with <sup>15</sup>N-hydroxylamine hydrochloride (1.5 mmol, 0.104 g) and toluene (5 mL). To the suspension were added phthalic anhydride (1.56 mmol, 0.23 g) and pyridine (1.5 mmol, 120  $\mu$ L). The solution was stirred and heated to reflux. After 4 h, the resulting solution was allowed to cool to room temperature and concentrated by rotary evaporation until precipitation occurred. The precipitated crop was collected and washed with Et<sub>2</sub>O (15 mL) and cold water (15 mL). The washed solids were combined and dried in a vacuum desiccator to afford <sup>15</sup>N-hydroxyphthalimide as a light yellow solid, yield 0.115 g (47%).

Synthesis of <sup>15</sup>*N*-Labeled *c*-Hex-COOPht (1h'). Synthesis of <sup>15</sup>*N*-labeled *c*-Hex-COOPht (1h') was performed according to the previous reference.<sup>2</sup> DCC (0.24 mmol, 49.4 mg) was added to a solution of cyclohexanecarboxylic acid (0.2 mmol, 25.6 mg), <sup>15</sup>*N*-hydroxyphthalimide (0.22 mmol, 36.1 mg) and DMAP (0.02 mmol, 2.4 mg) in THF (2 mL). The mixture was stirred at room temperature for 15 h, and the resulting solution was filtered. The filtrate was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel (PE/CH<sub>2</sub>Cl<sub>2</sub> = 1:1) to provide <sup>15</sup>*N*-labeled *c*-Hex-COOPht (1h') as a white solid, yield 38.9 mg (71%).

#### References

(1) Lane, A.; Arumugam, S.; Lorkiewicz, P.; Higashi, R.; Laulh & S.; Nantz, M.; Moseley, H.; Fan,

T. Magn. Reson. Chem. 2015, 53, 337-343.

(2) Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240-2248.

#### (2) General procedure for synthesis of compounds 3a-ah



RCO-OPht (1) (0.15 mmol), aryl thiol (2) (0.18 mmol) and  $Cs_2CO_3$  (0.225 mmol, 73.3 mg) were added to a 25-mL Schlenk tube with DMF (1.5 mL), and the tube was evacuated and back-filled with argon for three cycles. The tube was sealed, and then irradiated with a 40 W fluorescent lamp (approximately 2 cm away from the light source). After the complete conversion of the substrates (monitored by TLC), the reaction mixture was diluted with 20 mL of EtOAc, and the solution was filtered by flash chromatography. The filtrate was evaporated by rotary evaporator, and the residue was purified by silica gel column chromatography to give the desired product (**3**).

#### 4. Mechanism Investigations

#### a. The UV-visible absorption spectra of aryl thiols and disulfides

The UV-visible absorption spectra of 4-(trifluoromethyl)thiophenol (TFTP) (**2l**) and 1,2-bis(4-(trifluoromethyl)phenyl)disulfane (BTFPD) were determined in the absence or presence of  $Cs_2CO_3$ , and no new absorption peak was observed beyond 400 nm (Figure S1-I,II), which implied that neither aryl thiols nor disulfides could be the visible light photosensitizers in the reactions. Unexpectedly, a new absorption band at 340 nm was observed, and one possible reason is that small amount of by-product from homolysis of BTFPD appeared in the presence of  $Cs_2CO_3$  under irradiation of UV.



**Figure S1.** (I) the UV-visible absorption spectra of 4-(trifluoromethyl)thiophenol (TFTP) in the absence or presence of  $Cs_2CO_3$ . (II) The UV-visible absorption spectra of 1,2-bis(4-(trifluoromethyl)phenyl)disulfane (BTFPD) in the absence or presence of  $Cs_2CO_3$ .

# b. Investigation on treatment of cyclopentanecarboxylic acid active ester (*c*-Pen-COOPht) with 4-cyanobenzyl bromide by HRESI-MS

Cyclopentanecarboxylic acid active ester (*c*-Pen-COOPht (**1g**)) (0.1 mmol), 4-cyanobenzyl bromide (0.3 mmol) and Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol) were added to a 5-mL flask with DMF (1 mL), and the mixture was stirred overnight at room temperature. The resulting solution was centrifuged, and the solid was removed. The remained solution was diluted with CH<sub>3</sub>CN (1 mL), and then performed a mass spectral analysis with high resolution electrospray ionization mass spectrometer. Mass spectral peaks at m/z 391.1299 (Figure S2) and 508.1867 (Figure S3) corresponding to **B-2** and **B-3** in Scheme S1 were observed. According to the results and UV-visible absorption spectrum of *c*-Pen-COOPht (**1g**) in the presence of Cs<sub>2</sub>CO<sub>3</sub> (Line **1g**+Cs<sub>2</sub>CO<sub>3</sub> in Figure 1a in text), treatment of *c*-Pen-COOPht with 4-cyanobenzyl bromide can undergo the following process: Tautomerization of **1g** in the presence of base (Cs<sub>2</sub>CO<sub>3</sub>) gives **Ig**, and reaction of **Ig** with 4-cyanobenzyl bromide affords **B-1**. Hydrolysis of **B-1** leds to **B-2**, and further coupling of **B-2** with 4-cyanobenzyl bromide provides **B-3** (see Scheme S1). Therefore, the experiment showed that tautomerization of *c*-Pen-COOPht (**1g**) via n- $\pi$  electron delocalization could be reasonable.



