Supplementary Material

Isolation and properties of a palladium PBP pincer complex featuring an ambiphilic boryl site

Danny Schuhknecht,^a Florian Ritter^a and Michael E. Tauchert*^a

^aInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

Table of Contents

General remarks2
Experimental Procedures4
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ BPh}Pd(<i>p</i> -CF ₃ C ₆ H ₄)I] 7c4
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ BPh}Pd(<i>p</i> -NO ₂ C ₆ H ₄)I] 7d4
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ B}PdI] 85
Synthesis of [<i>trans-</i> {(2-biphenyl)diphenylphosphine}Pd(2,6-lutidine)I ₂] 176
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ B(pyridine)}PdI] 18a7
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ B(3,5-lutidine)}PdI] 18b7
In-situ generation of [{(o-PPh ₂ C ₆ H ₄) ₂ BMe}Pd]8
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ BMe}Pd(PMe₃)] 19a8
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ BCH ₂ Ph}Pd(PMe ₃)] 19b9
Synthesis of [{(<i>o</i> -PPh ₂ C ₆ H ₄) ₂ BCH ₂ SiMe ₃ }Pd(PMe ₃)] 19c10
NMR Spectra 11
References

General remarks

All manipulations were carried out in an MBraun glove box under an inert argon atmosphere. NMR-experiments were performed in Wilmad[®] quick pressure valve NMR tubes. ¹H, ¹¹B{¹H}, ¹³C{¹H}, ¹⁹F{¹H}, and ³¹P{¹H} NMR spectra were recorded on a Bruker Avance II (400.1 MHz, probe: BBO) or a Bruker Avance (400.3 MHz, probe: ATM BBFO) spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced to residual solvent resonances. [{(*o*-PPh₂C₆H₄)₂BPh}Pd(2,6-lutidine)] **6a** was prepared according to the literature.¹ All deuterated solvents, pyridine, 2,6-lutidine, 3,5-lutidine, iodobenzene and 4-iodobenzotrifluoride were degassed employing the freeze-pump-thaw technique and dried over activated molecular sieves (4 Å). Toluene, diethylether, dichloromethane, tetrahydrofurane, and pentane were dried by an MBraun solvent purification system. Benzene and *n*-hexane were dried over sodium and distilled under argon prior to use. CHN combustion analysis were carried out on an Elementar EL device by Elementar Analysesysteme GmbH. Infrared spectra were recorded on an Avatar 360 FT-IR E.S.P. device by Nicolet. Mass spectra (HRMS) were obtained by a MAT 95 spectrometer (Finnigan).

Single Crystal X-ray diffraction

Mo K α radiation ($\lambda = 0.71073$ Å) was produced from an Incoatec I- μ S microsource equipped with multilayer optics. Data were collected at 100(2) K on a Bruker D8 goniometer equipped with an Apex CCD detector. Temperature stability during data collection was realized by an Oxford Cryosystems 700 controller. Integration was performed by the SAINT software². The SADABS software³ was used for multi-scan absorption correction. Using Olex2,⁴ the structure was solved with the ShelXS⁵ structure solution program employing direct methods. Refinement was performed with the XL⁶ refinement package using least squares minimization. These data can be obtained free of Cambridge Crystallographic Centre charge from The Data via www.ccdc.cam.ac.uk/data request/cif

