Supporting Information

For

Rhodium-Catalyzed P–P Bond Exchange Reaction of Diphosphines

Mieko Arisawa^a*, Tomoki Yamada^a, Saori Tanii^a, Yuta Kawada^a, Hisako Hashimoto^b, and Masahiko Yamaguchi^a*

^aDepartment of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan ^bDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan

Contents

Page S2	Supplementary Materials
Page S2-S16	Typical procedures and The Spectral and Analytical Data
Page S3-S6, S14	Crystal Data
Page S17	References
Page S18-S59	NMR Spectra

Supplimentary Materials

¹H-, ¹³C- and ³¹P-NMR spectra were recorded on a Varian Mercury (400 MHz) and tetramethylsilane were used as standard. The ³¹P-NMR spectrum decoupled a proton. IR spectra were measured on a JASCO FT/IR-410 spectrophotomer. Melting points were determined with a Yanagimoto micro melting point apparatus without correction. High- and low-resolution mass spectra were measured on a JEOL JMS-DX-303, a JEOL JMS-700, or a JMS-T100GC spectrometer. X-ray diffraction data were recorded on Rigaku R-AXIS RAPID. Kanto Chemical. CO. INC. silica gel 60 (63-210 μ m) was employed for flash column chromatography. RhH(dppe)₂¹⁾, tetralkyldiphosphine disulfides **1g-1j**²⁾, 1,2-dialkyl-1,2-diphenyldiphosphine disulfides **1a-1d**³⁾, **1f**⁴⁾, **3**⁵⁾, and **5**⁶⁾ were synthesized by the literature methods.

Rhodium-catalyzed isomerization of $(1R^*, 2R^*)$ -1,2-diethyl-1,2-diphenyldiphosphine disulfide $(1R^*, 2R^*)$ -1a to $(1R^*, 2S^*)$ -1,2-diethyl-1,2-diphenyldiphosphine disulfide $(1R^*, 2S^*)$ -1a (Scheme 1)

In a two-necked flask equipped with a magnetic stirrer bar were placed RhH(dppe)₂ (10.0 mol%, 22.5 mg), $(1R^*, 2R^*)$ -1,2-diethyl-1,2-diphenyldiphosphine disulfide $(1R^*, 2R^*)$ -1a (0.25 mmol, 84.5 mg) in THF (0.25 mL) under an argon atmosphere, and the solution was heated at reflux for 6 h. Then, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using toluene giving mixture of $(1R^*, 2R^*)$ -1a and $(1R^*, 2S^*)$ -1,2-diethyl-1,2-diphenyldiphosphine disulfide $(1R^*, 2S^*)$ -1a [82.1 mg, 97%, $(1R^*, 2R^*)$ -1a: $(1R^*, 2S^*)$ -1a = 2:3, Rf = 0.7 (toluene)].

The starting material $(1R^*, 2R^*)$ -**1a** and $(1R^*, 2S^*)$ -**1a** were isolated by recrystallization according to literature.³⁾ A crystal of $(1R^*, 2R^*)$ -**1a** was obtained by recrystallization from ethanol, and that of $(1R^*, 2S^*)$ -**1a** from methanol. The structure of $(1R^*, 2S^*)$ -**1a** was determined by X-ray crystal structure analysis. X-Ray crystallography: CCDC 1486721 contains the supplementary

crystallographic data for this paper. This data can be obtained free of charge from the Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement

Compound: (1*R**,2*S**)-**1**a Formula: C16 H20 P2 S2 Formula weight: 338.38 Wave length: 0.71075 Crystal system: monoclinic Space group: P 21/c Color of crystal: Colorless Unit cell parameters: a = 9.3474(7) Å $\alpha = 90.00^{\circ}$ $\beta = 101.490(2)^{\circ}$ b = 7.1672(4) Å $\gamma = 90.00^{\circ}$ c = 13.3103(8) ÅTemperature of data collection: 173(K) Values of Z, R, GOF: Z = 2R(reflections) = 0.0391(1658), wR2(reflections) = 0.1213(1989)GOF = 1.268Radiation type: Mo K/a Radiation source: sealed X-ray tube Radiation monochromator: graphite Measurement device type: Rigaku R-AXIS RAPID Computing structure solution: SHELX Computing structure refinement: SHELXL-97 (Sheldrick, 1997)

