Radical Trideuteromethylation in the Synthesis of Heterocycles and Labelled Building Blocks

Roberta Caporaso, ${ }^{\text {a,b,c }}$ Srimanta Manna, ${ }^{\text {a,b }}$ Sarah Zinken, ${ }^{\text {a,b }}$ Alexander R. Kochnev, ${ }^{\text {d Evgeny }}$
${ }^{\text {a }}$ Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
${ }^{\text {b }}$ Chemical Biology, Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
${ }^{\text {c }}$ Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
 Moscow, Russia

*Email: Andrey.Antonchick@mpi-dortmund.mpg.de

Table of contents

1. General S2
2. General procedures S3
3. Characterization of products S4
4. Copies of NMR spectra S17

General

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were technical grade. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator. Compounds were visualized by irradiation with UV light or potassium permanganate staining. Column chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm). Solvent mixtures are understood as volume/volume. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were recorded on a Bruker DRX500 (500 MHz) and Bruker DRX600 (600 MHz) using $\mathrm{CDCl} 3, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6} as solvent. Data are reported in the following order: chemical shift (δ) values are reported in ppm with the solvent resonance as internal standard $\left(\mathrm{CDCl} 3: \delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, \delta=77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C} ; \mathrm{CD}_{3} \mathrm{OD}: \delta=3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$, $\delta=49.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$; DMSO- $d_{6}: \delta=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=39.52 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); multiplicities are indicated br s (broadened singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), quin (quintet); coupling constants (J) are given in Hertz (Hz). High resolution mass spectra were recorded on a LTQ Orbitrap mass spectrometer coupled to an Acceka HPLC-System (HPLC column: Hypersyl GOLD, $50 \mathrm{~mm} \times 1 \mathrm{~mm}$, particle size $1.9 \mu \mathrm{~m}$, ionization method: electron spray ionization). Fourier transform infrared spectroscopy (FTIR) spectra were obtained with a Bruker Tensor 27 spectrometer (ATR, neat) and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$.

Method Afor the preparation of Trideuteromethylated compounds ($\mathbf{2 b} \mathbf{- 2 k}$)

To a screw capped reaction vial containing quinoline or isoquinoline (0.5 mmol) in DMSO- d_{6} $(1 \mathrm{~mL}) \mathrm{FeCl}_{2}(0.25 \mathrm{mmol})$ and TFA $(0.75 \mathrm{mmol})$ were added. Then $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water) (2.50 mmol) was added slowly and portion-wise and the reaction was stirred at room temperature under air until full conversion monitored by TLC and GC-MS. Afterwards residual trifluoacetic acid was neutralized by adding $\mathrm{NEt}_{3}(1 \mathrm{mmol})$ and the reaction mixture was diluted with water. The aqueous phase was extracted three times with ethyl acetate and the combined organic layers were dried over MgSO_{4}. Subsequently, column chromatography of the reaction mixture provided the pure product using petroleum ether/EtOAc or dichloromethane $/ \mathrm{MeOH}$ as eluent system.

Method B for the preparation of Trideuteromethylated compounds (4a-4j, 8)

To a screw capped reaction vial containing N-arylacrylamide (0.2 mmol) in DMSO- $d_{6}(1 \mathrm{~mL})$ $\mathrm{FeCl}_{2}(0.10 \mathrm{mmol})$ and TFA (0.20 mmol) were added. Then $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water) (1 mmol) was added slowly and portion-wise and the reaction was stirred at room temperature under air until full conversion monitored by TLC and GC-MS. Afterwards residual trifluoacetic acid was neutralized by adding $\mathrm{NEt}_{3}(0.50 \mathrm{mmol})$ and the reaction mixture was diluted with water. The aqueous phase was extracted three times with ethyl acetate and the combined organic layers were dried over MgSO_{4}. Subsequently, column chromatography of the reaction mixture provided the pure product using petroleum ether/EtOAc as eluent system.

