Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Simultaneous fluorescence visualization of mitochondrial hydrogen peroxide and zinc ion in live cells and in vivo

Haibin Xiao, Ping Li,* Shan Zhang, Wei Zhang, Wen Zhang and Bo

Tang*a

College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences,
Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key
Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China

E-mail: tangb@sdnu.edu.cn

Table of Contents

Materials and instruments

Cells culture

Determination of the limit of detection

Calculation of the relative fluorescence quantum yield

Determination of the association constant K_a

Scheme S1 Synthesis of M-H₂O₂ and M-Zn

Figure S1 The absorption spectra of $M-H_2O_2$ and M-Zn with different concentrations of H_2O_2 and Zn^{2+}

Figure S2 The linearity of $M-H_2O_2$ and M-Zn with different concentrations of H_2O_2 and Zn^{2+}

Figure S3 The selectivity of M-H₂O₂ and M-Zn

Figure S4 The fluorescence responses of $M-H_2O_2$ and M-Zn to H_2O_2 and Zn^{2+} at different time

Figure S5 The fluorescence responses of $M-H_2O_2$ and M-Zn to H_2O_2 and Zn^{2+} at different pH values

Figure S6 The distinguishable spectra and coexistence experiment of M- H_2O_2 and M-Zn in vitro

Figure S7 The colocalization fluorescence image of $M-H_2O_2$ and M-Zn in HepG2 cells

Figure S8 The cytotoxicity assay of M-H₂O₂ and M-Zn

Figure S9 The simultaneous fluorescence imaging of H_2O_2 and Zn^{2+} in HepG2 cells induced by H_2O_2

Figure S10 The simultaneous fluorescence imaging of H₂O₂ and Zn²⁺ in HepG2 cells induced by PMA

References

The original ¹H NMR, ¹³C NMR and HR-MS spectra

Materials and instruments

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. The solvents were purified by conventional methods before use. Mito-Tracker Deep Red, and Mito-Tracker Green were purchased from Invitrogen (USA). Phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS) and Lbuthionine sulfoximine (BSO) were purchased from Sigma. Silica gel (200-300 mesh) used for flash column chromatography was purchased from Qingdao Haiyang Chemical Co., Ltd. $M\text{-}H_2O_2$ and M-Zn were dissolved in dimethyl sulfoxide (DMSO) to produce 1.0 mM stock solutions. ¹H NMR and ¹³C NMR spectra were determined by 400 MHz and 100 MHz using Bruker NMR spectrometers. The mass spectra were obtained by Bruker maxis ultra-high resolution-TOF MS system. The fluorescence spectra measurements were performed using FLS-920 or FLS-980 Edinburgh fluorescence spectrometer. The ex/em slit widths are 3.0/3.0 nm and 2.5/2.5 nm for M-H₂O₂ and M-Zn, respectively. Cary eclipse fluorescence spectrophotometer was used for the kinetic assays. Fluorescence imaging in cells were performed with Leica TCS SP5 and Leica TCS SP8 Confocal Laser Scanning Microscope. The laser power of confocal imaging is 15 mW for 488, 514, and 633 nm laser. The human hepatoma cells (HepG2) and macrophages (RAW 246.7) were purchased from Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

Cells culture

Human hepatoma (HepG2) and macrophages (RAW 246.7) were cultured in high glucose DMEM (4.5 g of glucose/L) or RPMI 1640 supplemented with 10% fetal bovine serum, 1% penicillin, and 1% streptomycin at 37 °C in a 5% CO₂/95% air incubator MCO-15AC (SANYO, Tokyo, Japan). One day before imaging, the cells were detached and were replanted on glass-bottomed dishes.

Determination of the limit of detection

The detection limit was determined from the fluorescence titration data. So the detection limit was calculated with the following equation: Detection limit= $3\sigma/k$, where σ is the standard deviation of blank measurement, k is the slop between the fluorescence intensity versus H_2O_2 or Zn^{2+} concentration.