Figure S2. Negtive ion mass spectrum of products from reaction of c-Pen-COOPht (1g) with 4-cyanobenzyl bromide.



Figure S3. Positive ion mass spectrum of products from reaction of c-Pen-COOPht (1g) with 4-cyanobenzyl bromide.



Scheme S1. Treatment of *c*-Pen-COOPht (1g) with 4-cyanobenzyl bromide.

#### c. The radical-trapping experiments

Treatment of *c*-Pen-COOPht (**1g**) and methyl 4-mercaptobenzoate in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or butylated hydroxytoluene (BHT) was investigated, and only trace amount of **3g** was found. HRESI-MS showed that intermediate **B-4** occurred in the former reaction. The results displayed that free-radical intermediates were involved in the reactions (Figure S4, Scheme S2).



**Figure S4.** Positive ion mass spectrum of products from reaction of *c*-Pen-COOPht (**1g**), methyl 4-mercaptobenzoate and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO).



**Scheme S2.** Treatment of *c*-Pen-COOPht (**1g**) and methyl 4-mercaptobenzoate in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or butylated hydroxytoluene (BHT).

#### d. Stern-Volmer fluorescence quenching experiments

Firstly, we investigated the emission and excitation spectrums of the active esters in the absence or presence of bases. A 1.0 mM solution of cyclopentanecarboxylic acid active ester (*c*-Pen-COOPht (**1g**)) in DMF in the presence of  $Cs_2CO_3(1.5 \text{ mM})$  was chosen as the model. To avoid the effect of UV absorption of 4-(trifluoromethyl)thiophenol (TFTP) and 1,2-bis(4-(trifluoromethyl)phenyl)disulfane (BTFPD), the emission spectra were obtained under irradiation of 375 nm exciting light (Figure S5). Meanwhile, the fluorescence excitation spectra were obtained with the detection wavelength of 429 nm (emission maximum of **IIg**\*) (Figure S6). The results exhibited that the active esters can absorb a part of visible light and launch fluorescence in the presence of base. The quantum yield of **Ig** in Scheme S1 was 10.3% using 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) as the reference (Table S2).



Figure S5. The fluorescence emission spectra of c-Pen-COOPht (1g) in the absence or presence of Cs<sub>2</sub>CO<sub>3</sub> excited at 375 nm.



**Figure S6.** The fluorescence excitation spectra of *c*-Pen-COOPht (1g) in the absence or presence of  $Cs_2CO_3$  with the detection wavelength of 429 nm.

**Table S2.** Measurement of the Quantum Yield of **IIg**\* in Scheme S1 Using 1,4-Bis(5-phenyloxazol-2-yl)benzene (POPOP) as the Reference. ( $\phi$  = quantum yield, I = fluorescence intensity, A = absorbance, T = transmissvity)



| substrate          | transmissvity | fluorescence intensity | quantum   |
|--------------------|---------------|------------------------|-----------|
|                    | (T) (350 nm)  | (I) (402 nm)           | yield (φ) |
| POPOP ( <b>p</b> ) | 0.789         | 5158                   | 0.885     |
|                    |               |                        | (Ref.3)   |
| I                  | 0.860         | 382                    | φι        |

$$\varphi_I = \varphi_p \times \frac{I_I}{I_p} \times \frac{A_p}{A_I} = \varphi_p \times \frac{I_I}{I_p} \times \frac{\log(1/T_p)}{\log(1/T_I)} = 10.3 \%$$

Next, we conducted the fluorescence quenching experiments. In a typical experiment, 1.0 mL solution of *c*-Pen-COOPht (**1g**) (1.0 mM) in DMF in the presence of  $Cs_2CO_3$  (1.5 mM) was added to the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. After degassing by bubbling a stream of nitrogen for 10 minutes, 0.1 M solution of the quencher was added to the cuvette by microliters and the emission of the sample was collected. The solutions were excited at  $\lambda$ = 375 nm (to avoid the effects of UV absorption of TFTP and BTFPD) and the emission intensity at 429 nm (emission maximum of **IIg**\*) was observed (Figure S7-9). Stern–Volmer fluorescence quenching experiments demonstrated that the emission intensity of **IIg**\* diminished in the presence of TFTP, presumably signifying an electron transferring from TFTP to **IIg**\*.



Figure S7. IIg\* emission quenching by 4-(trifluoromethyl)thiophenol (TFTP). Non-linear quenching is observed.



**Figure S8.** Log plot of emission quenching of **IIg\*** by 4-(trifluoromethyl)thiophenol (TFTP). Linear correlation represents exponential trend in emission quenching.

As highlighted in Figure S7, we observe non-linear quenching of **IIg**\* in the presence of TFTP. The diminished intensity of **IIg**\* emission is attributed to several factors. Firstly, nucleophilic substitution could occur in the solution. Besides that, the reactive hydrogen of TFTP may affect the PH of the solution. Taking into consideration these effects, we suggest that the trend observed in Figure S8 is due to the additive effects of non-linear emission quenching by TFTP and some other factors although we cannot rule out all factors that may influence the emission intensity.