Method C for the preparation of Trideuteromethylated compounds (6a-6d)

To a screw capped reaction vial containing activated alkenes (0.5 mmol) in DMSO- $d_{6}(1 \mathrm{~mL})$ $\mathrm{FeCl}_{2}(0.25 \mathrm{mmol})$ and TFA (0.75 mmol) were added. Then $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% in water) (2.50 mmol) was added slowly and portion-wise and the reaction was stirred at room temperature under air until full conversion monitored by TLC and GC-MS. Afterwards residual trifluoacetic acid was neutralized by adding $\mathrm{NEt}_{3}(1 \mathrm{mmol})$ and the reaction mixture was diluted with water. The aqueous phase was extracted three times with ethyl acetate and the combined organic layers were dried over MgSO_{4}. Subsequently, column chromatography of the reaction mixture provided the pure product using petroleum ether/EtOAc as eluent system.

Characterization of products

Substrates were prepared according to literature procedure ${ }^{[1]}$.

1-[$\left.{ }^{2} H_{3}\right]$-Methylisoquinoline

Prepared according to the method A; the product was obtained as colorless oil (yield 83\%); $R_{f}=0.43$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $88.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52 \mathrm{ppm}(\mathrm{d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.69,141.69,136.04,130.20,127.35,127.25,125.82$, 125.80, 119.51, 22.12 ppm (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=2959,2922,2852,1562,1417,1259 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{10} \mathrm{H}_{7}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 147.09961 found: 147.09951.

(2c)

1-[$\left.{ }^{2} H_{3}\right]$-Methyl-3-methylisoquinoline

Prepared according to the method A; the product was obtained as pale yellow solid (yield 55%); $R_{f}=0.37$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 2.65 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.11,150.26,136.74,130.04,126.70,126.15,125.69$, 125.66, 117.33, 24.33, 21.65 (quin, $J=19.5 \mathrm{~Hz}$) ppm.

FT-IR: $\tilde{v}=3048,2981,2918,1589,1565,1359 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{11} \mathrm{H}_{9}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 161.11526 found: 161.11531.

(2d)

Ethyl 1-[${ }^{2} H_{3}$-]-Methyl-isoquinoline-3-carboxylate

Prepared according to the method A; the product was obtained as pale yellow solid (yield 65%); $R_{f}=0.5$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78-7.69(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.46 \mathrm{ppm}(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.96,159.50,140.48,135.54,130.91,129.54,129.02$, $128.79,125.93,123.05,61.94,21.91$ (quin, $J=19.5 \mathrm{~Hz}$), 14.49 ppm .
FT-IR: $\tilde{v}=3064,2988,2924,1727,1498,1316,1237,1022 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{11}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}$: 219.12074 found: 219.12110.

1-[$\left.{ }^{2} H_{3}\right]$-Methyl-4-bromoisoquinoline

Prepared according to the method A; the product was obtained as white solid (yield 65\%);
$R_{f}=0.28$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1 H), $7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67 \mathrm{ppm}(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 158.27, 143.35, 134.68, 131.41, 128.84, 128.17, 126.72, 126.21, 118.01 ppm .

FT-IR: $\tilde{v}=3068,3036,2989,1556,1378,1271 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{10} \mathrm{H}_{6}{ }^{2} \mathrm{H}_{3} \mathrm{~N}^{79} \mathrm{Br}$: 225.01012 found: 225.01096; calc. for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{10} \mathrm{H}_{6}{ }^{2} \mathrm{H}_{3} \mathrm{~N}^{81} \mathrm{Br}$: 227.00807 found: 227.00857 .

1-[${ }^{2} H_{3}$-]-Methyl-4-phenylisoquinoline

Prepared according to the method A; the product was obtained aspale white solid (yield 73%); $R_{f}=0.5$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44 \mathrm{ppm}(\mathrm{m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 158.01,141.42,137.39,134.52,132.22,130.35,130.28$ (2C), 128.67 (2C), 127.91, 127.29, 127.09, 126.02, 125.66, 21.95 ppm (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=3063,3028,1554,1507,1387,1073 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{11}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 223.13091 found: 223.13121.