Complex / CCDC	7d / 1459014	8 / 1458013	17 / 1458010	18a / 1458011	19a / 1452002
Empirical formula	C ₆₆ H ₅₅ BINO ₂ P ₂ Pd	$C_{36}H_{28}BIP_2Pd$	$C_{32}H_{30}Cl_2I_2NPPd$	C46H45BINP2Pd	$C_{40}H_{40}BP_3Pd$
Formula weight	1200.16	766.63	890.64	917.88	730.84
Temperature/K	100.15	100(2)	100	100(2)	100
Crystal system	monoclinic	orthorhombic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ /c	Fdd2	P-1	P2 ₁ /c	$P2_1/c$
a/Å	15.188(3)	18.4700(18)	9.0882(6)	8.8638(12)	10.6783(16)
b/Å	20.733(4)	31.893(3)	10.5044(7)	22.432(3)	18.823(3)
c/Å	18.380(4)	10.3482(10)	16.7224(12)	19.469(3)	17.516(3)
α/°	90	90	82.4700(10)	90	90.00
β/°	109.077(4)	90	80.1740(10)	94.012(2)	97.699(2)
γ/°	90	90	86.8400(10)	90	90.00
Volume/Å ³	5469.8(19)	6095.7(10)	1558.56(18)	3861.6(9)	3489.0(9)
Z	4	8	2	4	4
$\rho_{calc}g/cm^3$	1.457	1.671	1.898	1.579	1.391
μ/mm^{-1}	1.009	1.752	2.822	1.398	0.697
F(000)	2432.0	3024.0	860.0	1848.0	1504.0
Crystal size/mm ³	0.28 imes 0.18 imes 0.11	$0.40 \times 0.23 \times 0.14$	$0.52 \times 0.25 \times 0.23$	$0.40 \times 0.07 \times 0.07$	$0.52 \times 0.32 \times 0.21$
2Θ range /°	3.058 to 53.072	4.69 to 59.908	3.92 to 61.72	2.774 to 50.252	4.32 to 61.14
	$-19 \le h \le 18$	$\text{-}25 \leq h \leq 25$	$\text{-13} \le h \le 13$	$\text{-10} \le h \le 10$	$\text{-}15 \leq h \leq 15$
Index ranges	$-25 \le k \le 25$	$\textbf{-43} \leq k \leq 44$	$\textbf{-15} \leq k \leq 14$	$\text{-}26 \leq k \leq 26$	$\text{-}25 \leq k \leq 26$
	$-21 \le 1 \le 23$	$-14 \le l \le 14$	$-23 \le l \le 23$	$-23 \le 1 \le 23$	$-24 \le 1 \le 25$
Refls collected	49698	16813	23689	41131	39214
Independent	11278	4175	8951 [6885	10149
reflections	$[R_{int} = 0.1144,$	$[R_{int} = 0.0716,$	$R_{int} = 0.0575,$	$[R_{int} = 0.0813,$	$[R_{int} = 0.0784,$
	$R_{sigma} = 0.0975$	$R_{sigma} = 0.0631$	$R_{sigma} = 0.0666$	$R_{sigma} = 0.0888$	$R_{sigma} = 0.0746$
Data/restraints/ parameters	11278/0/668	4175/1/187	8951/0/354	6885/11/426	10149/0/410
GOF	1.013	0.981	1.024	1.091	1.020
Final R indexes	$R_1 = 0.0454,$	$R_1 = 0.0308$,	$R_1 = 0.0324,$	$R_1 = 0.0565,$	$R_1 = 0.0407,$
[I>=2σ (I)]	$wR_2 = 0.0969$	$wR_2 = 0.0635$	$wR_2 = 0.0799$	$wR_2 = 0.1649$	$wR_2 = 0.0928$
Final R indexes	$R_1 = 0.0720,$	$R_1 = 0.0334,$	$R_1 = 0.0374,$	$R_1 = 0.0775,$	$R_1 = 0.0570,$
[all data]	$wR_2 = 0.1079$	$wR_2 = 0.0644$	$wR_2 = 0.0825$	$wR_2 = 0.1822$	$wR_2 = 0.1003$
Largest diff. peak/ hole / e Å ⁻³	0.80/-1.33	0.83/-0.89	1.14/-1.51	3.10/-2.35	1.00/-0.54
Flack parameter	-	-0.020(15)	-	-	-

Experimental Procedures

Synthesis of $[{(o-PPh_2C_6H_4)_2BPh}Pd(p-CF_3C_6H_4)I]$ 7c

[{(o-PPh₂C₆H₄)₂BPh}Pd(2,6-lutidine)] **6a** (50 mg, 60 μ mol, 1 equiv.) and 4-iodobenzotrifluoride (16 mg, 60 μ mol, 1 equiv.) were solved in benzene (1 mL) and stirred for 1 h. The solvent was reduced *in vacuo*, leading to a yellow precipitate. The solvent was decanted, the residue

was washed with pentane (2 x 1 mL) and was dried under reduced pressure, yielding the title compound (42 mg, 43 μ mol, 72 %).

¹**H NMR** (400 MHz, THF-*d*₈): δ = 4.34 (br, 1 H), 5.93 – 6.03 (m, 2 H), 6.05 (br, 1 H), 6.20 – 6.30 (m, 2 H), 6.30 – 6.37 (m, 2 H), 6.67 – 6.75 (m, 3 H), 6.87 (br, 1 H), 6.92 – 7.03 (m, 2 H), 7.24 – 7.30 (m, 5 H), 7.33 – 7.37 (m, 2 H), 7.39 – 7.50 (m, 9 H), 7.53 – 7.64 (m, 2 H), 7.71 (br, 1 H), 8.22 – 8.39 (m, 4 H) ppm.