(1*R**,2*R**)-1,2-diethyl-1,2-diphenyldiphosphine disulfide (1*R**,2*R**)-1a: colorless solid. Mp. 92.0-92.6 °C (MeOH). Lit.³⁾ 85-87 °C. ¹H-NMR (400 MHz, CDCl₃) δ 1.26 (6H, dt, *J* = 21.6, 7.6 Hz), 2.54-2.66 (2H, m), 2.82-2.93 (2H, m), 7.21 (4H, bt, *J* = 7.6 Hz), 7.35 (2H, dt, *J* = 7.6, 1.2 Hz), 7.60-7.66 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 6.0, 22.4 (t, *J* = 31.0 Hz), 125.8 (dd, 38.0, 36.5 Hz), 127.8 (t, *J* = 5.2 Hz), 131.8, 131.9 (d, *J* = 5.3 Hz). ³¹P-NMR (162 MHz, CDCl₃) δ 45.6. IR (KBr) 3053, 2969, 1435, 1100, 1027 cm⁻¹. MS (EI) m/z 338 (M⁺, 46%), 214 (M⁺-124, 100%). HRMS Calcd for C₁₆H₂₀P₂S₂: 338.0482. Found: 338.0472. (1*R**,2*S**)-1,2-diethyl-1,2-diphenyldiphosphine disulfide (1*R**,2*S**)-1a: Colorless solid. Mp. 152.8-153.2 °C (EtOH). Lit.³⁾ 156-157 °C. ¹H-NMR (400 MHz, CDCl₃) δ 0.90 (6H, dt, *J* = 21.6, 7.6 Hz), 1.93-2.06 (2H, m), 2.58-2.68 (2H, m), 7.55 (4H, bt, J = 7.2 Hz), 7.61 (2H, dt, J = 7.2, 1.2 Hz), 8.15-8.21 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 5.0, 20.4 (t, J = 30.5 Hz), 126.0 (m), 128.3 (t, J = 5.2 Hz), 132.5, 133.4 (t, 5.2 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 43.7. IR (KBr) 2974, 2932, 1435, 1102, 1016 cm⁻¹. MS (EI) m/z 338 (M⁺, 39%), 214 (M⁺-124, 100%). HRMS Cacld for C₁₆H₂₀P₂S₂: 338.0482. Found: 338.0472.

Typical procedures for synthesis of the $(1R^*, 2R^*)$ -1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)$ -2ab] and $(1R^*, 2S^*)$ -1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)$ -2ab] $[(1R^*, 2R^*)$ -2ab: $(1R^*, 2S^*)$ -2ab = 2:1 mixture]

In a two-necked flask equipped with a magnetic stirrer bar were placed RhH(dppe)₂ (10.0 mol%, 22.5 mg), 1,2-dimethyl-1,2-diphenyldiphosphine disulfide **1b** $[(1R^*,2R^*)-1b, 0.75 \text{ mmol}, 232.5 \text{ mg},$ Rf 0.4 1,2-diethyl-1,2-diphenyldiphosphine = (toluene)], and disulfide 1a $[(1R^*, 2R^*)-1a:(1R^*, 2S^*)-1a = 1:2, 0.25 \text{ mmol}, 84.5 \text{ mg}, \text{Rf} = 0.7 \text{ (toluene)}] \text{ in THF } (0.25 \text{ mL})$ under an argon atmosphere, and the solution was heated at reflux for 6 h. Then, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using toluene:hexane = 3:1 giving $(1R^*, 2R^*)$ -1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)-2ab]$ and $(1R^*, 2S^*)-1$ -ethyl-2-methyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)-2ab]$ [93.9 mg, 58%, $(1R^*, 2R^*)-2ab:(1R^*, 2S^*)-2ab = 2:1$ mixture, Rf = 0.6 (toluene)]. The $(1R^*, 2R^*)$ -2ab and $(1R^*, 2S^*)$ -2ab were isolated by recrystallization. $(1R^*, 2S^*)$ -2ab (23 mg) was isolated by recrystallization twice from hexane, and $(1R^*, 2R^*)$ -2ab (43 mg) was isolated by recrystallization twice of the residue. The structure of $(1R^*, 2S^*)$ -2ab was determined by X-ray crystal structure analysis (Figure S1). X-Ray crystallography: The methyl and ethyl groups on the phosphorous atom were refined with isotropic thermal parameters because of a disorder of these groups in two positions with the occupancy factor 50% for each. The refinement of the structure of $(1R^*, 2S^*)$ -**2ab** was achieved only with the *R* value of 0.14, because the recrystallization of $(1R^*, 2S^*)$ -**2ab** with various solvents always gave thin scales. The analysis, however, was sufficient for assigning atom connectivity and the structural characteristics of $(1R^*, 2S^*)$ -**2ab**. CCDC 1498142 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement

Compound: (1 <i>R</i> *,2 <i>S</i> *)	-2ab	
Formula: C15 H18 P2	S2	
Formula weight: 324.3	5	
Wave length: 0.71075		
Crystal system: orthorh	nombic	
Space group: P b c a		
Color of crystal: Color	less	
Unit cell parameters:	a = 9.1542(14) Å	$\alpha = 90.00^{\circ}$
	b = 16.9650(15) Å	$\beta = 90.00$ °
	c = 10.682(2) Å	$\gamma = 90.00$ °
Temperature of data co	ollection: 173(K)	
Values of Z, R, GOF:	Z = 4	
	R(reflections) = 0.1403(96)	57)
	wR2(reflections)= 0.4216	(1880)
	GOF = 1.310	
Radiation type: Mo K/a	a	
Radiation source: seale	ed X-ray tube	
Radiation monochroma	ator: graphite	
Measurement device ty	pe: Rigaku R-AXIS RAPI	D
Computing structure so	olution: SHELX	
Computing structure re	finement: SHELXL-97 (SI	heldrick, 1997)

Figure S1. ORTEP view of $(1R^*, 2S^*)$ -**2ab**. The methyl and ethyl groups on the phosphorous atom were disordered in two positions (the occupancy factor 50% for each).

(1R*,2R*)-1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide [(1R*,2R*)-2ab]: Colorless solid. Mp. 95.0-96.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.32 (3H, dt, J = 21.2, 7.6 Hz), 2.39 (6H, dd, J = 13.2, 6.8 Hz), 2.68-2.80 (4H, m), 7.20-7.25 (4H, m), 7.36-7.42 (2H, m), 7.58 (2H, ddd, J = 12.8, 8.0, 0.8 Hz), 7.63 (2H, ddd, J = 12.0, 8.0, 0.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 6.1 (dd, J =4.5, 2.3 Hz), 17.6 (dd, J = 52.2, 13.4 Hz), 21.8 (dd, J = 48.5, 13.5 Hz), 125.5 (dd, J = 65.5, 9.7 Hz), 127.4 (dd, J = 68.5, 9.7 Hz), 127.8 (d, J = 12.7 Hz), 127.9 (d, J = 11.2 Hz), 131.7 (d, J = 9.6 Hz), 132.00 (d, J = 10.0 Hz), 132.01 (d, J = 8.9 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₂) δ 35.8 (d, J =30.6 Hz), 46.9 (d, J = 29.0 Hz). IR (KBr) 3055, 2973, 1435, 1099 cm⁻¹. MS (EI) m/z 324 (M⁺, 47%), 169 HRMS Calcd 324.0325. Found: (M⁺-155, 100%). for $C_{15}H_{18}P_{2}S_{2}$: 324.0334. (1R*,2S*)-1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide [(1R*,2S*)-2ab]: Colorless solid. Mp. 165.0-166.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 0.94 (3H, dt, J = 21.2, 7.6 Hz), 1.92 (3H, dd, *J* = 12.8, 7.2 Hz), 1.99-2.12 (1H, m), 2.62-2.75 (1H, m), 7.53-7.59 (4H, m), 7.59-7.66 (2H, m), 8.12-8.20 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 5.2 (t, J = 3.8 Hz), 15.6 (dd, J = 52.1, 14.2 Hz), 19.8 (dd, J = 49.1, 13.4 Hz), 125.5 (dd, J = 63.3, 10.4 Hz), 127.5 (dd, J = 67.7, 10.4 Hz), 128.3 (d, J = 11.9 Hz), 128.4 (d, J = 11.9 Hz), 132.67, 132.68, 133.0 (d, J = 10.4 Hz), 133.3 (d, J = 9.0 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 34.6 (d, J = 29.2 Hz), 45.3 (d, J = 29.2 Hz). IR (KBr) 3054, 2975, 1436, 1100 cm⁻¹. MS (EI) m/z 324 (M⁺, 48%), 169 (M⁺-155, 100%). HRMS Calcd for C₁₅H₁₈P₂S₂: 324.0325. Found: 324.0332.

2bc, **2ac**, **2ad**, and **2cd** were used as a mixture of $(1R^*, 2R^*)$ - and $(1R^*, 2S^*)$ -isomers. The ³¹P-NMR of $(1R^*, 2R^*)$ -**2ab** was observed downfield than $(1R^*, 2S^*)$ -**2ab**. The terminal methyl protons of $(1R^*, 2R^*)$ -**2ab** by ¹H-NMR was also observed downfield compared with $(1R^*, 2S^*)$ -**2ab**. Then, the stereo-structures of **2bc**, **2ac**, **2ad**, and **2cd** were determined by ³¹P- and ¹H-NMR studies in analogy to **2ab**. In all cases, $(1R^*, 2R^*)$ -**2** was obtained as a main product compared with $(1R^*, 2S^*)$ -**2** under the condition.