1-[$\left.{ }^{2} H_{3}\right]$-Methyl-6-phenylisoquinoline

Prepared according to the method A; the product was obtained as pale yellow oil (yield 71%); $R_{f}=0.34$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.40(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.86(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.37 \mathrm{ppm}(\mathrm{m}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.02,152.14,142.99,141.54,137.40,134.43,132.12$, $130.33,130.20,128.65$ (2C), 127.87 (2C), $127.03,125.98,125.61 \mathrm{ppm}$.

FT-IR: $\tilde{v}=3050,3031,1587,1489,1281,1076 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{11}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 223.13091 found: 223.13081.

1-[$\left.{ }^{2} H_{3}\right]$-Methyl-6,7-dimethoxy-isoquinoline

Prepared according to the method A; the product was obtained as pale yellow solid (yield 62%); $R_{f}=0.55$ (dichloromethane/MeOH = 90/10 v/v).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 8.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (s , $1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.09 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 159.18,154.37$ (2C), 137.92, 129.94, 124.23, 122.85, $107.25,105.97,57.36,57.04,17.36 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=3068,2918,2845,1507,1233,1168,1114,1016 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{12} \mathrm{H}_{11}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}$: 207.12074 found: 207.12123.

1-[$\left.{ }^{2} H_{3}\right]$-Methyl-5,6,7-trimethoxy-isoquinoline

Prepared according to the method A; the product was obtained as pale yellow solid (yield 77%); $R_{f}=0.28$ (dichloromethane $/ \mathrm{MeOH}=95 / 5 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}+\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right) \delta 8.41-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}$, 1 H), 4.05 ($\mathrm{s}, 3 \mathrm{H}$), $4.03 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}+\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right)^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.44, 154.41, $146.86,146.76,129.72,124.18,116.06,100.38,100.05,61.88,61.48,56.43,41.91 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2889,1507,1280,1146,1017 \mathrm{~cm}^{-1}$;
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{13}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~N}$: 237.13130 found: 237.13117.

4-[$\left.{ }^{2} H_{3}\right]$-Methyl-2-methylquinoline

Prepared according to the method A; the product was obtained as pale yellow solid (yield 73%); $R_{f}=0.5$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.50-7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 2.69 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.73,147.64,144.29,129.24,129.11,126.65,125.53$, $123.70,122.83,25.30,17.93 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=3059,2989,2915,1506,1338,1220 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{11} \mathrm{H}_{9}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 161.11526 found: 161.11535 .

2-[$\left.{ }^{2} H_{3}\right]$-Methyl-4-methyl-quinoline

Prepared according to the method A; the product was obtained as pale yellow oil (yield 53\%);
$R_{f}=0.5$ (petroleum ether $/ \mathrm{EtOAc}=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 2.66 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.69,147.65,144.39,129.26,129.13,126.64,125.55$, 123.70, 122.83, 24.61 (quin, $J=19.5 \mathrm{~Hz}$), 18.73 ppm .

FT-IR: $\tilde{v}=3059,2974,1560,1508,1343 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{11} \mathrm{H}_{9}{ }^{2} \mathrm{H}_{3} \mathrm{~N}$: 161.11526 found: 161.11517.

(4a)

3-[2- $\left.{ }^{2} \mathrm{H}_{3}\right]$-Ethyl-1,3-dimethyl-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one

Prepared according to the method B; the product was obtained ascolorless oil (yield 91\%); $R_{f}=0.43$ (petroleum ether $/ E t O A c=60 / 40 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.17(\mathrm{dd}, J=5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{dd}, J=7.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 180.47,157.09,146.61,130.02,128.38,118.15,48.69,30.88$, $25.36,22.83,8.14 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=2868,2923,1716,1592,1468,1346,1136,1027 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{11} \mathrm{H}_{12}{ }^{2} \mathrm{H}_{3} \mathrm{ON}_{2}$: 194.13672 found: 194.13680.

(4b)

3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-1,3,5-trimethylindolin-2-one

Prepared according to the method B ; the product was obtained as pale yellow oil (yield 61%); $R_{f}=0.55$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.34 \mathrm{ppm}(\mathrm{s}$, 3 H).

[^0]FT-IR: $\tilde{v}=2965,2919,1703,1601,1499,1349,1152,1135 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{3} \mathrm{ON}$: 207.15712 found: 207.15722.