¹¹B{¹H} NMR (128 MHz, THF- d_8): $\delta = 60$ (s, $w_{1/2} = 3000 \pm 1000$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, THF- d_8): $\delta = 121.04 - 121.49$ (br), 124.35 - 124.91 (br), 127.34 (d, J = 8.6 Hz), 127.55, 127.61, 127.66, 128.12 (d, J = 2.0 Hz), 128.52 (d, J = 9.8 Hz), 129.07, 129.25 (d, J = 6.1 Hz), 129.57 (d, J = 11.0 Hz), 129.72 (d, J = 2.8 Hz), 130.00 (d, J = 2.4 Hz), 130.51, 130.55, 131.35 (d, J = 2.3 Hz), 131.91 (d, J = 21.4 Hz), 132.38, 132.59, 132.79 (d, J = 2.4 Hz), 132.88, 133.28, 133.37, 133.60 (d, J = 9.1 Hz), 133.74, 133.81 (d, J = 5.9 Hz), 134.14 (d, J = 2.5 Hz), 134.68 (d, J = 2.5 Hz), 135.47, 135.66, 135.95 (d, J = 2.4 Hz), 137.77 (d, J = 13.6 Hz), 138.05, 138.49, 140.81 (d, J = 11.4 Hz), 144.78 - 145.18 (m), 156.18 - 157.62 (m), 162.90 - 163.24 (m), 164.14 - 164.60 (m) ppm.

¹⁹**F**{¹**H**} **NMR** (377 MHz, THF-*d*₈): $\delta = -62.50$ (s) ppm. ³¹**P**{¹**H**} **NMR** (162 MHz, THF-*d*₈): $\delta = 17.36$ (d, ²*J*_{P-P} = 37.3 Hz, 1P), 33.39 (d, ²*J*_{P-P} = 37.4 Hz, 1P) ppm.

CHN Found: C, 59.4; H, 3.5. C₄₉H₃₇BF₃IP₂Pd requires C, 59.5; H, 3.8%.

Synthesis of $[{(o-PPh_2C_6H_4)_2BPh}Pd(p-NO_2C_6H_4)I]$ 7d

[{(o-PPh₂C₆H₄)₂BPh}Pd(2,6-lutidine)] **6a** (50 mg, 60 μ mol, 1 equiv.) and 4-nitroiodobenzene (15 mg, 60 μ mol, 1 equiv.) were solved in benzene (1 mL) and stirred for 1 h. The solvent was decanted and the greyish precipitate was washed with pentane (2 x 1 mL). The solid was

dried under reduced pressure, yielding the title compound (48 mg, 50 μ mol, 80 %). Single crystals suitable for X-ray diffraction analysis were grown from a concentrated benzene solution.

¹**H NMR** (400 MHz, benzene-*d*₆): $\delta = 4.43 - 4.69$ (br., 1 H), 6.06 - 6.18 (m, 4 H), 6.21 - 6.28 (m, 2 H), 6.31 - 6.37 (m, 2 H), 6.45 - 6.50 (m, 1 H), 6.54 - 6.64 (m, 2 H), 6.89 - 7.01 (m, 5 H), 7.03 - 7.08 (m, 2 H), 7.10 - 7.25 (m, 9 H), 7.40 - 7.51 (m, 1 H), 7.56 - 7.65 (m, 2 H), 7.77 - 7.92 (br., 1 H), 8.03 - 8.14 (m, 2 H), 8.46 - 8.59 (m, 2 H), 8.63 - 9.10 (br., 1 H) ppm.

¹¹B{¹H} NMR (128 MHz, benzene- d_6): $\delta = 63$ (s, $w_{1/2} = 3000 \pm 1000$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, dichloromethane- d_2): $\delta = 127.17$ (d, J = 8.8 Hz), 127.35, 127.46, 127.52, 128.14 (d, J = 2.1 Hz), 128.49 (d, J = 9.9 Hz), 129.29, 129.35, 129.46, 129.90 (d, J = 2.9 Hz), 130.03, 130.05, 130.54 (d, J = 2.5 Hz), 131.30 – 131.53 (m), 131.60, 132.04, 132.29, 132.34 – 132.66 (m), 132.66 (d, J = 2.5 Hz), 132.84 (d, J = 6.2 Hz), 132.96, 133.07 (d, J = 2.3 Hz), 133.16 (d, J = 9.3 Hz), 133.62 (d, J = 2.2 Hz), 134.21 (d, J = 2.5 Hz), 134.54 (d, J = 2.7 Hz), 135.48, 135.67, 136.87 (d, J = 13.3 Hz), 137.20, 137.65, 140.14 (d, J = 11.5 Hz), 144.02 – 144.28 (m), 144.66, 155.11 – 157.08 (m), 171.09 (d, J = 3.4 Hz), 172.37 (d, J = 3.3 Hz) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, benzene-*d*₆): $\delta = 19.2$ (d, ²*J*_{P-P} = 37 Hz, 1 P), 34.8 (d, ²*J*_{P-P} = 37 Hz, 1P) ppm.