(1*R**,2*R**)-1-Methyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)-2bc]$ and (1*R**,2*S**)-1-methyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)-2bc]$ $[(1R^*, 2R^*)-2bc:(1R^*, 2S^*)-2bc = 3:2 \text{ mixture}]:$ Colorless oil. The data (a) are those of $(1R^*, 2R^*)$ -2bc, and the data (b) $(1R^*, 2S^*)$ -2bc. ¹H-NMR (400 MHz, CDCl₂) $\delta 0.87$ (3H, t, J = 7.2Hz)^b, 1.09 (3H, t, 7.2Hz)^a, 1.23-1.35 (1H, m)^b, 1.35-1.48 (1H, m)^b, 1.56-1.70 (1H, m)^a, 1.79-1.83 $(1H, m)^{a}$, 1.89 (3H, dd, J = 12.8, 6.8 Hz)^b, 1.88-2.20 (1H, m)^b, 2.38 (3H, dd, J = 12.8, 6.4 Hz)^a, 2.59-2.76 (3H, m)^{a,b}, 7.18-7.24 (4H, m)^a, 7.34-7.40 (2H, m)^a, 7.54-7.66 (10H, m)^{a,b}, 8.12-8.21 (4H, m)^b. ¹³C-NMR (100 MHz, CDCl₃) δ 15.0^b, 15.1 (d, J = 15.3 Hz)^b, 15.3 (d, J = 17.2 Hz)^a, 15.6 (dd, J $= 38.0, 7.5 \text{ Hz})^{\text{b}}, 15.8^{\text{a}}, 17.4 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 47.3, 11.9 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{a}}, 27.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1, 14.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1 \text{ Hz})^{\text{b}}, 29.9 \text{ (dd, } J = 52.1 \text{ Hz})^{\text{b}}, 29.9 \text{ Hz$ 46.9, 11.9 Hz)^a, 125.8 (dd, J = 64.8, 10.5 Hz)^a, 126.1 (dd, J = 62.6, 11.1 Hz)^b, <u>127.2 (dd, J = X, 9.7</u> $(Hz)^{b}$, 127.3 (dd, J = 68.5, 9.6 $(Hz)^{a}$, 127.7 (d, $J = 7.4 Hz)^{a}$, 127.8 (d, $J = 7.4 Hz)^{a}$, 128.2 (d, J = 12.0 $Hz)^{b}$, 128.3 (d, $J = 9.6 Hz)^{b}$, 131.6 (dd, J = 8.1, 1.5 Hz)^a, 131.8 (dd, J = 8.9, 1.4 Hz)^a, 131.9^a, 132.0^a, $132.59^{\text{b}}, 132.60^{\text{b}}, 133.0 \text{ (d}, J = 9.7 \text{ Hz})^{\text{b}}, 133.2 \text{ (d}, J = 8.9 \text{ Hz})^{\text{b}}, {}^{31}\text{P}{}^{1}\text{H}-\text{NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta$ 34.5 (d, $J = 30.6 \text{ Hz})^{\text{b}}$, 35.6 (d, $J = 29.2 \text{ Hz})^{\text{a}}$, 42.1 (d, $J = 30.6 \text{ Hz})^{\text{b}}$, 43.5 (d, $J = 29.2 \text{ Hz})^{\text{a}}$. IR (neat) 3054, 2962, 1436, 1097 cm⁻¹. MS (EI) m/z 338 (M⁺, 41%), 183 (M⁺-155, 100%). HRMS Calcd for $C_{16}H_{20}P_2S_2$: 338.04816. Found: 338.0478. The aromatic carbon of $(1R^*, 2S^*)$ -**2bc** at δ 127.2 was not assigned precisely, because a part of the peak was overlapped aromatic carbon at δ 127.7 and 127.8 in ¹³C-NMR. Rf values (toluene): (**1***R**,**2***R**)-**2bc** and (**1***R**,**2***S**)-**2bc** Rf = 0.6, **1b** Rf = 0.4, **1c** Rf = 0.7.

$$\begin{array}{c} \begin{array}{c} & 3^{31}\text{P-NMR} \ \delta \ 35.6, \ 43.5 \\ & \text{Ph} & 3^{31}\text{P-NMR} \ \delta \ 34.5, \ 42.1 \\ & \text{Ph} & \text{Ph} & \text{Ph} & \text{Ph} & \text{CH}_2\text{CH}_2\text{CH}_3 \\ & \text{H}_3\text{C} & \text{P} & \text{Ph} & \text{CH}_2\text{CH}_2\text{CH}_3 \\ & \text{H}_3\text{C} & \text{S} & \text{1H-NMR} \ \delta \ 1.89 \\ & \text{(1}R^*, 2R^*)\text{-2bc} & (1R^*, 2S^*)\text{-2bc} \end{array}$$