(4c)

3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-5-methoxy-1,3-dimethylindolin-2-one

Prepared according to the method B; the product was obtained as colorless oil (yield 65\%); $R_{f}=0.40$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (s, 3H), $1.89(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 180.48,156.08,137.11,135.48,111.47,110.37$, 108.10, $55.86,49.46,31.33,26.25,23.52,8.14 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2920,1700,1598,1497,1290,1118,1039 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}$: 223.15204 found: 223.15240.

(4d)

3-[2- $\left.\left.{ }^{2} H_{3}\right)\right]$-Ethyl-1,3,4,6-tetramethylindolin-2-one

Prepared according to the method B; the product was obtained as pale yellow oil (yield 70\%); $R_{f}=0.53$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.96(\mathrm{~s}, 2 \mathrm{H}), 1.40 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 181.17,143.96,137.55,133.95,127.46,125.60,106.73$, $50.01,29.27,26.25,22.37,21.67,18.11,8.54 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2927,1708,1618,1454,1238,1059 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{14} \mathrm{H}_{17}{ }^{2} \mathrm{H}_{3} \mathrm{ON}$: 221.17277 found: 221.17338.

(4e)

3-[2- $\left.{ }^{2} \mathrm{H}_{3}\right]$-Ethyl-4-fluoro-7-iodo-1,3-dimethylindolin-2-one

Prepared according to the method B ; the product was obtained as pale white solid (yield 76%); $R_{f}=0.47$ (petroleum ether/EtOAc $=80 / 20 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $87.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.30(\mathrm{~m}, 3 \mathrm{H}), 1.90$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 179.66,147.43(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 139.03(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $130.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 127.63(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 124.82(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 83.47(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $49.54,31.53,28.63(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 23.63,8.15 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2929,2859,1708,1621,1417,1258 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{12} \mathrm{H}_{11}{ }^{2} \mathrm{H}_{3} \mathrm{ONFI}$: 337.02869 found:337.02910.

(4f)

3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-4-fluoro-1,3-dimethylindolin-2-one and 3-[2- $\left.{ }^{2} H_{3}\right]$-ethyl-6-fluoro-1,3-dimethylindolin-2-one, 4f-major and 4f-minor
Prepared according to the method B; the product was obtained as colorless oil as a mixture of regioisomers (r.r. $=1.5: 1$; yield 90%); $R_{f}=0.57($ petroleum ether $/ E t O A c=70 / 30 \mathrm{v} / \mathrm{v}$).
For major regioisomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{q}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 180.24,159.02(\mathrm{~d}, J=246.8 \mathrm{~Hz}), 145.60(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, $129.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 123.47(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 110.21(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 104.11(\mathrm{~d}, J=3.1$ Hz), 48.71, 29.90, 26.63, 22.23, 8.39 ppm (quin, $J=19.5 \mathrm{~Hz}$).
For minor regioisomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ 7.10-7.05 (m, 1H), $6.73(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 181.16,162.86(\mathrm{~d}, J=243.8 \mathrm{~Hz}), 144.96(\mathrm{~d}, J=11.5 \mathrm{~Hz})$ $129.21(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 118.88(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 108.42(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 96.82(\mathrm{~d}, J=27.4$ Hz), 49.50, 31.35, 26.32, 23.52, 8.39 ppm (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2970,1711,1618,1474,1377,1235,1046 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{12} \mathrm{H}_{12}{ }^{2} \mathrm{H}_{3} \mathrm{ONF}$: 211.13205 found: 211.13247.

(4g)

3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-3-methyl-1-phenylindolin-2-one

Prepared according to the method B; the product was obtained as colorless oil (yield 89%); $R_{f}=0.61$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.24$ (dd, $J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.7,1,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 180.31,143.49,134.76,133.80,129.66$ (2C), 128.01, 127.63, 126.68 (2C), 123.01, 122.93, 109.27, 49.09, 31.94, 23.75. 8.22 ppm (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=2966,2920,1718,1499,1373,1175 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{3} \mathrm{ON}$: 255.15712 found: 255.15735.