CHN Found: C, 62.1; H, 4.7; N, 0.9 C₄₈H₃₇NBIO₂P₂Pd·C₆H₆ requires C, 62.1; H, 4.2; N, 1.3%.

Synthesis of $[{(o-PPh_2C_6H_4)_2B}PdI]$ 8

 $[{(o-PPh_2C_6H_4)_2BPh}]Pd(2,6-lutidine)]$ **6a** (350 mg, 0.425 mmol, 1.0 equiv.) was solved in benzene (3 mL) and iodobenzene (100 mg, 0.490 mmol, 1.15 equiv.) was added dropwise. The solution was stirred for 24 h,

leading to a yellow precipitate. The mother liquor was decanted and the residue was washed with pentane (2 mL) and dichloromethane (2 x 1 mL). The remaining solid was dried *in vacuo*, yielding the title compound as a yellow powder (102 mg, 0.133 mmol, 31 %). Single crystals suitable for X-ray diffraction analysis were grown from a saturated benzene solution.

¹**H** NMR (400 MHz, dichloromethane-*d*₂): $\delta = 8.06 - 8.03$ (m, 2 H), 7.78 - 7.71 (m, 8 H), 7.71 - 7.65 (m, 2 H), 7.63 - 7.58 (m, 4 H), 7.47 - 7.39 (m, 12 H) ppm.

¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2): $\delta = 97$ (s, $w_{1/2} = 1250 \pm 250$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, dichloromethane- d_2): $\delta = 128.88$, 129.08 (pt, J = 5.1 Hz), 131.00, 131.36, 133.04 (pt, J = 3.1 Hz), 133.66 (pt, J = 21.9 Hz), 133.99, 134.46 (pt, J = 7.0 Hz), 135.24 (pt, J = 13.3 Hz), 150.97 (pt, J = 22.8 Hz) ppm.

³¹P{¹H} NMR (162 MHz, dichloromethane- d_2): $\delta = 45.4$ (s) ppm.

IR data (KBr disc): $\tilde{\nu} = 3051$ (w), 1573 (w), 1480 (m), 1433 (s), 1310 (vw), 1256 (m), 1245 (m), 1222 (m), 1182 (w), 1152 (w), 1128 (m), 1095 (m), 1067 (vw), 1028 (vw), 997 (w), 877 (w), 805 (w), 767 (m), 748 (s), 718 (m), 693 (s), 644 (vw), 594 (w), 582 (vw), 512 (s), 505 (vs), 432 (w) cm⁻¹.

CHN Found: C, 56.2; H, 3.7. C₃₆H₂₈BIP₂Pd requires C, 56.4; H, 3.7%.

Synthesis of [trans-{(2-biphenyl)diphenylphosphine}Pd(2,6-lutidine)I₂] 17

The combined mother liquor und washing solutions of pincer **8** synthesis were overlaid with *n*-hexane. Single crystals suitable for single crystal X-ray diffraction analysis formed within 48 h.

¹**H NMR** (400 MHz, dichloromethane- d_2): $\delta = 3.10$ (s, 6 H), 7.07 – 7.17 (m, 5 H), 7.17 – 7.23 (m, 1 H), 7.27 – 7.35 (m, 5 H), 7.36 – 7.42 (m, 3 H), 7.45 – 7.49 (m, 2 H), 7.54 (m, 1 H), 7.57 (m, 1H), 7.75 – 7.83 (m, 4 H) ppm.

¹³C{¹H} NMR (101 MHz, dichloromethane- d_2): $\delta = 28.53$, 123.42 (d, J = 4.8 Hz), 126.19 (d, J = 9.7 Hz), 127.22, 128.07, 128.20 (d, J = 2.7 Hz), 130.80 (d, J = 2.7 Hz), 130.85, 130.88, 131.41, 132.25 (d, J = 6.4 Hz), 133.00 (d, J = 8.8 Hz), 136.84 (d, J = 10.1 Hz), 138.97, 142.45 (d, J = 3.5 Hz), 145.34 (d, J = 9.6 Hz), 160.18 (d, J = 1.1 Hz) ppm.

³¹P{¹H} NMR (162 MHz, dichloromethane- d_2): $\delta = 21.4$ (s) ppm.

IR data (KBr disc): $\tilde{\nu} = 3055$ (m), 2976 (w), 1606 (w), 1581 (w), 1479 (w), 1463 (s), 1435 (s), 1398 (m), 1372 (m), 1311 (vw), 1258 (m), 1183 (w), 1159 (m), 1124 (vw), 1107 (w), 1093 (m), 1072 (vw), 1027 (w), 998 (w), 916 (w), 839 (vw), 775 (m), 741 (s), 731 (s), 689 (s), 691 (s), 614 (w), 556 (vw), 540 (w), 523 (vs), 504 (s), 459 (w), 438 (w), 425 (w).