(1*R**,2*R**)-1-Ethyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)-2ac]$ and (1*R**,2*S**)-1-ethyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)-2ac]$ $[(1R^*, 2R^*)-2ac:(1R^*, 2S^*)-2ac = 2:1 \text{ mixture}]$: Colorless oil. The data (a) are those of $(1R^*, 2R^*)$ -2ac, and the data (b) $(1R^*, 2S^*)$ -2ac. ¹H-NMR (400 MHz, CDCl₃) δ 0.85 (3H, t, J = $(7.6 \text{Hz})^{\text{b}}, 0.88 \text{ (3H, dt, } J = 20.8, 7.6 \text{ Hz})^{\text{b}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.26 \text{ (3H, dt, } J = 21.6, 7.6 \text{ Hz})^{\text{a}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.26 \text{ (3H, dt, } J = 21.6, 7.6 \text{ Hz})^{\text{a}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.26 \text{ (3H, dt, } J = 21.6, 7.6 \text{ Hz})^{\text{a}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.26 \text{ (3H, dt, } J = 21.6, 7.6 \text{ Hz})^{\text{a}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.26 \text{ (3H, dt, } J = 21.6, 7.6 \text{ Hz})^{\text{a}}, 1.07 \text{ (3H, t, } J = 7.2 \text{ Hz})^{\text{a}}, 1.07 \text{$ 1.32-1.43 (1H, m)^b, 1.46-1.60 (1H, m)^a, 1.78-2.00 (3H, m)^{a,b}, 2.48-2.68 (4H, m)^{a,b}, 2.77-2.93 (2H, m)^a, 7.20 (4H, dt, J = 7.2, 3.2 Hz)^a, 7.34 (2H, bt, J = 7.6 Hz)^a, 7.52-7.58 (4H, m)^b, 7.58-7.67 (6H, m)^{a,b}, 8.14-8.22 (4H, m)^b. ¹³C-NMR (100 MHz, CDCl₃) δ 5.0^b, 6.0^a, 14.8 (t, J = 12.6 Hz)^b, 15.0 (d, $J = 17.2 \text{ Hz}^{\text{b}}, 15.2 \text{ (d}, J = 17.9 \text{ Hz})^{\text{a}}, 15.8 \text{ (t}, J = 12.6 \text{ Hz})^{\text{a}}, 20.3 \text{ (dd}, J = 48.4, 12.6 \text{ Hz})^{\text{b}}, 22.3 \text{ (dd}, J = 48.4, 12.6 \text{ Hz})^{\text{b}}, 23.4 \text{ Hz})^{\text{b}}, 23.4 \text{Hz})^{\text{b}}, 33.4 \text{H$ $= 49.5, 12.6 \text{ Hz})^{a}, 28.5 \text{ (dd}, J = 46.9, 11.9 \text{ Hz})^{b}, 30.7 \text{ (dd}, J = 46.9, 11.1 \text{ Hz})^{a}, 125.7 \text{ (dd}, J = 49.1, 10.1 \text{ Hz})^{a}$ $9.7 \text{ Hz})^{a}$, 125.9 (dd, J = 49.0, 8.9 Hz)^b, 126.2 (dd, J = 64.1, 9.0 Hz)^a, 126.5 (dd, J = 57.0, 11.5 Hz)^b, $127.8 (2C, d, J = 11.9 \text{ Hz})^{a}, 128.2 (2C, d, J = 11.9 \text{ Hz})^{b}, 131.6 (2C, d, J = 1.5 \text{ Hz})^{a}, 131.8 (2C, d$ 9.0 Hz)^a, 132.5 (2C, s)^b, 133.3 (d, J = 8.9 Hz)^b, 133.4 (d, J = 10.9 Hz)^b. ³¹P{¹H}-NMR (162 MHz, $CDCl_{2}$) δ 40.7 (d, J = 38.2 Hz)^b, 42.5 (d, J = 36.6 Hz)^a, 43.9 (d, J = 38.2 Hz)^b, 45.7 (d, J = 38.2 Hz)^a. IR (neat) 2931, 1463, 1436, 1097 cm⁻¹. MS (EI) m/z 352 (M⁺, 54%), 183 (M⁺-169, 100%). HRMS

Calcd for $C_{17}H_{22}P_2S_2$: 352.0638. Found: 352.0642. The aromatic carbons of $(1R^*, 2R^*)$ -2ac at δ 127.8, 131.6, and 131.8 were overlapped in two phenyl groups. The aromatic carbon of $(1R^*, 2S^*)$ -2ac at δ 128.2 and 132.5 were also overlapped in two phenyl groups. Rf values (hexane:toluene = 1:1): $(1R^*, 2R^*)$ -2ac and $(1R^*, 2S^*)$ -2ac Rf = 0.57, 1a Rf = 0.5, 1c Rf = 0.65.