(4h)

1-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-1-methyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one

Prepared according to the method B; the product was obtained as colorless oil (yield 79\%); $R_{f}=0.37$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 7.02-6.98 (m, 2H), 6.97-6.92 (m, 1H), $3.71(\mathrm{t}, J=5.9 \mathrm{~Hz}$, 2 H), 2.81-2.77 (m, 2H), 2.02-1.98 (m, 2H), $1.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.35 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 179.78,139.25,132.57,126.49,121.91,120.52,119.98$, $50.35,38.77,31.03,24.74,23.03,21.41,8.21 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=2962,2923,1480,1371,1239,1165,1023 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{14} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{3} \mathrm{ON}$: 219.15712 found: 219.15768.

(4i)

3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-3-(methoxymethyl)-1-methylindolin-2-one

Prepared according to the method B ; the product was obtained as colorless oil (yield 85%); $R_{f}=0.29$ (eluent petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.7,1,2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78 \mathrm{ppm}(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 178.53,144.42,130.95,128.06,123.11,122.53,107.96$, $76.93,59.65,54.65,26.73,26.26,7.35 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=3054,2921,1706,1611,1469,1349,1196,1097 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}$: 223.15204 found: 223.15260 .

(4j)

2-\{[3-[2- $\left.{ }^{2} H_{3}\right]$-Ethyl-1-methyl-2-oxoindolin-3-yl]methyl\}isoindoline-1,3-dione

Prepared according to the method B; the product was obtained ascolorless oil (yield 87%); $R_{f}=0.17$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.75(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{dt}, J=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93 \mathrm{ppm}(\mathrm{d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 178.00,168.14,144.31,134.03$ (2C), 131.79, 129.02, 128.53, 123.73 (2C), 123.43 (2C), $122.35,108.02,53.56,43.21,28.62,26.39,7.88 \mathrm{ppm}$ (quin, $J=$ 19.5 Hz).

FT-IR: $\tilde{v}=3056,2919,1706,1610,1468,1392,1068 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{16}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~N}_{2}: 338.15785$ found: 338.15784 .

(6a)

2-Chloro- N -(4-methoxybenzyl)- N -methyl-[4- ${ }^{2} \mathrm{H}_{3}$]-butanamide

Prepared according to the method C; the product was obtained as colorless oil(yield 75%); $R_{f}=0.40$ (petroleum ether/EtOAc $=70 / 30 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{D M S O}-\boldsymbol{d}_{6}, 90{ }^{\circ} \mathbf{C}$) $\delta 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.82-4.75 (m, 1H), $4.54(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84 \mathrm{ppm}(\mathrm{dd}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d $_{\mathbf{6}}, 25{ }^{\circ} \mathbf{C}$) δ 168.21, 168.06, 158.68, 158.52, 129.12, 128.94, $128.72,128.34,114.12,113.97,55.92,55.38,55.13,55.08,51.79,49.77,34.52,33.59,27.78$, $27.35,9.87 \mathrm{ppm}$ (quin, $J=17.6 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2934,1651,1511,1244,1175,1031 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{16}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}^{35} \mathrm{Cl}$: 259.12871 found: 259.12890; calc. for [M+H] ${ }^{+}$ $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}^{37} \mathrm{Cl}$: 261.12576 found: 261.12554 .

(6b)

2-Chloro- N, N-diphenyl-[4- ${ }^{2} \mathrm{H}_{3}$]-butanamide

Prepared according to the method C ; the product was obtained as pale yellow oil (yield 56%); $R_{f}=0.47$ (petroleum ether/EtOAc $\left.=90 / 10 \mathrm{v} / \mathrm{v}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $2 \mathrm{H}), 4.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=13.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93 \mathrm{ppm}(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.20,142.35,142.05,130.17$ (2C), 129.13 (2C), 128.76 (2C), $128.50,126.66,126.32$ (2C), $56.52,28.23,10.26 \mathrm{ppm}$ (quin, $J=20.16 \mathrm{~Hz}$).

FT-IR: $\tilde{v}=3062,3039,1679,1489,1325,1235 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}^{35} \mathrm{Cl}$: 277.11815 found: 277.11775; calc. for [M+H] ${ }^{+}$ $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}^{37} \mathrm{Cl}$: 279.11520 found: 279.11466 .

