Enantioselective Formation of Cyclopropane Spiroindenes from Benzofulvenes in a Phase Transfer Catalysis System

Bjarke S. Donslund, Nicolaj Inunnguaq Jessen, Joakim Bøgelund Jakobsen, Alicia Monleón, Rune Pagh Nielsen and Karl Anker Jørgensen*

[*] Department of Chemistry, Aarhus University

DK-8000 Aarhus C, Denmark

e-mail: kaj@chem.au.dk

Contents

1. General methods	S1
2. Synthesis and characterisation of starting materials	S2
3. Phase transfer catalyst screening	S 4
4. Procedure and characterisation of synthesized phase transfer	
catalysts	S11
5. General procedure for the organocatalytic reaction	S15
5.1. Asymmetric synthesis of chiral cyclopropane spiroindenes 3	S15
5.2. Characterisation of cyclopropane spiroindenes 3	S16
6. Preparation of cyclopropane spiroindene amides 3'	S22
7. Crystallographic data for compound 3q	S23
8. NMR spectra	S24
9. UPC ² traces	S54

1. General methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer running at 400 MHz for ¹H and 100 MHz for ¹³C. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃, 7.26 ppm; CD₃OD, 3.31 ppm; DMSO-d₆, 2.50 ppm for ¹H NMR and CDCl₃, 77.0 ppm; CD₃OD, 49.0 ppm; DMSO-d₆, 39.52 ppm for ¹³C NMR). The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. ¹³C NMR spectra were acquired in broad band decoupled mode. Mass spectra were recorded on a Bruker Maxis Impact-TOF-MS with electrospray ionization (ESI+) (referenced to the mass of the charged species). Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet radiation or KMnO₄ stain. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) was used. Optical rotations were measured on a Bellingham+Stanley ADP440+ polarimeter, α values are given in deg·cm³·g⁻¹·dm⁻¹; concentration c in g $(100 \text{ mL})^{-1}$. The diastereomeric ratio (dr) of products was evaluated by ¹H NMR analysis of the crude mixture. The enantiomeric excess (ee) of the products was determined by Ultraperformance Convergence Chromatography (ACQUITY UPC2) using Daicel Chiralpak IA, IB, IC, ID columns as chiral stationary phases. Unless otherwise noted, gradient runs were performed with 100% supercritical CO₂ for 30 s, then going from 99:1 to 60:40 CO₂/solvent over 10 min. Reference samples for UPC² analysis were prepared following the general method using achiral tetrabutylammonium bromide (TBAB) as catalyst. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification.

2. Synthesis and characterisation of starting materials

1*H*-Indene-3-carbonitrile derivatives and benzofulvenes **1** were prepared following procedures previously described.¹ Characterisation data for previously undescribed substrates is provided below. Ethyl 2-bromo-3-oxobutanoate (**2b**) was synthesized according to a literature procedure.²

6-Chloro-1*H*-indene-3-carbonitrile was isolated as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.48 (m, 2H), 7.39 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.30 (t, *J* = 2.1 Hz, 1H), 3.63 (d, *J* = 2.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 143.3, 138.7, 133.2, 127.6, 124.6, 121.2, 116.6, 114.2, 39.4. HRMS (ESI+) *m/z* calcd. for C₁₀H₆CIN [M+H]⁺: 176.0262; found: 176.0252.

(*E*)-1-(4-Nitrobenzylidene)-1*H*-indene-3-carbonitrile (**1c**) was isolated as an orange solid. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, *J* = 8.7 Hz, 2H), 7.76–7.72 (m, 4H), 7.53 (d, *J* = 6.8 Hz, 1H), 7.48–7.39 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 147.9, 141.7, 140.5, 138.2, 135.1, 135.0, 132.1 (2C), 131.0, 129.4, 127.6, 124.2 (2C), 120.6,

120.2, 118.8, 114.8. **HRMS** (ESI+) m/z calcd. for $C_{17}H_{10}N_2O_2$ [M+H]⁺: 275.0815; found: 275.0816.

(*E*)-1-(Pyridin-2-ylmethylene)-1*H*-indene-3-carbonitrile (**1i**) was isolated as an orange solid. ¹H NMR (**400** MHz, CDCl₃): δ 8.77 (dd, *J* = 4.6, 1.0 Hz, 1H), 8.56 (s, 1H), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H), 7.72 (d, *J* = 7.0 Hz, 1H), 7.52–7.48 (m, 3H), 7.38 (td, *J* = 7.4, 1.3 Hz, 1H), 7.34 (td, *J* = 7.4, 1.3 Hz, 1H), 7.28 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H). ¹³C NMR (**100** MHz, CDCl₃): δ

154.2, 150.5, 140.0, 138.9, 138.5, 136.9, 135.9, 131.5, 128.9, 127.3, 127.0, 123.7, 120.3, 119.9, 117.3, 115.4. **HRMS** (ESI+) *m/z* calcd. for C₁₆H₁₀N₂ [M+H]⁺: 231.0917; found: 231.0921.

(*E*)-1-benzylidene-6-chloro-1*H*-indene-3-carbonitrile (**1n**) was isolated as a brown solid. ¹H NMR (**400** MHz, CDCl₃): δ 7.77 (s, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.62–7.59 (m, 3H), 7.53–7.47 (m, 3H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.36 (dd, *J* = 8.1, 1.8 Hz, 1H). ¹³C NMR (**100** MHz,

¹ B. S. Donslund, R. P. Nielsen, S. M. N. Mønsted and K. A. Jørgensen, *Angew. Chem. Int. Ed.*, 2016, DOI: 10.1002/anie.201605079.

² J. F. Okonya, R. V. Hoffman and M. C. Johnson, *J. Org. Chem*. 2002, **67**, 1102-1108.

CDCl₃): δ 137.4, 137.3, 136.5, 136.4, 136.3, 135.2, 133.3, 130.8 (2C), 130.5, 129.2 (2C), 128.2, 121.1, 120.2, 115.8, 115.0. **HRMS** (ESI+) m/z calcd. for $C_{17}H_{10}CIN [M+H]^+$: 264.0575; found: 264.0573.