**Figure S9. IIg**\* emission quenching in the presence of 1,2-bis(4-(trifluoromethyl)phenyl)disulfane (BTFPD). No quenching was observed.

#### **5.** Characterization of the Products



**Methyl 4-(propylthio)benzoate (3a).** Eluent: PE/EtOAc (25:1). Yield 21.0 mg (67%). White solid, mp 45-47 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.92 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 3.90 (s, 3H), 2.96 (t, J = 7.2 Hz, 2H), 1.73 (sext, J = 7.6 Hz, 2H), 1.05 (t, J = 7.6 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 144.5, 130.0, 126.6, 126.4, 52.1, 34.1, 22.2, 13.6. HRMS (ESI<sup>+</sup>): Calcd for C<sub>11</sub>H<sub>15</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 211.0787. Found 211.0784.



**Methyl 4-(butylthio)benzoate (3b).** Eluent: PE/EtOAc (25:1). Yield 22.9 mg (68%). Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.92 (d, J = 8.6 Hz, 2H), 7.28 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H), 2.98 (t, J = 7.6 Hz, 2H), 1.68 (quint, J = 7.6 Hz, 2H), 1.48 (sext, J = 7.6 Hz, 2H), 0.94 (t, J = 7.6 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 144.6, 130.0, 126.6, 126.3, 52.1, 31.8, 30.9, 22.1, 13.7. HRMS (ESI<sup>+</sup>): Calcd for C<sub>12</sub>H<sub>17</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 225.0944. Found 225.0940.



**Methyl 4-(tridecylthio)benzoate (3c).** Eluent: PE/EtOAc (25:1). Yield 37.7 mg (72%). White solid, mp 74-75 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  7.92 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 3.89 (s, 3H), 2.97 (t, J = 7.6 Hz, 2H), 1.69 (quint, J = 7.6 Hz, 2H), 1.51-1.37 (m, 2H), 1.36-1.18 (m, 18H), 0.88 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 144.6, 130.0, 126.6, 126.3, 52.1, 32.1, 32.0, 29.76, 29.75, 29.73, 29.65, 29.57, 29.4, 29.2, 29.0, 28.8, 22.8, 14.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>35</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 351.2352. Found 351.2351.



**Methyl 4-((4-methylphenethyl)thio)benzoate (3d).** Eluent: PE/EtOAc (25:1). Yield 28.5 mg (66%). White solid, mp 75-76 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 7.93 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 7.15-7.07 (m, 4H), 3.89 (s, 3H), 3.20 (t, *J* = 7.9 Hz, 2H), 2.92 (t, *J* = 7.9 Hz, 2H), 2.32 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 166.9, 144.0, 136.8, 136.3, 130.1, 129.4, 128.5, 126.8,

126.6, 52.2, 34.8, 33.8, 21.2. HRMS (ESI<sup>+</sup>): Calcd for  $C_{17}H_{19}O_2S$ ,  $[M+H]^+$  m/z 287.1100. Found 287.1098.



**Methyl 4-**((**4-methoxyphenethyl)thio)benzoate** (**3e**). Eluent: PE/EtOAc (15:1). Yield 31.6 mg (70%). White solid, mp 57-58 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.93 (d, *J* = 7.3 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 7.8 Hz, 2H), 3.89 (s, 3H), 3.78 (s, 3H), 3.19 (t, *J* = 7.8 Hz, 2H), 2.91 (t, *J* = 7.8 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 158.4, 144.0, 131.9, 130.0, 129.6, 126.9, 126.6, 114.1, 55.4, 52.1, 34.4, 34.0. HRMS (ESI<sup>+</sup>): Calcd for C<sub>17</sub>H<sub>18</sub>NaO<sub>3</sub>S, [M+Na]<sup>+</sup> m/z 325.0869. Found 325.0872.



**Methyl 4-(but-3-en-1-ylthio)benzoate (3f).** Eluent: PE/EtOAc (25:1). Yield 14.8 mg (44%). Colorless oil. <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  7.87 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 5.91-5.81 (m, 1H), 5.12 (d, J = 17.2 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 3.84 (s, 3H), 3.13 (t, J = 7.2 Hz, 2H), 2.38 (q, J = 6.9 Hz, 2H). <sup>13</sup>C NMR (DMSO- $d_6$ , 100 MHz)  $\delta$  166.4, 144.5, 136.8, 130.1, 126.7, 126.4, 117.1, 52.6, 32.8, 30.5. HRMS (ESI<sup>+</sup>): Calcd for C<sub>12</sub>H<sub>15</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 223.0787. Found 223.0784.



**Methyl 4-(cyclopentylthio)benzoate (3g).** Eluent: PE/EtOAc (25:1). Yield 32.8 mg (93%). White solid, mp 37-38 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.91 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 3.89 (s, 3H), 3.71 (quint, J = 6.2 Hz, 1H), 2.18-2.09 (m, 2H), 1.83-1.74 (m, 2H), 1.68-1.60 (m, 4H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 145.2, 129.9, 127.0, 126.5, 52.1, 44.2, 33.5, 25.0. HRMS (ESI<sup>+</sup>): Calcd for C<sub>13</sub>H<sub>17</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 237.0944. Found 237.0945.