Synthesis of [{(o-PPh₂C₆H₄)₂B(pyridine)}PdI] **18a**

 $\begin{bmatrix} \{(o-PPh_2C_6H_4)_2B\}PdI \end{bmatrix} 8 (10.0 \text{ mg}, 13.1 \mu\text{mol}, 1 \text{ equiv.}) \text{ was suspended in} \\ n-\text{hexane} (2 \text{ mL}) \text{ and pyridine} (0.1 \text{ mL}, \text{ excess}) \text{ was added dropwise. After} \\ stirring for 2 h, the liquid was decanted, the yellow solid was washed with} \\ n-\text{pentane and dried$ *in vacuo* $, yielding the title compound (10.4 mg, 12.4 \mu\text{mol}, 95 %). \\ Single crystals suitable for X-ray diffraction analysis were grown by overlaying a saturated dichloromethane solution with$ *n* $-pentane. \\ \end{bmatrix}$

¹**H NMR** (400 MHz, dichloromethane- d_2): $\delta = 6.76 - 6.87$ (m, 2 H), 7.14 - 7.35 (m, 19 H), 7.43 - 7.52 (m, 6 H), 7.60 (m, 4 H), 8.13 (m, 2 H) ppm.

¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2): $\delta = 17$ (s, $w_{1/2} = 400 \pm 100$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, dichloromethane- d_2): $\delta = 125.45$, 127.92 (pt, J = 3.2 Hz), 128.54 (pt, J = 3.5 Hz), 128.85 (pt, J = 4.5 Hz), 130.12 (d, J = 16.5 Hz), 130.47, 133.09 (pt, J = 14.0 Hz), 134.05, 134.34 (pt, J = 6.7 Hz), 134.60 (pt, J = 6.5 Hz), 136.13, 144.56, 146.84 ppm.

³¹P{¹H} NMR (162 MHz, dichloromethane- d_2): $\delta = 40.1$ (s) ppm.

CHN Found: C, 57.7; H, 4.2; N, 1.3. C₄₁H₃₃NBIP₂Pd requires C, 58.2; H, 4.0; N, 1.7%.

Synthesis of $[{(o-PPh_2C_6H_4)_2B(3,5-lutidine)}PdI]$ **18b**

[{(o-PPh₂C₆H₄)₂B}PdI] **8** (10.0 mg, 13.1 μ mol, 1 equiv.) was solved in dichloromethane (1 mL) and 3,5-lutidine (0.1 mL, excess) was added dropwise. After stirring for 2 h, the solvent was removed *in vacuo*. The yellow solid was washed with *n*-pentane (2 x 1 mL) and dried *in vacuo*,

yielding the title compound (10.4 mg, 11.9 µmol, 91 %).

¹**H** NMR (400 MHz, dichloromethane- d_2): $\delta = 1.83$ (s, 6 H, CH₃), 6.92 (s, 1 H), 7.39 – 7.23 (m, 18 H), 7.60 – 7.51 (m, 6 H), 7.75 – 7.69 (m, 4 H), 7.80 (s, 2 H) ppm.

¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2): $\delta = 16$ (s, $w_{1/2} = 500 \pm 100$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, dichloromethane- d_2): $\delta = 18.49$, 127.82 (pt, J = 3.0 Hz), 128.49 (pt, J = 4.9 Hz), 128.64 (pt, J = 4.7 Hz), 130.03, 130.20, 130.36, 133.13 (pt, J = 14.1 Hz), 133.94, 134.49 (pt, J = 6.8 Hz), 134.59 (pt, J = 7.2 Hz), 135.47, 136.11 (pt, J = 20.4 Hz), 140.66, 144.49, 144.51 (s + pt, J = 21.7 Hz) ppm.

³¹P{¹H} NMR (162 MHz, dichloromethane- d_2): $\delta = 40.2$ (s) ppm.

CHN Found: C, 59.2; H, 4.3; N, 2.6. C₄₃H₃₇BINP₂Pd requires C, 59.1; H, 4.3; N, 1.60%.