Calculation of the relative fluorescence quantum yield¹⁻³

Fluorescence quantum yield was determined by using ICG (Φ_f =0.13 in DMSO) for **M-Zn** or Rhodamine 6G (Φ_f =0.95 in water) for **M-H₂O₂** as a fluorescence standard. The quantum yield was calculated using the following equation:

$$\Phi_{x} = \Phi_{s}(A_{s}F_{x}/A_{x}F_{s})(n_{x}/n_{s})^{2}$$

Where Φ_x is the fluorescence quantum yield, A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts S and X refer to the standard and to the unknown, respectively. For **M-Zn** and ICG, the excitation wavelength was at 750 nm while keeping the absorption below 0.05; For **M-H₂O₂** and Rhodamine 6G, the excitation wavelength was at 530 nm while keeping the absorption below 0.05.

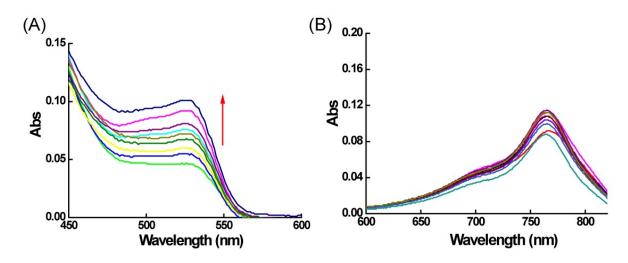
Determination of the association constant K_a

The association constant (K_a) was determined from the fluorescence titration experiment based on the Benesi-Hildebrand equation $\mathbf{1}^{[4,5]}$.

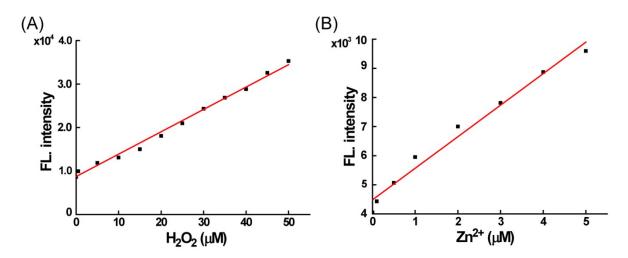
$$1/(F-F_0)=1/\{K_a(F_{max}-F_0)[Zn^{2+}]\}+1/[F_{max}-F_0]$$

Here F_0 is the fluorescence of **M-Zn** in the absence of Zn^{2+} . F is the fluorescence obtained in the presence of added Zn^{2+} . F_{max} is the fluorescence in presence of added Zn^{2+} max and K_a is the association constant (M^{-1}). The association constant (K_a) could be determined from the slope of the straight line of the plot of $1/(F-F_0)$ against $1/Zn^{2+}$. The slope was obtained to be $2.51928x10^{-10}$. And the association constant (K_a) is calculated to be $7.03x10^5$ M^{-1} . Therefore, the dissociation constant (K_d) is $1/K_a=1.42~\mu M$.

Scheme S1 The synthesis of M-H₂O₂ and M-Zn


2,3,3-trimethyl-1-ethyl-3H-indolium iodide (1) and **Cy.7.Cl** were synthesized according to our previous work.^[6] Compounds **2** and **3** were obtained according to published work.^[7,8]

Synthesis of M-H₂O₂: Compound 1 (0.315 g, 1.0 mmol), 2 (0.23 g, 1.0 mmol) and sodium acetate (0.17 g, 2.0 mmol) were dissolved in 8.0 mL of acetic anhydride under the Ar gas condition. The mixture was stirred at 55 °C for 5 h. Then the solvents were dropped in ethyl ether, and the residue purified silica gel chromatography with was by dichloromethane/methanol (20:1 v/v) to give $M-H_2O_2$ as a light yellow solid (0.11 g, 40 %). H NMR (4 00 MHz, d6-DMSO) δ(ppm): 1.332 (s, 6H), 1.476 (t, J=6.8 Hz, 3H), 1.815, (s, 12H), 4.758 (q, J=6.8 Hz, 2H), 7.621 (d, J=6.4 Hz, 1H), 7.762 (d, J=6.4 Hz, 1H), 7.862 (d, J=8.0 Hz, 1H), 7.911 (d, J=2.8 Hz, 1H), 7.924 (d, J=2.8 Hz, 1H), 8.201 (d, J=8.0 Hz, 1H), 8.254 (d, J=8.0 Hz, 2H), 8.454 (t, J=2.8 Hz, 1H), 8.495 (t, J=2.8 Hz, 1H). 13 C NMR (100 MHz, d6-DMSO) δ (ppm): 14.35, 25.18, 25.96, 42.8, 52.75, 84.51, 113.05, 113.34, 115.77, 115.90, 123.63, 129.71, 129.85, 130.10, 130.25, 131.03, 133.84, 134.87, 135.04, 135.31, 140.87, 144.62, 153.61, 154.23, 182.04. HRMS (ESI) m/z calcd. for $C_{26}H_{33}BNO_{2}^{+}$ 402.2603, found 402.2585.