**Methyl 4-(cyclohexylthio)benzoate (3h).** Eluent: PE/EtOAc (25:1). Yield 33.6 mg (89%). White solid, mp 69-70 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 3.89 (s, 3H), 3.34-3.23 (m, 1H), 2.09-1.96 (m, 2H), 1.84-1.72 (m, 2H), 1.68-1.59 (m, 1H),

1.48-1.23 (m, 5H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 166.9, 143.1, 129.9, 128.5, 127.1, 52.1, 45.1, 33.2, 26.0, 25.8. HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>19</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 251.1100. Found 251.1103.



**Methyl 4-**(*tert*-butylthio)benzoate (3i). Eluent: PE/EtOAc (25:1). Yield 30.4 mg (90%). White solid, mp 62-63 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.98 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 3.92 (s, 3H), 1.31 (s, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.8, 139.0, 136.9, 130.1, 129.5, 52.3, 46.8, 31.1. HRMS (ESI<sup>+</sup>): Calcd for C<sub>12</sub>H<sub>17</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 225.0944. Found 225.0943.



Methyl 4-(adamantan-1-ylthio)benzoate (3j). Eluent: PE/EtOAc (25:1). Yield 41.5 mg (91%). White solid, mp 129-130 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 7.97 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 3.92 (s, 3H), 2.04-1.99 (m, 3H), 1.85-1.78 (m, 6H), 1.67-1.56 (m, 6H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 166.8, 137.3, 137.0, 130.1, 129.3, 52.3, 49.0, 43.8, 36.1, 30.1. HRMS (ESI<sup>+</sup>): Calcd for C<sub>18</sub>H<sub>23</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 303.1413. Found 303.1414.



*tert*-Butyl 2-(phenylthio)pyrrolidine-1-carboxylate (3k). Eluent: PE/EtOAc (15:1). Yield 38.8 mg (93%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.58-7.42 (m, 2H), 7.35-7.22 (m, 3H), 5.44-5.24 (m, 1H), 3.51-3.23 (m, 2H), 2.21-1.82 (m, 4H), 1.53-1.24 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.7, 134.7, 134.4, 134.1, 129.0, 128.0, 127.8, 80.1, 80.0, 67.1, 66.8, 46.3, 45.6, 34.0, 33.3, 28.5, 28.3, 23.1, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>21</sub>NNaO<sub>2</sub>S, [M+Na]<sup>+</sup> m/z 302.1185. Found 302.1186.



*tert*-Butyl 2-(p-tolylthio)pyrrolidine-1-carboxylate (31). Eluent: PE/EtOAc (15:1). Yield 36.7 mg (83%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of

rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.47-7.33 (m, 2H), 7.11 (d, *J* = 7.3 Hz, 2H), 5.36-5.17 (m, 1H), 3.49-3.22 (m, 2H), 2.33 (s, 3H), 2.20-1.81 (m, 4H), 1.49-1.30 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.7, 138.2, 138.0, 135.1, 134.9, 130.3, 129.7, 80.1, 79.9, 67.1, 66.9, 46.3, 45.6, 33.8, 33.1, 28.5, 28.3, 23.1, 22.3, 21.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>2</sub>S, [M+Na]<sup>+</sup> m/z 316.1342. Found 316.1338.



*tert*-Butyl 2-(m-tolylthio)pyrrolidine-1-carboxylate (3m). Eluent: PE/EtOAc (15:1). Yield 37.7 mg (86%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.37-7.25 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.12-7.05 (m, 1H), 5.41-5.23 (m, 1H), 3.51-3.22 (m, 2H), 2.32 (s, 3H), 2.20-1.83 (m, 4H), 1.52-1.31 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.7, 138.7, 135.2, 134.9, 133.9, 131.6, 131.3, 128.8, 80.1, 67.2, 66.8, 46.4, 45.6, 34.0, 33.3, 28.5, 28.3, 23.0, 22.3, 21.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>2</sub>S, [M+Na]<sup>+</sup> m/z 316.1342. Found 316.1348.



*tert*-Butyl 2-((4-isopropylphenyl)thio)pyrrolidine-1-carboxylate (3n). Eluent: PE/EtOAc (15:1). Yield 44.0 mg (91%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.50-7.33 (m, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 5.40-5.22 (m, 1H), 3.51-3.22 (m, 2H), 2.89 (h, *J* = 6.9 Hz, 1H), 2.20-1.82 (m, 4H), 1.50-1.27 (m, 9H), 1.23 (d, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.7, 149.1, 135.2, 134.9, 130.7, 127.2, 80.0, 67.1, 66.8, 46.3, 45.5, 33.9, 33.1, 28.5, 28.3, 24.0, 23.0, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>18</sub>H<sub>27</sub>NNaO<sub>2</sub>S, [M+Na]<sup>+</sup> m/z 344.1655. Found 344.1654.



tert-Butyl 2-((4-(tert-butyl)phenyl)thio)pyrrolidine-1-carboxylate (30). Eluent: PE/EtOAc

(15:1). Yield 39.4 mg (78%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.50-7.38 (m, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.41-5.23 (m, 1H), 3.52-3.22 (m, 2H), 2.20-1.83 (m, 4H), 1.51-1.23 (m, 18H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.7, 151.4, 134.8, 134.6, 130.4, 126.0, 80.0, 67.1, 66.7, 46.2, 45.5, 34.7, 33.9, 33.2, 31.3, 28.5, 28.3, 23.1, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>19</sub>H<sub>29</sub>NNaO<sub>2</sub>S, [M+Na]<sup>+</sup> m/z 358.1811. Found 358.1809.