In-situ generation of $[{(o-PPh_2C_6H_4)_2BMe}Pd]$

 $\begin{array}{l} & \underset{Ph_2P-Pd}{\overset{Me}{\qquad}} & \underset{Me}{\overset{Me}{\qquad}} & \underset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{Me}{\overset{Me}{\overset{Me}{\quad}} & \underset{Me}{\overset{$

¹**H** NMR (400 MHz, THF-*d*₈): $\delta = 0.54$ (t, *J* = 4.9 Hz, 3 H, BMe), 6.97 – 7.03 (m, 2 H), 7.15 – 7.26 (m, 10 H), 7.30 – 7.36 (m, 6 H), 7.52 – 7.60 (m, 4 H), 7.61 – 7.69 (m, 4 H), 7.69 – 7.73 (m, 2 H) ppm.

¹¹**B**{¹**H**} **NMR** (128 MHz, THF-*d*₈): $\delta = 23$ (s, w_{1/2} = 500 ± 100 Hz) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, THF- d_8): $\delta = 30.7$ (s) ppm.

Synthesis of [{(o-PPh₂C₆H₄)₂BMe}Pd(PMe₃)] 19a

¹**H NMR** (400 MHz, THF-*d*₈): $\delta = 0.65$ (pt, *J* = 7.8 Hz, 3 H, BMe), 0.82 (d, ²*J*_{P-H} = 4.6 Hz, 9 H, PMe₃), 6.95 – 7.02 (m, 2 H), 7.08 – 7.30 (m, 14 H), 7.32 – 7.36 (m, 6 H), 7.51 – 7.58 (m, 4 H), 7.77 – 7.81 (m, 2 H) ppm.

¹¹**B**{¹**H**} **NMR** (128 MHz, THF-*d*₈): $\delta = 25$ (s, w_{1/2} = 500 ± 100 Hz) ppm.

¹³C{¹H} NMR (101 MHz, THF- d_8) $\delta = 15.43$ (br, BMe), 18.58 (d, J = 10.0 Hz, PMe₃), 125.46 (pt, J = 2.9 Hz), 128.72 (pt, J = 4.5 Hz), 129.00 (pt, J = 4.4 Hz), 129.23, 129.32,

129.64, 131.57 (pt, *J* = 17.1 Hz), 132.58, 133.95 (ptd, *J* = 7.4, 4.9 Hz), 138.61 (pt, *J* = 15.7 Hz), 140.71 (pt, *J* = 16.0 Hz), 142.20 – 142.98 (m), 170.70 (br) ppm.

³¹P{¹H} NMR (162 MHz, THF- d_8): $\delta = -38.2$ (s, 1 P, PMe₃), 38.5 (s, 2 P, ArPPh₂) ppm.

CHN Found: C, 65.6; H, 5.8. C₄₀H₄₀BP₃Pd requires C, 65.7; H, 5.5.

Synthesis of [{(o-PPh₂C₆H₄)₂BCH₂Ph}Pd(PMe₃)] **19b**

[{(o-PPh₂C₆H₄)₂B}PdI] **8** (10 mg, 13 μ mol, 1 equiv.) was suspended in THF (1.0 mL) and (PhCH₂)₂Mg (1.3 mg, 6.5 μ mol, 0.5 equiv.) was added, followed by PMe₃ (0.02 mL, 1.0 M in toluene, 20 μ mol, 1.5 equiv.). The solution was filtered and the solvent was removed *in vacuo*. The yellow

residue was washed with n-pentane and dried under reduced pressure, yielding the title compound (6.9 mg, 8.6 µmol, 66 %).

¹**H NMR** (400 MHz, THF-*d*₈): $\delta = 0.74$ (d, *J* = 4.5 Hz, 9 H, PMe₃), 2.59 (q, *J* = 7.6 Hz, 2 H, BCH₂), 6.66 – 6.70 (m, 2 H), 6.74 – 6.80 (m, 2 H), 6.81 – 6.85 (m, 1 H), 6.94 – 7.05 (m, 5 H), 7.12 – 7.17 (m, 5 H), 7.22 – 7.29 (m, 11 H), 7.31 – 7.35 (m, 5 H), 7.80 – 7.84 (m, 2 H) ppm.

¹¹B{¹H} NMR (128 MHz, THF- d_8): $\delta = 20$ (s, $w_{1/2} = 500 \pm 100$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, THF- d_8): $\delta = 18.46$ (d, J = 9.1 Hz, PMe₃), 46.16 (bs, BCH₂, confirmed by HSQC), 122.82, 125.56 (m), 127.75, 128.75 (pt, J = 4.4 Hz), 128.92, 129.05 (pt, J = 4.4 Hz), 129.27, 129.40, 129.71, 129.76, 132.40 (ptd, J = 17.1, 3.5 Hz), 132.79, 133.90 (pt, J = 6.9 Hz), 134.23 (pt, J = 7.4 Hz), 138.54 – 138.85 (m), 149.32, 169.51 (br) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, THF-*d*₈): $\delta = -40.6$ (br, 1 P, PMe₃), 39.4 (d, ²*J*_{P-P} = 13 Hz, 2 P, ArPPh₂) ppm.