(E)-7-Bromo-1-(2-methylpropylidene)-1H-indene-3-carbonitrile (1q) was isolated as an orange solid. ¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 10.3, 0.6 Hz, 1H), 7.55 (s, 1H), 7.50 (dd, J = 7.8, 2.0 Hz, 2H), 7.21 (t, J = 7.7 Hz, 1H), 3.17–3.08 (m, 1H), 1.24 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 141.4, 136.6, 136.3, 132.2, 131.1, 128.3, 119.4, 117.2, 114.8, 112.5, 31.0, 23.1 (2C). **HRMS** (ESI+) *m/z* calcd. for C₁₄H₁₂BrN [M+H]⁺: 274.0226/276.0205; found: 274.0223/276.0204.

3. Phase transfer catalyst screening

In a 4 mL vial containing a stirring bar, the catalyst³ and benzofulvene **1a** (0.025 mmol, 1 eq) were dissolved in toluene (0.5 mL) and cooled to 0 °C. A solution of K_3PO_4 (0.25 mmol) in water (50 μ L) was added and, finally, dimethyl bromomalonate (**2a**) (5 μ L, 0.038 mmol, 1.5 eq) was added by Hamilton syringe. The yellow reaction mixture was stirred vigorously overnight at 0 °C. After 24 h an aliquot of the organic phase was analysed by NMR⁴ and chiral stationary phase UPC².

Table 1. Screening of cinchonine derived catalysts.^a

Catalyst

 $^{^3}$ Stock solutions of the catalyst in CH₂Cl₂ were applied for screening reactions at 1.0, 0.1 and 0.05 mol% catalyst loading. The catalyst was added first and the CH₂Cl₂ was removed *in vacuo*.

⁴ In case of incomplete consumption of the benzofulvene, the conversion was determined by evaluating the NMR-signals at 7.69 ppm (one olefinic proton, benzofulvene **1a**) and 4.30 ppm (one proton on the cyclopropane, spiroindene **3a**).

^{*a*} Reactions performed on a 0.025 mmol scale. ^{*b*} Determined by chiral stationary phase UPC² following filtration of the reaction mixture. ^{*c*} Reaction performed at -25 °C. ^{*d*} Reaction time was 2 d. n.d. = not determined due to incomplete conversion.

 Table 2. Screening of cinchonidine derived catalysts.^a

^{*a*} Reactions performed on a 0.025 mmol scale. ^{*b*} Determined by chiral stationary phase UPC² following filtration of the reaction mixture.

Table 3. Screening of quinidine derived catalysts.^a

 $\overline{}^{a}$ Reactions performed on a 0.025 mmol scale. $\overline{}^{b}$ Determined by chiral stationary phase UPC² following filtration of the reaction mixture.

Entry	Catalyst	ee (%) ^b
1	HO N N N N	26
2	OMe N Ph OBz	-65
3		<35
4		-24
5	N N N N N N N N N N N N N N N N N N N	53
6		-29

Table 4. Screening of other types of cinchona alkaloid catalysts.^a

^a Reactions performed on a 0.025 mmol scale. ^b Determined by chiral stationary phase UPC² following filtration of the reaction mixture. ^c Reaction performed at -25 °C.

4. Procedure and characterisation of synthesized phase transfer catalysts

N(1)-p-Nitrobenzylquinidinium bromide (**4a**) was synthesized following a literature procedure.⁵ Quinidine (4.233 g, 13 mmol, 1 eq) was dissolved in dry THF (100 mL). 4-Nitrobenzyl bromide (2.818 g, 13 mmol, 1 eq) was added while stirring. The reaction mixture was refluxed for 1.5 h. After cooling to rt and stirring overnight, the precipitate was filtered off and

dried under vacuum, affording a colourless solid (6.643 g, 94% yield). $[\alpha]_D^{25} = +109$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, MeOD-d₄): δ 8.81–8.74 (m, 1H), 8.41 (d, *J* = 8.7 Hz, 2H), 8.05–7.99 (m, 3H), 7.92 (d, *J* = 4.6 Hz, 1H), 7.53 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.50 (d, *J* = 2.5 Hz, 1H), 6.66–6.56 (m, 1H), 6.10 (ddd, *J* = 17.4, 10.5, 7.2 Hz, 1H), 5.32 (d, *J* = 9.8 Hz, 1H), 5.29–5.27 (m, 1H), 5.24 (d, *J* = 12.6 Hz, 1H), 5.02 (d, *J* = 12.5 Hz, 1H), 4.55–4.45 (m, 1H), 4.11 (s, 3H), 4.08–3.97 (m, 2H), 3.67–3.57 (m, 1H), 3.21–3.08 (m, 1H), 2.73–2.62 (m, 1H), 2.62–2.49 (m, 1H), 2.03–1.95 (m, 1H), 1.95–1.88 (m, 2H), 1.22-1.09 (m, 1H). ¹³C NMR (100 MHz, MeOD-d₄): δ 160.1, 150.6, 148.2, 145.5, 144.8, 137.6, 136.3 (2C), 135.6, 131.8, 127.5, 125.1 (2C), 122.9, 121.7, 118.0, 103.2, 69.6, 67.2, 64.0, 58.5, 56.7, 56.4, 38.9, 28.4, 24.8, 22.4. HRMS (ESI+) *m/z* calcd. for C₂₇H₃₀N₃O₄ [M]⁺: 460.2231; found: 460.2236.

O(9)-Allyl-N(1)-p-nitrobenzylquinidinium bromide (**4b**) was synthesized following an adaptation of a known procedure.⁶ To a suspension of **4a** (540 mg, 1 mmol, 1 eq) in CH₂Cl₂ (10 mL) was added allyl bromide (0.27 mL, 3.2 mmol, 3.2 eq) and a solution of aqueous KOH (0.5 mL, 9.3 M, 4.6 mmol, 4.6 eq). The resulting mixture was stirred vigorously at rt (25 °C) for 4

d. The reaction mixture was diluted with water (5 mL) and extracted with CH_2Cl_2 (3x10 mL). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The crude product was purified by FC on silica gel (gradient: 5% to 10% MeOH in CH_2Cl_2). Dropwise addition of Et_2O to a solution of the product in MeOH afforded the product as a red solid containing minor amounts of impurities (115 mg, 20% yield). $[\alpha]_D^{25} = +132$ (*c* 1.0, CH_2Cl_2). ¹H **NMR (400 MHz, MeOD-d_4):** δ 8.81 (d, *J* = 4.6 Hz, 1H), 8.43 (d, *J* = 8.7 Hz, 2H), 8.06 (d, *J* = 9.3 Hz, 1H), 8.03–7.96 (m, 2H), 7.80 (d, *J* = 4.6 Hz, 1H), 7.65–7.42 (m, 2H), 6.39 (s, 1H), 6.31–6.19 (m, 1H), 6.12–5.99 (m, 1H), 5.50 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.39 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.32 (s,

⁵ M. Bandini, A. Eichholzer, M. Tragni and A. Umani-Ronchi, *Angew. Chem. Int. Ed.*, 2008, **47**, 3238-3241.