*tert*-Butyl 2-((4-methoxyphenyl)thio)pyrrolidine-1-carboxylate (3p). Eluent: PE/EtOAc (5:1). Yield 36.8 mg (79%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.52-7.37 (m, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 5.29-5.11 (m, 1H), 3.80 (s, 3H), 3.48-3.22 (m, 2H), 2.19-1.71 (m, 4H), 1.54-1.28 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  160.1, 160.0, 153.7, 137.2, 132.7, 124.3, 114.7, 114.6, 80.0, 79.8, 67.1, 55.4, 46.3, 45.6, 33.6, 33.0, 28.5, 28.3, 23.1, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>3</sub>S, [M+Na]<sup>+</sup> m/z 332.1291. Found 332.1291.



*tert*-Butyl 2-((3-methoxyphenyl)thio)pyrrolidine-1-carboxylate (3q). Eluent: PE/EtOAc (5:1). Yield 39.0 mg (84%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.21 (t, *J* = 8.0 Hz, 1H), 7.14-6.98 (m, 2H), 6.87-6.78 (m, 1H), 5.47-5.25 (m, 1H), 3.80 (s, 3H), 3.52-3.23 (m, 2H), 2.23-1.82 (m, 4H), 1.54-1.28 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.7, 153.6, 135.4, 129.7, 126.6, 126.2, 119.5, 119.0, 113.9, 80.1, 67.1, 66.7, 55.4, 46.4, 45.6, 34.1, 33.3, 28.5, 28.3, 23.1, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>3</sub>S, [M+Na]<sup>+</sup> m/z 332.1291. Found 332.1291.



*tert*-Butyl 2-((4-fluorophenyl)thio)pyrrolidine-1-carboxylate (3r). Eluent: PE/EtOAc (15:1). Yield 36.3 mg (81%). White solid, mp 56-57 °C. The product gives two sets of NMR signals,

owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.57-7.41 (m, 2H), 7.08-6.95 (m, 2H), 5.39-5.18 (m, 1H), 3.50-3.25 (m, 2H), 2.20-1.85 (m, 4H), 1.51-1.26 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  163.1 (d, *J* = 247.1 Hz), 153.7, 137.3 (d, *J* = 8.7 Hz), 137.1 (d, *J* = 247.1 Hz), 129.0, 116.1 (d, *J* = 21.7 Hz), 115.9 (d, *J* = 21.7 Hz), 80.2, 80.0, 67.3, 67.2, 46.3, 45.6, 33.7, 33.1, 28.4, 28.3, 23.2, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>20</sub>NNaO<sub>2</sub>SF, [M+Na]<sup>+</sup> m/z 320.1091. Found 320.1088.



*tert*-Butyl 2-((4-chlorophenyl)thio)pyrrolidine-1-carboxylate (3s). Eluent: PE/EtOAc (15:1). Yield 40.6 mg (86%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.52-7.33 (m, 2H), 7.32-7.18 (m, 2H), 5.43-5.18 (m, 1H), 3.54-3.22 (m, 2H), 2.23-1.82 (m, 4H), 1.53-1.26 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 153.6, 136.0, 135.8, 132.6, 129.4, 129.3, 129.1, 80.3, 80.1, 67.3, 67.1, 46.3, 45.6, 33.9, 33.3, 28.4, 28.3, 23.2, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>20</sub>NNaO<sub>2</sub>SCl, [M+Na]<sup>+</sup> m/z 336.0795. Found 336.0795.



*tert*-Butyl 2-((4-bromophenyl)thio)pyrrolidine-1-carboxylate (3t). Eluent: PE/EtOAc (15:1). Yield 50.4 mg (94%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.50-7.29 (m, 4H), 5.43-5.20 (m, 1H), 3.53-3.22 (m, 2H), 2.23-1.83 (m, 4H), 1.54-1.22 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.6, 136.2, 135.9, 133.3, 132.1, 132.0, 80.3, 80.1, 67.2, 67.0, 46.3, 45.6, 34.0, 33.3, 28.4, 28.3, 23.2, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>20</sub>NNaO<sub>2</sub>SBr, [M+Na]<sup>+</sup> m/z 382.0270. Found 382.0263.



*tert*-Butyl 2-((4-(methoxycarbonyl)phenyl)thio)pyrrolidine-1-carboxylate (3u). Eluent: PE/EtOAc (5:1). Yield 48.0 mg (95%). Colorless oil. The product gives two sets of NMR signals,

owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.00-7.89 (m, 2H), 7.54-7.43 (m, 2H), 5.57-5.35 (m, 1H), 3.90 (s, 3H), 3.55-3.24 (m, 2H), 2.30-1.82 (m, 4H), 1.53-1.27 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.8, 153.5, 141.7, 131.9, 131.4, 130.0, 80.5, 80.3, 66.8, 66.3, 52.2, 46.3, 45.7, 34.5, 33.6, 28.4, 28.3, 23.2, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>17</sub>H<sub>23</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 360.1240. Found 360.1238.