Synthesis of [{(o-PPh₂C₆H₄)₂BCH₂SiMe₃}Pd(PMe₃)] **19c**

[{(*o*-PPh₂C₆H₄)₂B}PdI] **8** (10 mg, 13 μ mol, 1 equiv.) was suspended in THF (1.0 mL) and (Me₃SiCH₂)₂Mg (1.3 mg, 6.5 μ mol, 0.5 equiv.) was added, followed by PMe₃ (0.02 mL, 1.0 M in toluene, 20 μ mol, 1.5 equiv.). The solution was filtered and the solvent was removed under reduced

pressure. The yellow residue was washed with *n*-pentane and dried *in vacuo*, yielding the title compound (7.8 mg, 9.7 mmol, 75 %).

¹**H NMR** (400 MHz, THF-*d*₈): $\delta = -0.24$ (s, 9 H, SiMe₃), 0.70 (pt, *J* = 6.3 Hz, 2 H, BCH₂), 0.87 (d, *J*_{P-H} = 4.6 Hz, 9 H, PMe₃), 6.97 – 7.05 (m, 6 H), 7.08 – 7.18 (m, 8 H), 7.20 – 7.26 (m, 2 H), 7.28 – 7.34 (m, 6 H), 7.46 – 7.55 (m, 4 H), 7.95 – 7.99 (m, 2 H) ppm.

¹¹B{¹H} NMR (128 MHz, THF- d_8): $\delta = 28$ (s, $w_{1/2} = 500 \pm 100$ Hz) ppm.

¹³C{¹H} NMR (101 MHz, THF- d_8): $\delta = 2.15$ (SiMe₃), 13.00 (br, BCH₂), 19.44 (d, J = 10.2 Hz, PMe₃), 45.00 (bs), 125.70 (m), 128.62 (pt, J = 4.4 Hz), 128.72 – 129.00 (m), 129.12 , 129.42 , 131.78 – 132.45 (m), 133.12 , 133.69 (pdt, J = 9.3, 7.5 Hz), 138.69 – 139.24 (m), 141.47 – 142.04 (m), 142.70 (m) ppm.

³¹P{¹H} NMR (162 MHz, THF- d_8): $\delta = -37.8$ (s, 1 P, PMe₃), 35.3 (s, 2 P, ArPPh₂) ppm.

HRMS (EI): $m/z = [M - PMe_3]^+$ calculated for C₄₀H₃₉BP₂PdSi: 726.1424, found 726.1419 (+ 0.04 ppm).

NMR Spectra

Fig. S2. ¹¹B{¹H} NMR (128 MHz, THF- d_8) of [{(*o*-PPh₂C₆H₄)₂BPh}Pd{*p*-(CF₃)C₆H₄}I] **7c**.

Fig. S4. ¹⁹ $F{^{1}H}$ NMR (377 MHz, THF-*d*₈) of [{(*o*-PPh₂C₆H₄)₂BPh}Pd(*p*-CF₃C₆H₄)I] **7c**.

Fig. S6. ¹H NMR (400 MHz, benzene- d_6) of [{(*o*-PPh₂C₆H₄)₂BPh}Pd(*p*-NO₂C₆H₄)I] **7d**.

Fig. S7. ${}^{11}B{}^{1}H{}$ NMR (128 MHz, benzene- d_6) of [{(o-PPh₂C₆H₄)₂BPh}Pd(p-NO₂C₆H₄)I] 7d.

Fig. S8. ${}^{11}B{}^{1}H$ NMR (128 MHz, benzene- d_6) of **7d** after background substraction.

Fig. S10. ${}^{31}P{}^{1}H$ NMR (162 MHz, benzene- d_6) of [{(o-PPh₂C₆H₄)₂BPh}Pd(p-NO₂C₆H₄)I] 7d.

Fig. S11. VT ¹H NMR (400 MHz, tetrahydrofurane- d_8) of [{(o-PPh₂C₆H₄)₂BPh}Pd(p-NO₂C₆H₄)I] **7d**.

Fig. S12. COSY (400 MHz, -40 °C, tetrahydrofurane- d_8) of [{(o-PPh₂C₆H₄)₂BPh}Pd(p-NO₂C₆H₄)I] 7d.

Fig. S13. HSQC (400 MHz, -40 °C, tetrahydrofurane- d_8) of [{(o-PPh₂C₆H₄)₂BPh}Pd(p-NO₂C₆H₄)I] 7d.