⁶ E. J. Corey, F. Xu and M. C. Noe, *J. Am. Chem. Soc.*, **1997**, *119*, 12414-12415.

1H), 5.29 (d, J = 6.9 Hz, 1H), 5.11–4.93 (m, 2H), 4.38–4.25 (m, 2H), 4.18 (dd, J = 12.1, 5.7 Hz, 1H), 4.11 (s, 3H), 4.07–3.94 (m, 2H), 3.74–3.64 (m, 1H), 3.20–3.06 (m, 1H), 2.74–2.59 (m, 2H), 2.07–1.99 (m, 1H), 1.94–1.85 (m, 2H), 1.37–1.25 (m, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 160.2, 150.6, 148.2, 145.3, 141.0, 137.5, 136.4 (2C), 135.4, 134.8, 131.9, 128.4, 125.1 (2C), 123.6, 121.9, 119.5, 118.1, 103.0, 74.8, 71.3, 69.7, 64.4, 58.5, 56.8, 56.6, 38.6, 28.2, 24.5, 23.0. HRMS (ESI+) m/z calcd. for C₃₀H₃₄N₃O₄ [M]⁺: 500.2544; found: 500.2553.

O(9)-Benzyl-N(1)-p-nitrobenzylquinidinium bromide (**4c**) was synthesized following an adaptation of a known procedure.⁴ To a suspension of **4a** (540 mg, 1 mmol, 1 eq) in CH₂Cl₂ (5 mL) was added benzyl bromide (0.14 mL, 1.2 mmol, 1.2 eq) and a solution of aqueous NaOH (0.5 mL, 8 M, 4 mmol, 4 eq). The resulting mixture was stirred vigorously at rt (25 °C)

overnight. The reaction mixture was diluted with water (5 mL) and extracted with CH₂Cl₂ (3x10 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by FC on silica gel (7% MeOH in CH₂Cl₂ containing 1% Et₃N). Dropwise addition of Et₂O to a solution of the product in MeOH afforded crystals containing an impurity believed to be triethylammonium bromide. Purification by FC on silica gel (8% MeOH in CH₂Cl₂) yielded a pale red foam. [α]²⁵_D = +73.2 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, MeOD-d₄): δ 8.84 (d, *J* = 4.6 Hz, 1H), 8.39 (d, *J* = 8.5 Hz, 2H), 8.09 (d, *J* = 9.2 Hz, 1H), 7.94–7.77 (m, 3H), 7.65 – 7.23 (m, 7H), 6.40 (bs, 1H), 5.95 (ddd, *J* = 17.3, 10.6, 6.7 Hz, 1H), 5.25 – 5.03 (m, 2H), 4.83 – 4.61 (m, 3H), 4.23 (t, 1H), 4.17 – 3.88 (m, 5H), 3.57 (t, *J* = 11.4 Hz, 1H), 3.17 – 3.01 (m, 1H), 2.72 – 2.56 (m, 2H), 2.07 – 1.94 (m, 1H), 1.94 – 1.81 (m, 2H), 1.42 – 1.26 (m, 2H). ¹³C NMR (100 MHz, MeOD-d₄): δ 160.3, 150.8, 148.3, 145.4, 140.7, 137.8, 137.4, 136.2 (2C), 135.0, 132.1, 130.4 (2C), 130.2 (2C), 130.1, 128.4, 125.2 (2C), 123.3, 122.2, 118.0, 103.1, 74.0, 72.6, 69.6, 63.9, 58.5, 56.6, 56.3, 38.6, 28.2, 24.4, 22.9. HRMS (ESI+) *m/z* calcd. for C₃₄H₃₆N₃O₄ [M]⁺: 550.2700; found: 550.2700.

O(9)-Benzoyl-N(1)-p-nitrobenzylquinidinium bromide (**4d**) was synthesized following an adaptation of a known procedure.⁷ Under an atmosphere of nitrogen, N(1)-p-nitrobenzylquinidinium bromide (**4a**) (540 mg, 1 mmol, 1 eq), benzoic acid (183 mg, 1.5 mmol, 1.5 eq), and 4-DMAP (12.2

⁷ H. Yao, M. Lian, Z. Li, Y. Wang and Q. Meng, *J. Org. Chem.*, 2012, **77**, 9601-9608.

mg, 0.1 mmol, 0.1 eq) were added to a 50 mL flame dried round bottomed flask equipped with a magnet and dry CH₂Cl₂ (5 mL). The reaction mixture was cooled to 0 °C, and a solution of DCC (516 mg, 2.5 mmol, 2.5 eq) in CH₂Cl₂ (5 mL) was added dropwise over 10 min. The reaction mixture was allowed to reach rt overnight, and full conversion was observed by ¹H NMR. The reaction mixture was filtered, and from the filtrate the product precipitated after addition of Et₂O. Suction filtration yielded **4d** as a colourless solid (470 mg, 73% yield). [*α*]²⁵_D = +12.1 (*c* 1.0, CH₂Cl₂). ¹H NMR (**400 MHz, DMSO-d₆**): δ 8.73 (d, *J* = 4.6 Hz, 1H), 8.44–8.36 (m, 2H), 8.23– 8.16 (m, 2H), 8.12–8.01 (m, 3H), 7.84–7.76 (m, 1H), 7.71–7.63 (m, 3H), 7.57 (dd, *J* = 9.2, 2.5 Hz, 1H), 7.52 (d, *J* = 2.5 Hz, 1H), 7.47 (s, 1H), 6.23 (ddd, *J* = 17.3, 10.5 Hz, 6.1, 1H) 5.44 (d, *J* = 10.5 Hz 1H), 5.25 (d, *J* = 17.3 Hz 1H), 5.10 (d, *J* = 12.2, 1H), 4.92 (d, *J* = 12.1, 1H), 4.19 (t, *J* = 9.6 Hz, 1H), 4.15–4.01 (m, 4H), 3.96–3.79 (m, 1H), 3.68 (t, *J* = 11.5 Hz, 1H), 3.00–2.68 (m, 3H), 2.18– 2.09 (m, 1H), 1.92–1.62 (m, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 164.2, 157.9, 148.5, 147.4, 144.0, 139.5, 137.2 (2C), 135.4 (2C), 135.1, 134.2, 131.6, 129.9 (2C), 129.1, 129.0 (2C), 125.3, 123.7, 122.1, 119.1, 117.4, 102.2, 68.5, 66.6, 62.0, 56.5, 55.9, 54.9, 36.3, 25.6, 22.9, 22.0. HRMS (ESI+) *m/z* calcd. for C₃₄H₃₄N₃O₅ [M]⁺: 564.2493; found: 564.2499.