*tert*-Butyl 2-((4-(trifluoromethyl)phenyl)thio)pyrrolidine-1-carboxylate (3v). Eluent: PE/EtOAc (15:1). Yield 47.8 mg (92%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.68-7.46 (m, 4H), 5.60-5.32 (m, 1H), 3.57-3.23 (m, 2H), 2.30-1.85 (m, 4H), 1.54-1.21 (m, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.5, 139.8, 133.1 (*J* = 41.2 Hz), 125.7, 124.7 (*J* = 388.2 Hz), 80.4, 80.3, 67.1, 66.7, 46.2, 45.7, 34.3, 33.5, 28.4, 28.2, 23.2, 22.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>20</sub>NNaO<sub>2</sub>SF<sub>3</sub>, [M+Na]<sup>+</sup> m/z 370.1059. Found 370.1060.



*tert*-Butyl 2-((4-(methoxycarbonyl)phenyl)thio)piperidine-1-carboxylate (3w). Eluent: PE/EtOAc (15:1). Yield 48.6 mg (92%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (DMSO-*d*6, 400 MHz)  $\delta$ 7.99-7.78 (m, 2H), 7.58 (d, *J* = 7.3 Hz, 2H), 6.20-5.84 (m, 1H), 3.99-3.73 (m, 4H), 3.21-3.00 (m, 1H), 2.02-1.81 (m, 2H), 1.79-1.60 (m, 3H), 1.45-1.01 (m, 10H). <sup>13</sup>C NMR (DMSO-*d*6, 100 MHz)  $\delta$  166.3, 153.4, 141.1, 132.8, 131.5, 130.0, 80.1, 64.0, 61.3, 52.6, 38.8, 31.8, 30.9, 28.1, 25.2, 19.9. HRMS (ESI<sup>+</sup>): Calcd for C<sub>18</sub>H<sub>25</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 374.1397. Found 374.1398.



**Benzyl 2-((4-(methoxycarbonyl)phenyl)thio)pyrrolidine-1-carboxylate (3x).** Eluent: PE/EtOAc (5:1). Yield 48.2 mg (87%). Colorless oil. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.10-7.78 (m,

2H), 7.65-7.12 (m, 7H), 5.63-5.42 (m, 1H), 5.28-4.82 (m, 2H), 3.90 (s, 3H), 3.64-3.36 (m, 2H), 2.40-1.87 (m, 4H).  $^{13}$ C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.8, 166.7, 154.2, 154.1, 141.4, 141.0, 136.5, 136.3, 132.1, 131.4, 130.0, 128.6, 128.5, 128.2, 128.1, 128.0, 67.4, 67.2, 66.9, 66.6, 52.2, 46.3, 46.2, 34.6, 33.8, 23.3, 22.4. HRMS (ESI<sup>+</sup>): Calcd for C<sub>20</sub>H<sub>21</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 394.1084. Found 394.1085.



Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)ethyl)thio)benzoate (3y). Eluent: PE/EtOAc (5:1). Yield 43.2 mg (84%). White solid, mp 97-98 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 7.88 (d, J = 8.3 Hz, 2H), 7.83-7.75 (m, 2H), 7.74-7.66 (m, 2H), 7.45 (d, J = 8.6 Hz, 2H), 5.93 (q, J = 7.2 Hz, 1H), 3.87 (s, 3H), 1.95 (d, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 167.0, 166.6, 140.2, 134.4, 131.6, 130.6, 130.2, 128.9, 123.6, 52.9, 52.2, 20.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>18</sub>H<sub>15</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 364.0614. Found 364.0607.



Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)-3-methylbutyl)thio)benzoate (3z). Eluent: PE/EtOAc (5:1). Yield 46.4 mg (81%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.89 (d, *J* = 8.2 Hz, 2H), 7.83-7.77 (m, 2H), 7.74-7.68 (m, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 5.84 (dd, *J*<sub>1</sub> = 6.2 Hz, *J*<sub>2</sub> = 9.6 Hz, 1H), 3.87 (s, 3H), 2.45-2.37 (m, 1H), 2.07-1.98 (m, 1H), 1.70-1.58 (m, 1H), 1.02-0.88 (m, 6H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  167.2, 166.6, 140.4, 134.4, 131.5, 130.4, 130.2, 128.7, 123.6, 55.9, 52.2, 41.8, 25.9, 22.6, 21.8. HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>21</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 406.1084. Found 406.1083.



Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)-2-phenylethyl)thio)benzoate (3aa). Eluent: PE/EtOAc (5:1). Yield 43.3 mg (69%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.87 (d, J = 6.5 Hz,

2H), 7.77-7.62 (m, 4H), 7.43 (d, J = 6.5 Hz, 2H), 7.25-7.12 (m, 5H), 5.97 (dd,  $J_1 = 6.2$  Hz,  $J_2 = 10.3$  Hz, 1H), 3.86 (s, 3H), 3.72 (dd,  $J_1 = 10.6$  Hz,  $J_2 = 12.4$  Hz, 1H), 3.54 (dd,  $J_1 = 6.2$  Hz,  $J_2 = 14.1$  Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  167.1, 166.6, 140.1, 136.5, 134.3, 131.3, 130.6, 130.2, 129.1, 128.9, 128.7, 127.3, 123.6, 58.2, 52.2, 39.3. HRMS (ESI<sup>+</sup>): Calcd for C<sub>24</sub>H<sub>19</sub>NNaO<sub>4</sub>S, [M+Na]<sup>+</sup> m/z 440.0927. Found 440.0928.



Methyl 4-((2-(*tert*-butoxy)-1-(1,3-dioxoisoindolin-2-yl)ethyl)thio)benzoate (3ab). Eluent: PE/EtOAc (5:1). Yield 49.7 mg (80%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 7.93 (d, J = 8.2 Hz, 2H), 7.88-7.81 (m, 2H), 7.78-7.69 (m, 2H), 7.51 (d, J = 7.9 Hz, 2H), 5.79 (dd,  $J_1 = 6.2$  Hz,  $J_2 = 9.3$  Hz, 1H), 4.16 (t, J = 9.6 Hz, 1H), 3.94-3.82 (m, 4H), 1.12 (s, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 167.3, 166.6, 140.6, 134.3, 131.7, 130.2, 129.9, 128.7, 123.6, 74.1, 61.6, 57.4, 52.2, 27.5. HRMS (ESI<sup>+</sup>): Calcd for C<sub>22</sub>H<sub>23</sub>NNaO<sub>5</sub>S, [M+Na]<sup>+</sup> m/z 436.1189. Found 436.1187.



**Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)-3-(methylthio)propyl)thio)benzoate (3ac).** Eluent: PE/EtOAc (5:1). Yield 47.8 mg (79%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.89 (d, *J* = 8.2 Hz, 2H), 7.85-7.78 (m, 2H), 7.76-7.68 (m, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 5.95 (t, *J* = 7.6 Hz, 1H), 3.88 (s, 3H), 2.67-2.54 (m, 4H), 2.08 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  167.1, 166.6, 140.0, 134.5, 131.5, 130.6, 130.2, 128.9, 123.7, 56.3, 52.2, 32.4, 31.2, 15.5. HRMS (ESI<sup>+</sup>): Calcd for C<sub>20</sub>H<sub>19</sub>NNaO<sub>4</sub>S<sub>2</sub>, [M+Na]<sup>+</sup> m/z 424.0648. Found 424.0648.



Methyl 4-((5-((tert-butoxycarbonyl)amino)-1-(1,3-dioxoisoindolin-2-yl)pentyl)thio)benzoate

(3ad). Eluent: PE/EtOAc (2:1). Yield 61.9 mg (83%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.88 (d, *J* = 8.2 Hz, 2H), 7.83-7.77 (m, 2H), 7.75-7.69 (m, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 5.72 (dd, *J*<sub>1</sub> = 6.9 Hz, *J*<sub>2</sub> = 8.9 Hz, 1H), 4.69-4.58 (m, 1H), 3.88 (s, 3H), 3.16-3.00 (m, 2H), 2.48-2.20 (m, 2H), 1.60-1.31 (m, 13H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  167.2, 166.6, 156.0, 140.3, 134.4, 131.4, 130.4, 130.2, 128.8, 123.6, 79.1, 57.3, 52.2, 40.2, 33.0, 29.4, 28.4, 24.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>6</sub>S, [M+Na]<sup>+</sup> m/z 521.1717. Found 521.1719.



Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)-4-methoxy-4-oxobutyl)thio)benzoate (3ae). Eluent: PE/EtOAc (5:1). Yield 54.1 mg (87%). Colorless gum. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 7.90 (d, J = 8.2 Hz, 2H), 7.85-7.79 (m, 2H), 7.77-7.71 (m, 2H), 7.47 (d, J = 8.2 Hz, 2H), 5.81 (t, J = 7.9 Hz, 1H), 3.88 (s, 3H), 3.64 (s, 3H), 2.73-2.60 (m, 2H), 2.49 (t, J = 7.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 172.4, 167.0, 166.5, 140.0, 134.5, 131.4, 130.5, 130.2, 128.9, 123.7, 56.7, 52.2, 51.9, 31.2, 28.8. HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>19</sub>NNaO<sub>6</sub>S, [M+Na]<sup>+</sup> m/z 436.0825. Found 436.0828.



Methyl 4-((1-(1,3-dioxoisoindolin-2-yl)-4-oxo-4-((tritylamino)oxy)butyl)thio)benzoate (3af). Eluent: PE/EtOAc (2:1). Yield 77.7 mg (81%). White solid, mp 98-100 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.82 (d, *J* = 7.2 Hz, 2H), 7.79-7.73 (m, 2H), 7.71-7.64 (m, 2H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.32-7.10 (m, 15H), 6.72-6.65 (m, 1H), 5.87 (t, *J* = 7.7 Hz, 1H), 3.84 (s, 3H), 2.72-2.56 (m, 2H), 2.50-2.38 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.9, 167.1, 166.6, 144.7, 140.2, 134.5, 131.5, 130.3, 130.2, 128.8, 128.1, 127.2, 123.7, 70.8, 57.1, 52.3, 34.4, 29.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>39</sub>H<sub>32</sub>N<sub>2</sub>NaO<sub>5</sub>S, [M+Na]<sup>+</sup> m/z 663.1924. Found 663.1923.