Fig. S14. ¹H NMR (400 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B}PdI] 8

Fig. S15. ¹¹B $\{^{1}H\}$ NMR (128 MHz, dichloromethane- d_{2}) of [$\{(o-PPh_{2}C_{6}H_{4})_{2}B\}PdI$] 8

Fig. S16. ¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B}PdI] **8** after background subtraction.

Fig. S18. ³¹P{¹H} NMR (162 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B}PdI] 8

Fig. S19. ³¹P{¹H} NMR (162 MHz, benzene- d_6) monitoring of the reaction [{(*o*-PPh₂C₆H₄)₂BPh}Pd(2,6-lutidine)] **6** and 1.5 equiv PhI at r.t..

Fig. S20. ¹H NMR (400 MHz, dichloromethane- d_2) spectrum of [*trans*-{(2-bi-phenyl)-di-phenyl-phosphine}Pd(2,6-lutidine)I₂] **17**.

Fig. S21. ³¹P{¹H} NMR (162 MHz, dichloromethane- d_2) of [*trans*-{(2-biphenyl)diphenylphosphine}Pd(2,6-lutidine)I₂] **17**.

Fig. S22. ¹³C{¹H} NMR (101 MHz, dichloromethane- d_2) of [trans-{(2-biphenyl)diphenylphosphine}Pd(2,6-lutidine)I₂] **17**.

Fig. S23. ¹H NMR (400 MHz, dichloromethane- d_2) spectrum of [{(o-PPh₂C₆H₄)₂B(pyridine)}PdI] 18a.

Fig. S24. ¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(pyridine)}PdI] **18a**.

Fig. S26. ³¹P{¹H} NMR (162 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(pyridine)}PdI] **18a**.

Fig. S27. ¹H NMR (400 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(3,5-lutidine)}PdI] 18b.

-16

Fig. S28. ¹¹B{¹H} NMR (128 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(3,5-lutidine)}PdI] 18b.

Fig. S29. ¹³C{¹H} NMR (101 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(3,5-lutidine)}PdI] 18b.

Fig. S30. ³¹P{¹H} NMR (162 MHz, dichloromethane- d_2) of [{(o-PPh₂C₆H₄)₂B(3,5-lutidine)}PdI] **18b**.

Fig. S32. ¹¹B $\{^{1}$ H $\}$ NMR (128 MHz, THF-*d*₈) of [$\{(o-PPh_{2}C_{6}H_{4})_{2}BMe\}Pd$].

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 chemical shift (ppm) **Fig. S33.** ${}^{31}P{}^{1}H$ NMR (162 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BMe}Pd].

Fig. S34. ¹H NMR (400 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BMe}Pd] after 6 d.

Fig. S35. ${}^{31}P{}^{1}H$ NMR (162 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BMe}Pd] after 6 d.

Fig. S36. ¹H NMR (400 MHz, THF- d_8) spectrum of [{(o-PPh₂C₆H₄)₂BMe}Pd(PMe₃)] 19a.

Fig. S38. ¹³C{¹H} NMR (101 MHz, THF- d_8) of [{(*o*-PPh₂C₆H₄)₂BMe}Pd(PMe₃)] **19a**.

Fig. S40. ¹H NMR (400 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BCH₂Ph}Pd(PMe₃)] 19b.

Fig. S41. ${}^{13}C{}^{1}H$ NMR (100 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BCH₂Ph}Pd(PMe₃)] 19b.

Fig. S42. ¹¹B ${}^{1}H$ NMR (128 MHz, THF-*d*₈) of [${(o-PPh_2C_6H_4)_2BCH_2Ph}Pd(PMe_3)$] 19b.

Fig. S43. ${}^{31}P{}^{1}H$ NMR (161.9 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BCH₂Ph}Pd(PMe₃)] 19b.

Fig. S44. ¹H NMR (400 MHz, THF-*d*₈) of [{(*o*-PPh₂C₆H₄)₂BCH₂SiMe₃}Pd(PMe₃)] **19c**.

Fig. S46. ¹³C{¹H} NMR (101 MHz, THF- d_8) of [{(*o*-PPh₂C₆H₄)₂BCH₂SiMe₃}Pd(PMe₃)] **19c**.

Fig. S47. ${}^{31}P{}^{1}H$ NMR (162 MHz, THF- d_8) of [{(o-PPh₂C₆H₄)₂BCH₂SiMe₃}Pd(PMe₃)] 19c.

References

- 1 T. Schindler, M. Lux, M. Peters, L. T. Scharf, H Osseili, L. Maron and M. E. Tauchert, *Organometallics*, 2015, **34**, 1978.
- 2 SAINT, Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
- 3 SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339.
- 5 G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 6 G. M. Sheldrick, Acta Cryst., 2015, C71, 3.