N(1)-o-Nitrobenzylquinidinium bromide (5) was synthesized following a literature procedure.³ Quinidine (1.609 g, 5 mmol, 1 eq) was dissolved in dry THF (50 mL). 2-Nitrobenzyl bromide (1.042 g, 5 mmol, 1 eq) was added while stirring. The reaction mixture was refluxed for 9 h. After cooling to rt overnight, precipitation of the ammonium salt was achieved by addition of Et₂O to the reaction

mixture. The precipitate was filtered off and dried under vacuum, affording **5** as a colourless solid (2.253 g, 84% yield). [α]_D²⁵ = +52.3 (*c* 1, CH₂Cl₂). ¹H NMR (400 MHz, MeOD-d₄): δ 8.78 (d, *J* = 4.6 Hz, 1H), 8.34 – 8.23 (m, 1H), 8.09 – 7.99 (m, 2H), 7.99 – 7.83 (m, 3H), 7.52 (dd, *J* = 9.3, 2.6 Hz, 1H), 7.45 (d, *J* = 2.7 Hz, 1H), 6.69 – 6.58 (m, 1H), 6.15 – 6.00 (m, 1H), 5.69 – 5.39 (m, 2H), 5.34 – 5.22 (m, 2H), 4.56 – 4.44 (m, 1H), 4.16 (s, 3H), 4.09 (t, *J* = 9.7 Hz, 1H), 3.87 – 3.74 (m, 1H), 3.66 – 3.48 (m, 1H), 3.23 – 3.08 (m, 1H), 2.67 (q, *J* = 8.7 Hz, 1H), 2.59 – 2.48 (m, 1H), 2.02 – 1.73 (m, 3H), 1.19 – 1.05 (m, 1H). ¹³C NMR (100 MHz, MeOD-d₄): δ 160.3, 152.6, 148.2, 145.5, 144.8, 138.1, 137.7, 135.3, 133.7, 131.8, 127.6, 127.4, 123.7, 122.8, 121.5, 118.0, 102.1, 70.0, 67.1, 60.3, 57.7, 57.1, 56.7, 39.1, 28.2, 24.8, 22.4. HRMS (ESI+) *m*/*z* calcd. for C₂₇H₃₀N₃O₄ [M]⁺: 460.2231; found: 460.2242.

O(9)-Benzoyl-*N*(1)-*p*-nitrobenzylquininium bromide (6) was prepared following the same procedure as for 4d (91 mg, 14% yield). $[\alpha]_D^{25}$ = -16.7 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, MeOD-d₄): δ 8.75 (d, *J* = 4.7 Hz, 1H), 8.45–8.38 (m, 2H), 8.37–8.32 (m, 2H), 8.12 (d, *J* = 9.3 Hz, 1H), 7.98–7.91 (m, 2H), 7.84–7.77 (m, 2H), 7.73–7.60 (m, 4H), 7.51 (d, *J* =

2.6 Hz, 1H), 5.82 (ddd, J = 17.4, 10.4, 7.2 Hz, 1H), 5.53 (d, J = 12.7 Hz, 1H), 5.23–5.11 (m, 2H), 4.30–4.20 (m, 1H), 4.09 (s, 3H), 4.06–3.97 (m, 1H), 3.71–3.46 (m, 3H), 2.91–2.72 (m, 2H), 2.57– 2.45 (m, 1H), 2.35–2.26 (m, 1H), 2.14–1.95 (m, 2H), 1.40–1.29 (m, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 164.3, 157.8, 148.6, 147.5, 144.0, 139.8, 137.8, 135.4 (2C), 135.1, 134.2, 131.7, 129.7 (2C), 129.2 (3C), 125.0, 123.8 (2C), 122.1, 118.9, 117.0, 101.8, 68.2, 67.1, 62.2, 59.4, 55.7, 50.6, 37.0, 26.1, 24.3, 21.3. HRMS (ESI+) m/z calcd. for C₃₄H₃₄N₃O₅ [M]⁺: 564.2493; found: 564.2500.

5. General procedure for the organocatalytic reaction

5.1. Asymmetric synthesis of chiral cyclopropane spiroindenes 3

In an 8 mL vial containing a stirring bar, the benzofulvene **1** (0.2 mmol, 1 eq) and catalyst **4d** (1.3 mg, 1 mol%) were dissolved in toluene (4 mL) and cooled to -25 °C. A solution of K_3PO_4 (2 mmol) in water (0.4 mL) was added and, finally, dimethyl bromomalonate (**2a**) (40 μ L, 0.3 mmol, 1.5 eq) was added by Hamilton syringe. The yellow reaction mixture was stirred vigorously overnight at -25 °C. Full consumption of the benzofulvene was indicated by a colourless reaction mixture. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were concentrated and purified by FC on silica gel.

5.2. Characterisation of cyclopropane spiroindenes 3

Dimethyl (1*R*,3*S*)-3'-cyano-3-phenylspiro[cyclopropane-1,1'-indene]-2,2dicarboxylate (**3a**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25}$ = +52.4 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.64 (dt, *J* = 7.6, 0.9 Hz, 1H), 7.46 (td, *J* = 7.6, 1.0 Hz, 1H), 7.35–7.28 (m, 4H), 7.17–7.09 (m, 3H), 4.30 (s, 1H), 3.71 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 165.6, 146.6,

140.3, 139.2, 132.4, 129.0 (2C), 128.6 (2C), 128.2, 128.2, 126.9, 121.0, 119.9, 115.5, 114.4, 53.2, 53.2, 50.9, 46.8, 41.8. **HRMS** (ESI+) m/z calcd. for $C_{22}H_{17}NO_4$ [M+H]⁺: 360.1230; found: 360.1235. **UPC²**: IA, Gradient CO₂/*i*PrOH, 3.0 mL·min⁻¹; $t_{major} = 2.80$ min; $t_{minor} = 2.64$ min.