(1*R**,2*R**)-1-Butyl-2-ethyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)-2ad]$ and (1*R**,2*S**)-1-butyl-2-ethyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)-2ad]$ $[(1R^*, 2R^*)-2ad:(1R^*, 2S^*)-2ad = 2:1 \text{ mixture}]:$ Yellow oil. The data (a) are those of $(1R^*, 2R^*)$ -2ad, and the data (b) $(1R^*, 2S^*)$ -2ad. ¹H-NMR (400 MHz, CDCl₃) $\delta 0.75$ (3H, t, J = 6.8 $Hz)^{b}$, 0.88 (3H, dt, J = 20.8, 7.6 $Hz)^{b}$, 0.92 (3H, t, $J = 7.2 Hz)^{a}$, 1.14-1.21 (2H, m)^a, 1.25 (3H, dt, $J = 7.2 Hz)^{a}$) 21.2, 7.2 Hz)^a, 1.45-1.50 (4H, m)^{a,b}, 1.72-1.84 (2H, m)^b, 1.92-2.02 (2H, m)^b, 2.52-2.66 (4H, m)^{a,b}, 2.80-2.93 (2H, m)^a, 7.17-7.23 (4H, m)^a, 7.34 (2H, bt, J = 7.6 Hz)^a, 7.54 (4H, dt, J = 7.6, 2.4 Hz)^b, 7.59-7.66 (6H, m)^{a,b}, 8.15-8.21 (4H, m)^b. ¹³C-NMR (100 MHz, CDCl₂) δ 5.0^b, 6.0^a, 13.4^b, 13.6^a, 20.2 $(dd, J = 48.4, 12.6 \text{ Hz})^{\text{b}}, 22.2 (dd, J = 48.4, 12.7 \text{ Hz})^{\text{a}}, 23.0^{\text{b}}, 23.5 (d, J = 16.4 \text{ Hz})^{\text{b}}, 23.7 (d, J = 17.1 \text{ Hz})^{\text{b}}, 23.7 (d, J = 17.$ $(Hz)^{a}$, 23.9^a, 26.3 (dd, J = 47.3, 17.6 $Hz)^{b}$, 28.4 (dd, J = 47.4, 11.6 $Hz)^{a}$, 125.6 (dd, J = 41.7, 8.9 $Hz)^{a}$, 125.9 (dd, J = 49.9, 10.5 Hz)^b, 126.3 (dd, J = 42.5, 8.9 Hz)^a, 126.5 (dd, J = 49.8, 10.5 Hz)^b, 127.8 $(2C, d, J = 11.9 \text{ Hz})^{a}$, 128.3 $(2C, d, J = 11.1 \text{ Hz})^{b}$, 131.7 $(2C, d, J = 1.5 \text{ Hz})^{a}$, 131.8 $(d, J = 7.4 \text{ Hz})^{a}$, 132.5 (2C, d, $J = 1.5 \text{ Hz})^{\text{b}}$, 133.2 (d, $J = 11.2 \text{ Hz})^{\text{b}}$, 133.3 (d, $J = 8.9 \text{ Hz})^{\text{b}}$. ³¹P{¹H}-NMR (162 MHz, $CDCl_3$) $\delta 41.0 (d, J = 38.2 Hz)^b$, $42.8 (d, J = 38.2 Hz)^a$, $43.9 (d, J = 38.2 Hz)^b$, $45.6 (d, J = 38.2 Hz)^a$. IR (neat) 2930, 1435, 1097 cm⁻¹. MS (EI) m/z 366 (M⁺, 81%), 197 (M⁺-169, 100%). HRMS Calcd for $C_{18}H_{24}P_2S_2$: 366.0795. Found: 366.0786. The aromatic carbons of $(1R^*, 2R^*)$ -2ad at δ 127.8, 131.7, and 131.8 were overlapped in two phenyl groups. The aromatic carbon of $(1R^*, 2S^*)$ -2ad at δ

128.3 and 132.5 were also overlapped in two phenyl groups. Rf values (hexane:toluene = 1:1): $(1R^*, 2R^*)$ -2ad and $(1R^*, 2S^*)$ -2ad Rf = 0.6, 1a Rf = 0.5, 1d Rf = 0.7.