(6c)

2-Chloro-1-(piperidin-1-yl)-[4- $\left.{ }^{2} H_{3}\right]$-butan-1-one

Prepared according to the method C ; the product was obtained aspale white solid (yield 65%); $R_{f}=0.57$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.34(\mathrm{dd}, J=7.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.50$ (m, 1H), 3.50-3.39 (m, 2H), 2.07 (dd, $J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.51 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.91,55.98,47.14,43.64,27.78,26.53,25.63,24.58,10.41$ ppm (quin, $J=19.5 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2937,2856,1645,1441,1274,1137,1010 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{9} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}^{35} \mathrm{Cl}$: 193.11815 found: 193.11827; calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{9} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}^{37} \mathrm{Cl}: 195.11520$ found: 195.11495.

(6d)

2-Bromo-1-(piperidin-1-yl)-[4- $\left.{ }^{2} \mathrm{H}_{3}\right]$-butan-1-one

Prepared according to the method C ; the product was obtained aspale colorless oil(yield 91%); $R_{f}=0.66$ (petroleum ether/EtOAc $=50 / 50 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 4.37-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.43$ (m, 2H), 3.43-3.35 (m, 1H), 2.12 (dd, $J=14.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=14.3,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77-1.48 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.09,47.32,45.83,43.60,28.18,26.27,25.56,24.52,11.58$ ppm (quin, $J=18.9 \mathrm{~Hz}$).
FT-IR: $\tilde{v}=2935,2859,1632,1442,1214,1120,1025 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{9} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}{ }^{79} \mathrm{Br}$: 237.06763 found: 237.06844; calc. for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{9} \mathrm{H}_{14}{ }^{2} \mathrm{H}_{3} \mathrm{ON}{ }^{81} \mathrm{Br}$: 239.06559 found: 239.06601.

2-Methyl- N-phenyl-2-(4-methylphenyl)-[4- $\left.{ }^{2} H_{3}\right]$-butanamide

Prepared according to the method B; the product was obtained as white solid (yield 67%); $R_{f}=$ 0.33 (petroleum ether/EtOAc $=90 / 10 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.39-7.34 (m, 2H), 7.31-7.24 (m, 4H), $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), $7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{q}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ ppm ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 175.66,140.44,138.13,137.08,129.75$ (2C), 129.00 (2C), 127.07 (2C), $124.15,119.73$ (2C), $51.63,31.35,23.48,21.13,8.16 \mathrm{ppm}$ (quin, $J=18.9 \mathrm{~Hz}$). FT-IR: $\tilde{v}=3311,2932,1663,1528,1498,1311,1242,1071 \mathrm{~cm}^{-1}$.
HRMS: calc. for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{19}{ }^{2} \mathrm{H}_{3} \mathrm{ON}$: 271.18842found:271.18797.

References:

[1]a) Mu, X.; Wu, T.; Wang, H.-y.; Guo, Y.-1.; Liu, G. J. Am. Chem. Soc. 2011, 134, 878881; b) Pigge, F. C.; Dhanya, R. and Hoefgen, Erik R. Angew. Chem. Int. Ed. 2007, 46, 28872890; c) Friesen, R. W.; Trimble, L. A., Can. J. Chem. 2004,82, 206-214; d) Liu, Q.; Zhu, F.P.; Jin, X.-L.; Wang, X.-J.; Chen, H. and Wu, L.-Z. Chem. Eur. J.2015,21, 10326-10329; e) Wang, S.; Huang, X.; Wen, Y.; Ge, Z.; Wang, X.; Li, R.Tetrahedron, 2015, 71, 8117-8122.

Copiesof spectra

(2d)

(4b)

~

(4c)

(4d)

(4e)

(4f)

(4g)

(4h

(4i)

(4j)

(6b)

(6c)

(4d)

(8)

[^0]: ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 180.83,141.18,134.08,131.98,127.90,123.48,107.63$, $49.07,31.32,26.20,23.50,21.29,8.18 \mathrm{ppm}$ (quin, $J=19.5 \mathrm{~Hz}$).