Synthesis of **DPA-OH**: Under the Ar gas condition, compound **3** (0.37 g, 2.0 mmol), potassium carbonate (0.276 g, 2.0 mmol) and bis(2-picolyl)amine (0.40 g, 2.0 mmol) were dissolved in 10 mL acetonitrile. The reaction was heated to 25°C for 8 h. The color of the solution changed from red to yellow. The mixture was filtered, and the filtrate was dryed with MgSO₄ and concentrated to obtain the yellow oil **DPA-OH** without further purification (0.49 g, 80%)

Synthesis of **M-Zn**: In an atmosphere of argon, to a mixture of compound **DPA-OH** (0. 305 mg, 1.0 mmol) in 10 mL DMF was added potassium carbonate (0.276 g, 2.0 mmol) for 30 min, then **Cy.7.Cl** (0.64 g, 1.0 mmol) was added. The reaction mixture was stirred for 6 h at 50°C in an oil bath. Concentration of the product and chromatography were carried out over silica gel (50:1 CH₂Cl₂:CH₃OH). This resulted in 0.36 g (yield 40%) of **M-Zn** as a light green solid. ¹H NMR (400 MHz, *d6*-DMSO) δ (ppm): 0.853 (t, J=6.4 Hz, 3H), 1.158 (s, 6H), 1.232 (s, 12H), 1.936-2.027 (m, 3H), 2.714 (t, J=6.4 Hz, 2H), 3.491 (s, 2H), 3.606 (s, 2H),

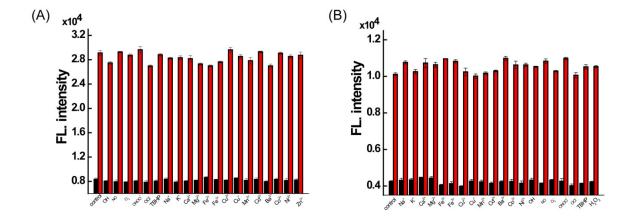

3.667 (s, 2H), 4.131 (t, J=6.4 Hz, 2H), 6.181 (d, J=14.4 Hz, 1H), 6.726 (d, J=8.4 Hz, 1H), 7.137 (d, J=8.4 Hz, 1H), 7.171-7.268 (m, 5H), 7.318-7.384 (m, 4H), 7.458 (d, J=8.8 Hz, 2H), 7.558-7.591 (m, 3H), 7.768-7.806 (m, 4H), 8.437 (d, J=4.0 Hz, 1H), 8.485 (d, J=4.0 Hz, 1H), 9.288 (s, 1H). 13 C NMR (100 MHz, d6-DMSO) δ (ppm): 12.47, 14.29, 23.98, 24.22, 26.76, 27.02, 29.48, 35.14, 48.91, 57.30, 58.85, 59. 33, 100.31, 105.12, 111.38, 114.53, 115.47, 119.31, 121.77, 122.56, 122.78, 125.20, 128.99, 129.05, 131.29, 131.38, 132.76, 136.97, 141.33, 141.95, 149.28, 156.87, 159.10, 159.58, 159.76, 162.90, 171.62. HRMS (ESI) m/z calcd. for $C_{53}H_{58}N_5O^+$ 780.4636, found 780.4577.

Figure S1 The absorption spectra of 5.0 μ M M-H₂O₂ (A) and 5.0 μ M M-Zn (B) with different concentrations of H₂O₂ (0-50 μ M) and Zn²⁺ (0-10 μ M).