(1*R**,2*R**)-1-Butyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2R^*)-2cd]$ and (1*R**,2*S**)-1-butyl-2-propyl-1,2-diphenyldiphosphine disulfide $[(1R^*, 2S^*)-2cd]$ $[(1R^*,2R^*)-2cd:(1R^*,2S^*)-2cd = 2:1 \text{ mixture}]$: Colorless oil. The data (a) are those of $(1R^*, 2R^*)$ -2cd, and the data (b) $(1R^*, 2S^*)$ -2cd. ¹H-NMR (400 MHz, CDCl₃) $\delta 0.75$ (3H, t, J = 7.2 $Hz)^{b}$, 0.84 (3H, dt, J = 7.2, 1.2 $Hz)^{b}$, 0.93 (3H, t, $J = 7.2 Hz)^{a}$, 1.07 (3H, dt, J = 7.2, 1.2 $Hz)^{a}$, 1.16-1.32 (4H, m)^{a,b}, 1.41-1.60 (6H, m)^{a,b}, 1.73-1.92 (4H, m)^{a,b}, 2.47-2.64 (4H, m)^{a,b}, 2.77-2.93 (2H, m)^a, 7.19 (4H, dt, J = 7.6, 2.8 Hz)^a, 7.34 (2H, bt, J = 7.6 Hz)^a, 7.55 (4H, bt, J = 8.0 Hz)^b, 7.58-7.66 $(6H, m)^{a,b}$, 8.19 (4H, bt, $J = 8.0 \text{ Hz})^{b}$. ¹³C-NMR (100 MHz, CDCl₃) δ 13.5^b, 13.6^a, 14.8 (bs)^b, 15.0 $(dd, J = 14.8, 3.1 \text{ Hz})^{b}, 15.3 (bd, J = 17.1 \text{ Hz})^{a}, 15.8 (bs)^{a}, 23.0 (bs)^{b}, 23.5 (dd, J = 14.9, 1.1 \text{ Hz})^{b},$ 23.8 (dd, $J = 15.7, 2.2 \text{ Hz})^{a}, 23.9 \text{ (bs)}^{a}, 26.2 \text{ (dd}, J = 43.2, 15.6 \text{ Hz})^{b}, 28.3 \text{ (dd}, J = 44.7, 14.9 \text{ Hz})^{a},$ 28.5 (dd, J = 43.2, 13.4 Hz)^b, 30.5 (dd, J = 47.5, 14.2 Hz)^a, 126.1 (dd, J = 57.0, 9.0 Hz)^a, 126.2 (dd, $J = 59.0, 7.5 \text{ Hz})^{a}, 126.3 \text{ (dd}, J = 58.0, 9.0 \text{ Hz})^{b}, 126.5 \text{ (dd}, J = 59.0, 3.0 \text{ Hz})^{b}, 127.8 \text{ (2C, d, } J = 11.2 \text{ Hz})^{c}$ $(Hz)^{a}$, 128.3 (2C, d, $J = 10.4 Hz)^{b}$, 131.7 (2C, d, $J = 9.0 Hz)^{a}$, 131.8 (2C, d, $J = 1.5 Hz)^{a}$, 132.5 (2C)^b, 133.3 (2C, d, $J = 7.5 \text{ Hz})^{\text{b}}$. ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 40.9 (d, $J = 38.2 \text{ Hz})^{\text{b}}$, 41.3 (d, J = $38.2 \text{ Hz})^{\text{b}}$, 42.5 (d, $J = 38.2 \text{ Hz})^{\text{a}}$, 43.1 (d, $J = 38.2 \text{ Hz})^{\text{a}}$. IR (neat) 2929, 1436, 1096 cm⁻¹. MS (EI) m/z 380 (M⁺, 61%), 197 (M⁺-183, 100%). HRMS Calcd for $C_{19}H_{28}P_2S_2$: 380.0951. Found: 380.0956. The aromatic carbons of $(1R^*, 2R^*)$ -2cd at δ 127.8, 131.7, and 131.8 were overlapped in two phenyl groups. The aromatic carbon of $(1R^*, 2S^*)$ -2cd at δ 128.3, 132.5, and 133.3 were also overlapped in two phenyl groups. Rf values (hexane:toluene = 2:1): $(1R^*, 2R^*)$ -2cd and $(1R^*, 2S^*)$ -2cd Rf = 0.3,

1c Rf = 0.2, 1d Rf = 0.4.