Methyl 4-((3-(diBoc-amino)-4-methoxy-4-oxobutyl)thio)benzoate (3ag). Eluent: PE/EtOAc

(5:1). Yield 41.5 mg (57%). Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.93 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 5.07 (dd, *J*<sub>1</sub> = 5.8 Hz, *J*<sub>2</sub> = 8.2 Hz, 1H), 3.90 (s, 3H), 3.72 (s, 3H), 3.07 (t, *J* = 7.4 Hz, 2H), 2.57-2.50 (m, 1H), 2.25-2.17 (m, 1H), 1.49 (s, 18H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  170.8, 166.8, 152.0, 143.4, 130.1, 127.0, 126.7, 83.6, 57.1, 52.4, 52.1, 29.9, 29.1, 28.0. HRMS (ESI<sup>+</sup>): Calcd for C<sub>23</sub>H<sub>33</sub>NNaO<sub>8</sub>S, [M+Na]<sup>+</sup> m/z 506.1819. Found 506.1818.



Methyl 4-((1-(2-(2-((tert-butoxycarbonyl)amino)acetamido)acetyl)pyrrolidin-2-yl)thio)benzo -ate (3ah). Eluent: DCM/MeOH (25:1). Yield 49.3 mg (73%). Colorless gum. The product gives two sets of NMR signals, owing to the presence of rotamers around the tertiary amide. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.01-7.92 (m, 2H), 7.54-7.44 (m, 2H), 7.12 (br, 1H), 5.71-5.32 (m, 2H), 4.36-3.95 (m, 2H), 3.94-3.74 (m, 5H), 3.65-3.38 (m, 2H), 2.34-1.93 (m, 4H), 1.45 (s, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 169.7, 167.6, 166.8, 166.7, 166.5, 156.0, 140.9, 139.3, 132.0, 131.2, 130.4, 130.1, 129.5, 128.8, 80.2, 65.2, 52.4, 52.3, 46.5, 45.7, 44.1, 42.2, 42.0, 34.5, 33.1, 28.4, 23.4, 21.0. HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>29</sub>N<sub>3</sub>NaO<sub>6</sub>S, [M+Na]<sup>+</sup> m/z 474.1699. Found 474.1694.



(**Z**)-methyl 4-(heptadec-8-en-1-ylthio)benzoate (3ai). Eluent: PE/EtOAc (25:1). Yield 38.4 mg (63%). White solid, mp 50-51 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.92 (d, *J* = 8.7 Hz, 2H), 7.27 (d, *J* = 8.7 Hz, 2H), 5.40-5.31 (m, 2H), 3.89 (s, 3H), 2.97 (t, *J* = 7.6 Hz, 2H), 2.04-1.89 (m, 4H), 1.69 (quint, *J* = 7.3 Hz, 2H), 1.50-1.19 (m, 20H), 0.88 (t, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.9, 144.6, 130.6, 130.3, 130.0, 126.6, 126.4, 52.1, 32.7, 32.6, 32.2, 32.0, 29.9, 29.8, 29.4, 29.3, 29.1, 29.0, 28.8, 27.4, 27.3, 22.8, 14.2. HRMS (ESI<sup>+</sup>): Calcd for C<sub>25</sub>H<sub>41</sub>O<sub>2</sub>S, [M+H]<sup>+</sup> m/z 405.2822. Found 405.2830.



methyl 4-(((6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicen-4a-yl)thio)benzoate (3aj). Eluent: PE/DCM/EtOAc (20:10:1). Yield 51.0 mg (55%). White solid, mp 263-265 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.95 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 5.25 (t, J = 3.4 Hz, 1H), 4.52 (t, J = 8.0 Hz, 1H), 3.91 (s, 3H), 2.41-2.27 (m, 2H), 2.23-2.12 (m, 1H), 2.10-1.84 (m, 6H), 1.79-1.38 (m, 10H), 1.33-0.97 (m, 15H), 0.94-0.80 (m, 10H), 0.72 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 171.1, 166.9, 143.6, 139.1, 137.0, 129.9, 129.4, 122.9, 81.0, 56.2, 55.4, 52.3, 47.8, 47.7, 45.6, 41.7, 40.1, 38.3, 37.8, 37.1, 36.4, 35.6, 33.0, 32.9, 30.8, 28.2, 27.0, 26.2, 25.5, 23.7, 23.6, 23.4, 21.4, 18.4, 17.7, 16.8, 15.6. HRMS (ESI<sup>+</sup>): Calcd for C<sub>39</sub>H<sub>57</sub>O<sub>4</sub>S, [M+H]<sup>+</sup> m/z 621.3972. Found 621.3956.

### 6. NMR Spectra of the Products













**-S30** -

























































![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_62_Figure_1.jpeg)