 O_2N

Dimethyl (1*R*,3*S*)-3'-cyano-3-(4-methoxyphenyl)spiro[cyclopropane-1,1'-indene]-2,2-dicarboxylate (**3a**) was isolated as a colourless foam by FC on silica gel (10:90 – 20:80 Et₂O:pentane). $[\alpha]_D^{25} = +0.7$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.45 (td, *J* = 7.6, 0.9 Hz, 1H), 7.30 (td, *J* = 7.7, 0.9 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.08–7.03 (m, 2H), 6.87–6.80 (m, 2H), 4.24 (s, 1H),

3.80 (s, 3H), 3.72 (s, 3H), 3.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 165.7, 159.3, 146.8, 140.5, 139.2, 130.2 (2C), 128.1, 126.9, 124.3, 121.0, 119.9, 115.4, 114.5, 114.0 (2C), 55.2, 53.2 (2C), 51.2, 47.0, 41.4. HRMS (ESI+) *m/z* calcd. for C₂₃H₁₉NO₅ [M+Na]⁺: 412.1155; found: 412.1155. UPC²: IC, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{major} = 2.84 min; t_{minor} = 2.93 min.

3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 165.4, 147.6, 144.7, 139.8, 139.7, 139.0, 130.1 (2C), 128.6, 127.3, 123.8 (2C), 121.3, 119.8, 116.8, 114.0, 53.5, 53.4, 50.2, 46.7, 40.9. HRMS (ESI+) *m/z* calcd. for C₂₂H₁₆N₂O₆ [M+H]⁺: 405.1081; found: 405.1089. UPC²: IA, Gradient CO₂/*i*PrOH, 3.0 mL·min⁻¹; t_{major} = 2.81 min; t_{minor} = 2.95 min.

Dimethyl (1*R*,3*S*)-3-(4-chlorophenyl)-3'-cyanospiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3d**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25}$ = +6.9 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (m, 2H), 7.46 (td, *J* = 7.6, 0.9 Hz, 1H), 7.34–7.27 (m, 3H), 7.13–7.05 (m, 3H), 4.22 (s, 1H), 3.72 (s, 3H), 3.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 165.5, 145.9, 140.2, 139.2,

134.3, 131.0, 130.4 (2C), 128.9 (2C), 128.4, 127.1, 121.2, 119.9, 116.0, 114.3, 53.4, 53.3, 50.7, 46.8, 41.0. **HRMS** (ESI+) m/z calcd. for $C_{22}H_{16}CINO_4$ [M+H]⁺: 394.0841; found: 394.0845. **UPC²**: IA, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; $t_{maior} = 2.44$ min; $t_{minor} = 2.56$ min.

Dimethyl (1*R*,3*S*)-3-(4-bromophenyl)-3'-cyanospiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3e**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25} = -9.6$ (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.66–7.61 (m, 2H), 7.49–7.43 (m, 3H), 7.31 (td, *J* = 7.7, 1.1 Hz, 1H), 7.10 (dt, *J* = 7.8, 0.8 Hz, 1H), 7.05–7.00 (m, 2H), 4.19 (s, 1H), 3.72 (s, 3H), 3.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):

δ 165.9, 165.5, 145.8, 140.1, 139.1, 131.8 (2C), 131.5, 130.7 (2C), 128.3, 127.0, 122.4, 121.1, 119.9, 116.0, 114.2, 53.3, 53.3, 50.6, 46.7, 41.0. **HRMS** (ESI+) m/z calcd. for C₂₂H₁₆BrNO₄ [M+H]⁺: 438.0335/440.03115; found: 438.0337/440.03118. **UPC**²: IA, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{major} = 2.58 min; t_{minor} = 2.74 min.

Dimethyl (1R,3S)-3'-cyano-3-(p-tolyl)spiro[cyclopropane-1,1'-indene]-2,2-dicarboxylate (**3f**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25} = +11.1$ (*c* 1.0, CH₂Cl₂). ¹H **NMR (400 MHz, CDCl₃):** δ 7.70 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.45 (td, *J* = 7.6, 0.9 Hz, 1H), 7.30 (td, *J* = 7.7, 0.9 Hz, 1H), 7.15–7.09 (m, 3H), 7.04–7.00 (m, 2H), 4.26 (s, 1H), 3.72 (s, 3H), 3.67 (s, 3H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.3, 165.8, 146.9, 140.5, 139.2, 138.1, 129.4, 129.3 (2C), 128.9 (2C), 128.2, 126.9, 121.1, 119.9, 115.4, 114.5, 53.2 (2C), 51.1, 47.0, 41.7, 21.2. HRMS (ESI+) m/z calcd. for C₂₃H₁₉NO₄ [M+Na]⁺: 396.1206; found: 396.1208. The enantiomeric excess was determined after hydration of the nitrile to the amide. For the corresponding amide: UPC²: IC, Gradient CO₂/*i*PrOH, 3.0 mL·min⁻¹; t_{major} = 5.91 min; t_{minor} = 5.43 min.

Dimethyl (1*R*,3*S*)-3'-cyano-3-(*m*-tolyl)spiro[cyclopropane-1,1'-indene]-2,2-dicarboxylate (**3g**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25}$ = +41.0 (*c* 1.0, CH₂Cl₂). ¹H NMR (**400 MHz, CDCl₃**): δ 7.71 (s, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.45 (td, *J* = 7.5, 1.0 Hz, 1H), 7.31 (td, *J* = 7.7, 1.1 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.15–7.09 (m, 2H), 6.97–6.90 (m, 2H), 4.26 (s, 1H), 3.72 (s, 3H), 3.68 (s, 3H), 2.32 (s,

3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 165.7, 146.7, 140.4, 139.2, 138.3, 132.3, 129.6, 129.0, 128.4, 128.1, 126.9, 126.0, 121.0, 119.8, 115.3, 114.4, 53.2, 53.1, 51.0, 46.8, 41.8, 21.3. HRMS (ESI+) m/z calcd. for $C_{23}H_{19}NO_4$ [M+H]⁺: 374.1387; found: 374.1394. UPC²: IA, Gradient $CO_2/iPrOH$, 3.0 mL·min⁻¹; $t_{major} = 2.60$ min; $t_{minor} = 2.70$ min.