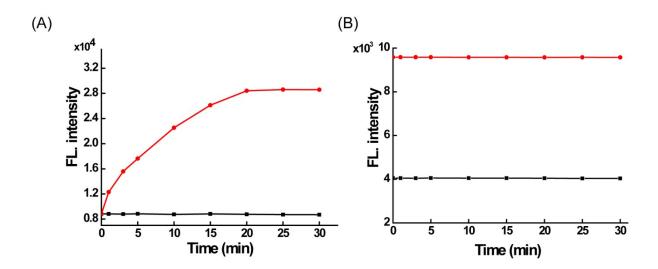


Figure S2 The linearity of 5.0 μM **M-H₂O₂** (A) and 5.0 μM **M-Zn** (B) with different concentrations of H_2O_2 (0.1-50 μM) and Zn^{2+} (0.1-5.0 μM). The excitation wavelengths are 530 and 750 nm for **M-H₂O₂** and **M-Zn**, respectively.

Figure S3 The high selectivity of 5.0 μM **M-H₂O₂** to 40 μM H₂O₂ (A) and 5.0 μM **M-Zn** to 5.0 μM Zn²⁺ (B) in the presence of various ROS and common metal ions. For **M-H₂O₂**, ONOO⁻: 100 μM; NaClO, OH·, O₂·-, TBHP, NO: 200 μM; Na⁺, K⁺: 5.0 mM; Ca²⁺, Mg²⁺: 1.0 mM; Fe²⁺, Fe³⁺, Cu²⁺, Cu⁺, Mn²⁺, Cd²⁺, Ba²⁺, Co²⁺, Ni²⁺, Zn²⁺: 100 μM. For **M-Zn**, H₂O₂, ONOO⁻, NaClO, OH·, O₂·-, TBHP, NO: 200 μM; Na⁺, K⁺: 5.0 mM; Ca²⁺,

Mg²⁺: 1.0 mM; Fe²⁺, Fe³⁺, Cu²⁺, Cu⁺, Mn²⁺, Cd²⁺, Ba²⁺, Co²⁺, Ni²⁺, 10 μ M. The excitation wavelengths are 530 and 750 nm for **M-H₂O₂** and **M-Zn**, respectively.

Figure S4 The fluorescence stability of 5.0 μ M **M-H₂O₂** to 40 μ M H₂O₂ (A) and 5.0 μ M **M-Zn** to 5.0 μ M Zn²⁺ (B) at different time. The excitation wavelengths are 530 and 750 nm for **M-H₂O₂** and **M-Zn**, respectively.

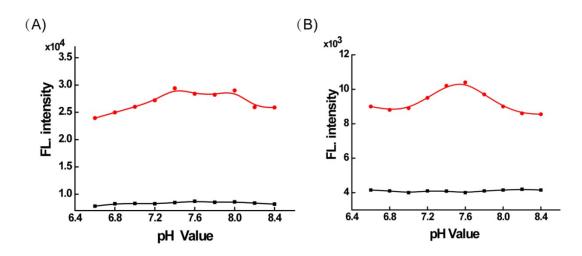
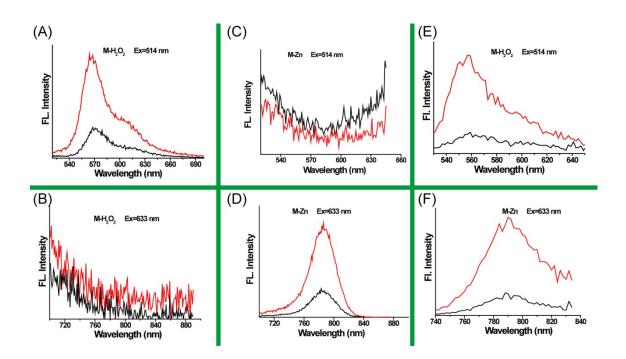




Figure S5 The fluorescence responses of 5.0 μ M M-H₂O₂ to 40 μ M H₂O₂

(A) and 5.0 μ M **M-Zn** to 5.0 μ M Zn²⁺ (B) under different pH values. The excitation wavelengths are 530 and 750 nm for **M-H₂O₂** and **M-Zn**, respectively.