Dimethyl (1*R*,3*S*)-3'-cyano-3-(*o*-tolyl)spiro[cyclopropane-1,1'-indene]-2,2dicarboxylate (**3h**) was isolated as a colourless foam by FC on silica gel (10:90 – 15:85 Et₂O:pentane). $[\alpha]_D^{25}$ = +63.6 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (s, 1H), 7.64 (dt, *J* = 7.6, 0.9 Hz, 1H), 7.46 (td, *J* = 7.6, 1.0 Hz, 1H), 7.32 (td, *J* = 7.7, 1.1 Hz, 1H), 7.24–7.09 (m, 4H), 7.01–6.96 (m, 1H), 4.18 (s, 1H), 3.71 (s, 3H), 3.66 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100

MHz, CDCl₃): δ 166.3, 166.0, 146.7, 140.3, 139.1, 138.0, 130.7, 130.3, 128.9, 128.3, 128.2, 127.0, 125.8, 121.1, 119.6, 115.7, 114.4, 53.2, 53.1, 50.2, 47.3, 42.1, 19.1. **HRMS** (ESI+) m/z calcd. for C₂₃H₁₉NO₄ [M+H]⁺: 374.1387; found: 374.1393. The enantiomeric excess was determined after hydration of the nitrile to the amide. For the corresponding amide: **UPC²**: IC, Gradient CO₂/*i*PrOH, 3.0 mL·min⁻¹; t_{major} = 6.01 min; t_{minor} = 5.43 min.

Dimethyl (1*R*,3*S*)-3'-cyano-3-(pyridin-2-yl)spiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3i**) was isolated as a colourless foam by FC on silica gel (20:80 EtOAc:pentane). $[\alpha]_D^{25} = -348$ (*c* 1.0, CH₂Cl₂). ¹H NMR (**400 MHz, CDCl₃**): δ 8.51 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.93 (s, 1H), 7.63 (td, *J* = 7.7, 1.8 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.42 (td, *J* = 7.3, 1.6 Hz, 1H), 7.34–7.27 (m, 3H), 7.19 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 4.15 (s, 1H),

3.75 (s, 3H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 165.3, 153.0, 148.8, 147.5, 139.9, 139.7, 136.5, 128.1, 126.8, 124.7, 122.5, 120.8, 120.6, 114.9, 114.5, 53.4, 53.0, 51.5, 47.8, 42.0. HRMS (ESI+) *m/z* calcd. for C₂₁H₁₆N₂O₄ [M+Na]⁺: 383.1002; found: 383.1007. UPC²: IA, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{major} = 3.12 min; t_{minor} = 3.51 min.

 $\begin{array}{c} \text{3-Ethyl} & 2,2-\text{dimethyl} & (1R,3S)-3'-\text{cyanospiro}[\text{cyclopropane-1,1'-indene}]-\\ 2,2,3-\text{tricarboxylate} (3k) \text{ was isolated as a colourless foam by FC on silica}\\ \text{gel} & (10:90 \text{ EtOAc:pentane}). & [\alpha]_D^{25} = -124 & (c \ 1.0, \ \text{CH}_2\text{Cl}_2). \ ^1\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3): \ \delta \ 7.61 & (s, \ 1\text{H}), \ 7.58 & (dt, \ J = 7.6, \ 0.9 \ \text{Hz}, \ 1\text{H}), \ 7.43 & (td, \ J = 7.5, \ 1.1 \ \text{Hz}, \ 1\text{H}), \ 7.30-7.25 & (m, \ 1\text{H}), \ 7.21 & (dt, \ J = 7.8, \ 0.9 \ \text{Hz}, \ 1\text{H}), \ 4.28-4.14 & (m, \ 2\text{H}), \ 3.84 & (s, \ 3\text{H}), \ 3.70 & (s, \ 3\text{H}), \ 3.67 & (s, \ 1\text{H}), \ 1.28 & (t, \ J = 7.1 \ \text{Hz}, \ 3\text{H}). \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3): \ ^{13}\text{C} \ 167.0, \ 164.2, \ 164.1, \ 145.5, \ 139.8, \ 138.6, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 114.0, \ 62.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 121.0, \ 116.3, \ 128.7, \ 127.2, \ 121.1, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.7, \ 128.$

53.7, 53.6, 50.0, 45.9, 36.9, 13.9. **HRMS** (ESI+) m/z calcd. for $C_{19}H_{17}NO_6$ $[M+H]^+$: 356.1129; found: 356.1128. The enantiomeric excess was determined after hydration of the nitrile to the amide. For the corresponding amide: **UPC**²: IB, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; $t_{major} = 3.03$ min; $t_{minor} = 2.94$ min.

CN Dimethyl (1R,3S)-3'-cyano-3-isopropylspiro[cyclopropane-1,1'-indene]-2,2-dicarboxylate (**3I**) was isolated as a colourless solid by FC on silica gel (10:90 Et₂O:pentane). $[\alpha]_D^{25} = +87.0$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CO₂Me **CDCl₃**): δ 7.78 (s, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.25 (td, *J* = 7.6, 0.7 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 3.80 (s, 3H), 3.61 (s, 3H),

2.69 (d, J = 11.0 Hz, 1H), 2.09–1.96 (m, 1H), 1.10 (d, J = 6.6 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 166.3, 145.9, 140.9, 138.9, 127.8, 126.8, 120.9, 119.7, 115.9, 114.5, 53.2, 53.0, 51.0, 47.2, 46.3, 26.5, 22.0, 21.5. HRMS (ESI+) m/z calcd. for C₁₉H₁₉NO₄ [M+H]⁺: 326.1387; found: 326.1392. UPC²: IC, Gradient CO₂/MeCN, 3.0 mL·min⁻¹; t_{major} = 2.54 min; t_{minor} = 2.43 min.

 $\begin{array}{c} \mbox{CN} & \mbox{Dimethyl} & (R)-3''-cyanodispiro[cyclohexane-1,1'-cyclopropane-2',1''-indene]-3',3'-dicarboxylate ($ **3m** $) was isolated as a pale yellow solid by FC on silica gel (10:90 - 15:85 Et_2O:pentane). <math>[\alpha]_D^{25} = +53.8 \ (c \ 1.0, \ CH_2Cl_2).$ **h NMR** (400 MHz, CDCl_3): δ 7.67 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.36 (td, $J = 7.5, \ 0.9$ Hz, 1H), 7.20 (td, $J = 7.8, \ 1.2$ Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), 3.76 (s, 3H), 3.61 (s, 3H), 2.24–2.08 (m, 2H), 1.95–1.84 (m, 2H), 1.71–1.55 (m, 2H), 1.46–1.34 (m, 2H), 1.27–1.13 (m, 1H), 0.94–0.74 (m, 1H). ¹³C NMR (100 MHz, CDCl_3): δ 166.6, 165.5, 148.4, 139.7, 138.6, 127.3, 126.1, 122.5, 121.1, 114.6, 114.4, 54.3, 53.3, 52.6, 49.8, 45.7, 31.6, 28.9, 25.5, 25.3, 25.1. HRMS (ESI+) m/z calcd. for $C_{21}H_{21}NO_4$ [M+H]⁺: 352.1543; found: 352.1542. UPC²: IA, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{maior} = 2.67 min; t_{mioor} = 2.76 min.

Dimethyl (1*R*,3*S*)-6'-chloro-3'-cyano-3-phenylspiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3n**) was isolated as a colourless foam by FC on silica gel (10:90 – 20:80 Et₂O:pentane). $[\alpha]_D^{25}$ = +36.2 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (s, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.44 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.35–7.30 (m, 3H), 7.15–7.09 (m, 3H), 4.28 (s, 1H), 3.73 (s, 3H) 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):

δ 166.0, 165.4, 146.9, 142.2, 137.7, 133.4, 132.1, 129.0 (2C), 128.7 (2C), 128.4 (2C), 121.9, 120.7, 114.8, 114.0, 53.5, 53.4, 51.2, 46.6, 42.1. **HRMS** (ESI+) m/z calcd. for C₂₂H₁₆ClNO₄ [M+Na]⁺: 416.0660; found: 416.0664. **UPC²**: IA, CO₂/MeOH 2% isocratic, 3.0 mL·min⁻¹; t_{major} = 3.25 min; t_{minor} = 3.68 min.

Dimethyl (15,35)-7'-bromo-3'-cyano-3-phenylspiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3o**) was isolated as a colourless foam by FC on silica gel (15:85 – 20:80 Et₂O:pentane). $[\alpha]_D^{25}$ = +316 (*c* 0.5, CH₂Cl₂). ¹H **NMR (400 MHz, CDCl₃)**: δ 7.63–7.58 (m, 2H), 7.47 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.38–7.32 (m, 3H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.20–7.15 (m, 2H), 5.53 (s, 1H), 3.83 (s, 3H), 3.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 166.1,

147.6, 142.6, 136.8, 132.6, 132.4, 129.4, 129.0 (2C), 128.4 (2C), 127.9, 120.5, 117.7, 114.2, 113.7, 53.7, 53.4, 49.5, 47.4, 38.1. **HRMS** (ESI+) m/z calcd. for $C_{22}H_{16}BrNO_4$ [M+H]⁺: 438.0335/440.03115; found: 438.0343/440.03125. **UPC²**: ID, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; $t_{major} = 2.87$ min; $t_{minor} = 2.75$ min.

Trimethyl (1*R*,3*S*)-3-phenylspiro[cyclopropane-1,1'-indene]-2,2,3'tricarboxylate (**3p**) was isolated as a colourless foam by FC on silica gel (10:90 – 20:80 Et₂O:pentane). $[\alpha]_D^{25}$ = +58.8 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (dt, *J* = 7.7, 0.9 Hz, 1H), 7.83 (s, 1H), 7.41 (td, *J* = 7.6, 1.1 Hz, 1H), 7.35–7.28 (m, 3H), 7.23 (td, *J* = 7.6, 1.2 Hz, 1H), 7.21–7.17

(m, 2H), 7.08 (dt, J = 7.8, 0.9 Hz, 1H), 4.26 (s, 1H), 3.89 (s, 3H), 3.69 (s, 3H), 3.66 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)**: δ 166.6, 166.0, 164.0, 143.3, 141.7, 139.9, 134.6, 133.0, 129.2 (2C), 128.4 (2C), 127.9, 127.7, 125.7, 123.0, 119.3, 53.1, 53.0, 51.6, 50.4, 46.1, 41.4. **HRMS** (ESI+) m/z calcd. for C₂₃H₂₀O₆ [M+H]⁺: 393.1333; found: 393.1339. **UPC²**: IA, Gradient CO₂/MeCN, 3.0 mL·min⁻¹; t_{major} = 3.01 min; t_{minor} = 3.10 min.

CN CO₂Me 3q Dimethyl (1*S*,3*S*)-7'-bromo-3'-cyano-3-isopropylspiro[cyclopropane-1,1'indene]-2,2-dicarboxylate (**3q**) was isolated as white crystals by FC on silica gel (10:90 Et₂O:pentane). $[\alpha]_D^{25} = +331$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H), 7.54 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.41 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 3.84 (d, *J* = 10.8 Hz, 1H), 3.76 (d, *J* =

8.1 Hz, 6H), 2.68–2.55 (m, 1H), 1.15 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 166.4, 147.0, 142.5, 137.5, 132.4, 129.0, 120.5, 117.7, 114.8, 113.9, 53.7, 53.5, 50.1, 48.0, 43.0, 25.1, 22.1, 21.7. HRMS (ESI+) m/z calcd. for C₁₉H₁₈BrNO₄ [M+H]⁺: 404.0492/406.0472; found: 404.0493/406.0475. UPC²: IC, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{major} = 2.58 min; t_{minor} = 2.48 min.