Figure S6 (A-B) The fluorescence responses of 5.0 μM **M-H₂O₂** to 40 μM H_2O_2 at different excitation wavelengths. (C-D) The fluorescence responses of 5.0 μM **M-Zn** to 5.0 μM Zn^{2+} at different excitation wavelengths. To completely avoid the spectral overlap for confocal fluorescence imaging with these two probes, we chose 514 nm as excitation wavelength for **M-H₂O₂**. It is because **M-Zn** can't be excited at 514 nm, but can be easily excited by 633 nm. In stark contrast, fluorescence enhancement of **M-H₂O₂** to H_2O_2 can be readily excited by 514 nm but not 633 nm. In a mixed solution containing both **M-H₂O₂** (5.0 μM) and **M-Zn** (5.0 μM), H_2O_2 (50 μM) and Zn^{2+} (5.0 μM) were

continuously added. Then fluorescence spectra were collected by using 514 nm or 633 nm as the excitation wavelength, respectively. The results were presented in (E) and (F). It showed that coexistence of one probe won't affect the fluorescence response of another probe.

Figure S7 The colocalization fluorescence image of HepG2 cells stained simultaneously with $M-H_2O_2$ (20 μ M) and M-Zn (20 μ M). (A) $M-H_2O_2$ ex 514 nm/em 530–600 nm. (B) M-Zn ex 633 nm/em 730-800 nm. (C) The merged image of A and B. The fluorescence intensity profile of white line overlapped well.

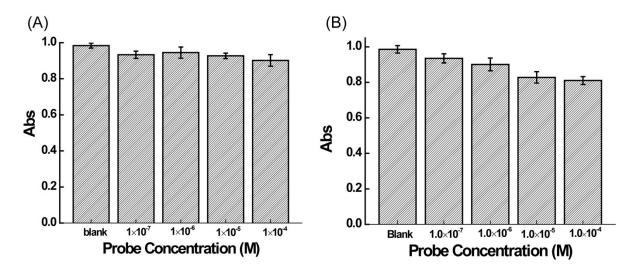
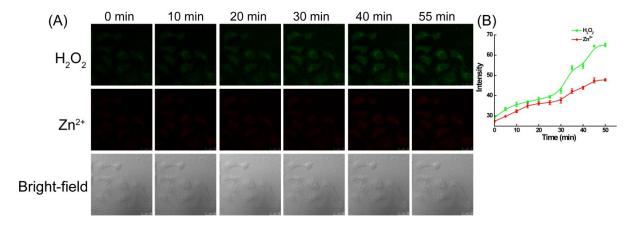
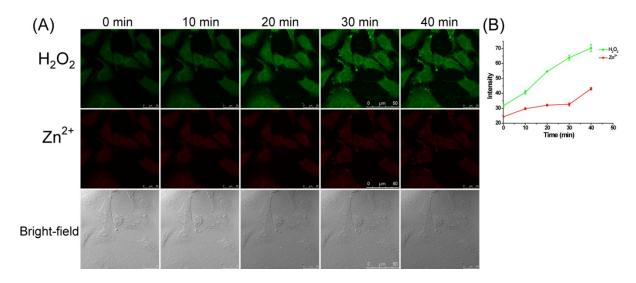
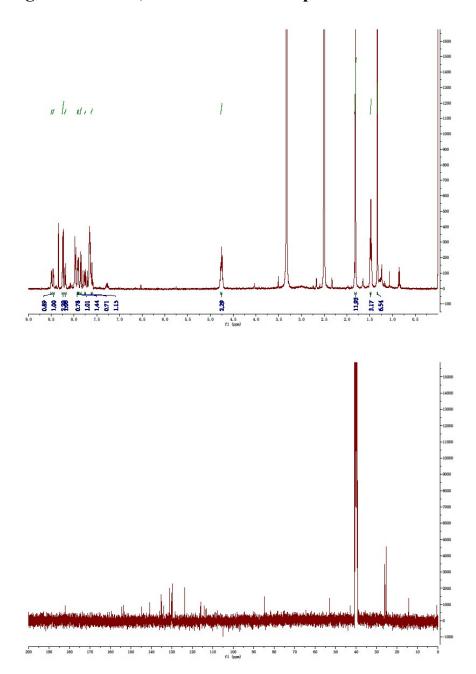
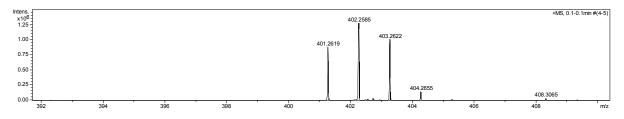




Figure S8 The MTT assay of M-H₂O₂ and M-Zn.