Ethyl (1*R*,2*R*,3*S*)-2-acetyl-3'-cyano-3-phenylspiro[cyclopropane-1,1'indene]-2-carboxylate (**3r**) was isolated as a colourless foam by FC on silica gel (10:90 – 20:80 Et₂O:pentane). $[\alpha]_D^{25}$ = +84.0 (*c* 1.0, CH₂Cl₂). ¹H **NMR (400 MHz, CDCl₃)**: δ 7.82 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.44 (td, *J* = 7.5, 0.6 Hz, 1H), 7.34–7.28 (m, 4H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.10–7.09 (m, 2H), 4.36 (s, 1H), 4.25 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.15 (dq, *J* = 10.8, 7.1

Hz, 1H), 2.37 (s, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 167.0, 146.5, 140.3, 139.1, 132.2, 129.2 (2C), 128.7 (2C), 128.2, 128.1 126.7, 121.0, 120.2, 115.2, 114.6, 62.7, 58.2, 48.5, 44.0, 30.7, 13.9. HRMS (ESI+) m/z calcd. for C₂₃H₁₉NO₃ [M+H]⁺: 358.1438; found: 358.1444. The enantiomeric excess was determined after hydration of the nitrile to the amide. For the corresponding amide: UPC²: IB, Gradient CO₂/MeOH, 3.0 mL·min⁻¹; t_{major} = 3.43 min; t_{minor} = 3.34 min.

6. Preparation of cyclopropane spiroindene amides 3'

The corresponding amides of **3f**, **3h**, **3j**, **3k** and **3r** were prepared with inspiration from a previously described procedure.⁸

In a 4 mL vial containing a stirring bar, the appropriate nitrile **3** (0.025 mmol, 1 eq) was dissolved in MeOH (0.1 mL). A spatula tip of copper acetate was added, followed by hydroxylamine (6.4 μ L, 0.0625 mmol, 2.5 eq). The reaction mixture was heated to 40 °C and stirred until completion. The reaction mixture was diluted with 10 mL water and 10 mL Et₂O. The phases were separated, and the aqueous phase was extracted with Et₂O. The combined organic phases were concentrated and purified by FC on silica gel to afford cyclopropane spiroindene amide **3'**. **3r'** has been fully characterised as a representative example. **3f'**, **3h'** and **3j'** were submitted to UPC² analysis directly from the crude reaction mixture.

Ethyl (1R,2R,3S)-2-acetyl-3'-carbamoyl-3-phenylspiro[cyclopropane-1,1'indene]-2-carboxylate (**3r'**) was isolated as a colourless foam by FC on silica gel (30:70 EtOAc:pentane). $[\alpha]_D^{25} = +136.4$ (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.6 Hz, 1H), 7.49 (s, 1H), 7.38 (td, *J* = 7.6, 0.9 Hz, 1H), 7.32–7.27 (m, 3H), 7.22 (td, *J* = 7.6, 0.9 Hz, 1H), 7.13–7.09 (m, 3H), 6.08 (bs, 1H), 5.60 (bs, 1H), 4.32 (s, 1H), 4.24 (dq, *J* = 10.8, 7.2 Hz,

1H), 4.15 (dq, J = 10.8, 7.1 Hz, 1H), 2.38 (s, 3H), 1.10 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 167.5, 166.3, 141.7, 140.3, 137.4, 136.5, 132.9, 129.4 (2C), 128.5 (2C), 127.8, 127.8, 125.7, 123.2, 119.5, 62.5, 57.0, 48.1, 43.3, 31.0, 13.9. HRMS (ESI+) m/z calcd. for $C_{23}H_{21}NNaO_4$ [M+Na]⁺: 398.1363; found: 398.1371.

⁸ P. Marcé, J. Lynch, A. J. Blacker and J. M. J. Williams, *Chem. Commun.*, 2016, **52**, 1436-1438.

7. Crystallographic data for compound 3q

CCDC number: 1498908

Item	Value
Molecular formula	$C_{19}H_{18}BrNO_4$
Formula weight	404.26
Crystal system	trigonal
Space Group	Р3
a (Å)	15.6261
b (Å)	15.6261
c (Å)	6.58142
α (°)	90
β (°)	90
γ (°)	120
Volume (ų)	1391.72
Z	3
Т (К)	100
ρ (g cm⁻¹)	1.447
λ (Å)	0.71073
μ (mm⁻¹)	2.237
# measured refl	28798
# unique refl	4732
R _{int}	0.0463
# parameters	230
R(F ²), all refl	0.0374
$R_w(F^2)$, all refl	0.0517
Goodness of fit	1.05

 \equiv

8. NMR spectra

2.643	97.46
2.795	2.54

	Retention Time (min)	% Area
1	2.854	50.26
2	2.941	49.74

	Retention Time (min)	% Area	
1	2.841	97.10	
2	2.929	2.90	

п	Retention Time (min)	% Area
1	2.807	94.68
2	2.951	5.32

2.435	97.28
2.562	2.72

2

	Retention Time (min)	% Area
1	5.414	48.22
2	5.902	51.78

	Retention Time (min)	% Area
1	5.427	2.84
2	5.910	97.16

	Retention Time (min)	% Area
1	2.598	49.49
2	2.691	50.51

0	Retention Time (min)	% Area	
1	2.601	97.68	
2	2.698	2.32	

	Retention Time (min)	% Area
1	5.349	49.81
2	5.894	50.19
-		

	(min)	% Area	
1	5.427	2.27	
2	6.007	97.73	

3.12	24 94.12
3.50	5.88

2

1	5.255	1.53
2	5.788	98.47

	Retention Time (min)	% Area
1	2.927	49.23
2	3.020	50.77

	(min)	% Area	
1	2.936	9.42	
2	3.028	90.58	
			-

п	Retention Time (min)	% Area
1	2.433	0.28
2	2.538	99.72

	Retention Time (min)	% Area
1	2.662	49.53
2	2.745	50.47
-		

1 2.666 83.87 2 2.756 16.13		Retention Time (min)	% Area	
2 2756 1613	1	2.666	83.87	
2.100 10.10	2	2.756	16.13	

	Retention Time (min)	% Area
1	3.156	49.45
2	3.567	50.55

	Retention Time (min)	% Area	
1	3.246	96.02	
2	3.677	3.98	

п	Retention Time (min)	% Area
1	2.858	49.21
2	2.949	50.79

	Retention Time (min)	% Area
1	2.745	3.91
2	2.872	96.09

	Retention Time (min)	% Area
1	3.029	51.90
2	3.137	48.10

	Retention Time (min)	% Area	
1	3.013	95.00	
2	3.100	5.00	

	Retention Time (min)	% Area
1	2.500	50.16
2	2.600	49.84

	Retention Time (min)	% Area	
1	2.479	2.73	
2	2.584	97.27	

п	Retention Time (min)	% Area
1	3.343	49.51
2	3.433	50.49

п	Retention Time (min)	% Area	
1	3.341	11.85	
2	3.428	88.15	