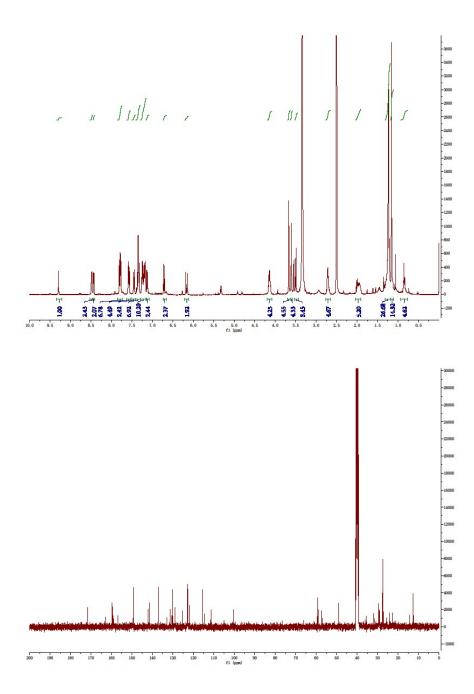
Figure S9 The simultaneous fluorescence imaging of H_2O_2 and Zn^{2+} with $M-H_2O_2$ and M-Zn in HepG2 cells induced by H_2O_2 (1.0 mM). (A) The fluorescence images of $M-H_2O_2$ (20 μ M, green channel, ex 514 nm/em 530–600 nm) and M-Zn (20 μ M, red channel, ex 633 nm/em 730–800 nm). (B) The average fluorescence intensity from A at different time.

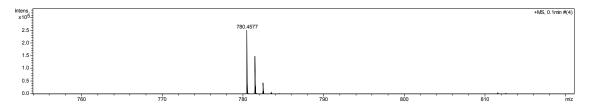

Figure S10 The simultaneous fluorescence imaging of H_2O_2 and Zn^{2+} in HepG2 cells stimulated by PMA (25 µg/mL). (A) The fluorescence images of **M-H₂O₂** (20 µM, green channel, ex 514 nm/em 530–600 nm) and **M-Zn** (20 µM, red channel, ex 633 nm/em 730-800 nm). (B) The average fluorescence intensity from A at different time.

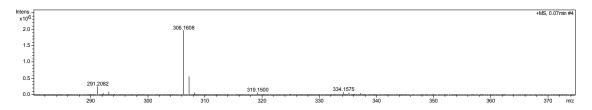
References


- [1] D. Magde, G. E. Rojas and P. G. Seybold, *Photochem. Photobiol.*, 1999, **70**, 737-744.
- [2] D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano and T. Nagano, *J. Am. Chem. Soc.*, 2010, **132**, 2795-2801.
- [3] L. Yuan, W. Lin, S. Zhao, W. Gao, B. Chen, L. He and S. Zhu, *J. Am. Chem. Soc.*, 2012, **134**, 13510-13523.
- [4] H. A. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.*, 1949, **71**, 2703-2707.
- [5] J. H. Lee, J. H. Lee, S. H. Jung, T. K. Hyun, M. Feng, J. Y. Kim, J. H.

- Lee, H. Lee, J. S. Kim, C. Kang, K. Y. Kwon and J. H. Jung, *Chem. Commun.*, 2015, **51**, 7463-7465.
- [6] F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, *Chem. Commun.*, 2013, **49**, 9176–9178.
- [7] Z. Wang, P. Lu, S. Chen, Z. Gao, F. Shen, W. Zhang, Y. Xu, H. S. Kwok, and Y. Ma, *J. Mater. Chem.*, 2011, **21**, 5451–5456.
- [8] L. De Luca, G. Giacomelli, and A. Porcheddu, *Org. Lett.*, 2002, **4**, 553-555.


The original $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and MS spectra


The ¹H NMR and ¹³C NMR spectra of M-H₂O₂


The HR-MS spectra of $M\text{-}H_2O_2$

The 1H NMR and ^{13}C NMR spectra of **M-Zn**

The HR-MS spectra of M-Zn

The HR-MS spectra of **DPA-OH**