1-Butyl-2,2-dimethyl-1-phenyldiphosphine disulfide (2de): Pale brown oil. ¹H-NMR (400 MHz, CDCl₃) δ 0.93 (3H, t, *J* = 7.2 Hz), 1.40-1.54 (3H, m), 1.50 (3H, dd, *J* = 12.6, 7.2 Hz), 1.69-1.81 (1H, m), 2.08 (3H, dd, *J* = 12.4, 6.8 Hz), 2.44-2.54 (1H, m), 2.67-2.78 (1H, m), 7.55 (2H, bdt, *J* = 7.2, 3.6 Hz), 7.62 (1H, bt, *J* = 7.2 Hz), 8.14 (2H, dd, *J* = 12.4, 8.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 13.6, 16.6 (dd, *J* = 47.7, 11.9 Hz), 18.6 (dd, *J* = 48.4, 11.1 Hz), 23.6 (t, *J* = 2.3 Hz), 23.7 (d, *J* = 17.2 Hz), 27.3 (dd, *J* = 48.4, 12.6 Hz), 125.7 (dd, *J* = 64.1, 10.4 Hz), 128.6 (d, *J* = 12.0 Hz), 132.5 (d, *J* = 10.4 Hz), 132.7 (t, *J* = 1.5 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 37.1 (d, *J* = 27.5 Hz), 40.1 (d, *J* = 27.5 Hz). IR (KBr) 2957, 2928, 1436, 1096 cm⁻¹. MS (EI) m/z 290 (M⁺, 74%), 197 (M⁺-93, 100%). HRMS Calcd for C₁₂H₂₀P₂S₂: 290.0482. Found: 290.0480. Rf values (hexane:ethyl acetate = 4:1): **2de** Rf = 0.63, **1d** Rf = 0.80, **1e** Rf = 0.57, **2ad** Rf = 0.73.

1,1-Diethyl-2,2-diphenyldiphosphine disulfide (**2af**)⁷: Colorless solid. Mp. 117.1-118.0 °C (MeOH). ¹H-NMR (400 MHz, CDCl₃) δ 1.02 (6H, dt, J = 20.0, 7.6 Hz), 2.15-2.26 (4H, m), 7.49-7.59 (6H, m), 8.43 (4H, ddd, J = 13.2, 8.0, 0.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 6.2, 21.7 (dd, J = 12.0, 44.0 Hz), 128.5 (d, J = 12.6 Hz), 128.9 (dd, J = 68.5, 11.1 Hz), 132.3 (d, J = 3.0 Hz), 132.9 (d, J = 9.7 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 27.0 (d, J = 41.2 Hz), 56.8 (d, J = 41.3 Hz). IR (KBr) 3052, 1435, 1092 cm⁻¹. MS (EI) m/z 338 (M⁺, 46%), 217 (M⁺-C₂H₅PS, 100%). HRMS Calcd for C₁₆H₂₀P₂S₂: 338.0482. Found: 338.0492. Rf values (toluene): **2af** Rf = 0.6, **1a** Rf = 0.4, **1f** Rf = 0.8.

1,1-Diethyl-2,2-dimethyldiphosphine disulfide (2gh): Colorless solid. Mp. 100.5-101.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.31 (6H, dt, J = 20.0, 7.6 Hz), 1.95 (6H, dd, J = 12.8, 6.4 Hz), 2.15-2.32 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 6.5 (d, J = 2.9 Hz), 18.1 (dd, J = 47.6, 10.4 Hz), 20.4 (dd, J = 44.0, 11.1 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 34.4 (d, J = 38.2 Hz), 51.9 (d, J = 38.2 Hz). IR (KBr) 2982, 1397, 1281, 1041, 946 cm⁻¹. MS (EI) m/z 214 (M⁺, 76%), 93 (M⁺-121, 100%). HRMS Calcd for C₆H₁₆P₂S₂: 214.0169. Found: 214.0192. Rf values (hexane:ethyl acetate = 4:1): **2gh** Rf = 0.5, **1g** Rf = 0.3, **1h** Rf = 0.6.

1,1-Dimethyl-2,2-dipropyldiphosphine disulfide (2gi): Colorless solid. Mp. 65.0-66.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.10 (6H, dt, J = 7.6, 1.6 Hz), 1.74 (4H, dseptet, J = 7.6, 1.2 Hz), 1.95 (6H, dd, J = 12.6, 6.4 Hz), 2.08-2.26 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 15.5 (d, J = 16.4 Hz), 16.2, 17.8 (dd, J = 47.7, 10.4 Hz), 29.3 (dd, J = 42.1, 10.4 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 34.7 (d, J = 38.2 Hz), 47.0 (d, J = 36.7 Hz). IR (KBr) 2962, 1405, 1278, 1079 cm⁻¹. MS (EI) m/z 242 (M⁺, 100%), 149 (M⁺-93, 97%). HRMS Calcd for C₈H₂₀P₂S₂: 242.0482. Found: 242.0512. Rf values (hexane:ethyl acetate = 4:1): **2gi** Rf = 0.5, **1g** Rf = 0.3, **1i** Rf = 0.8.

1,1-Dimethyl-2,2-dibutyldiphosphine disulfide (2gj): Colorless solid. Mp. 66.5-67.5 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 0.97 (6H, t, *J* = 7.2 Hz), 1.48 (4H, sextet, *J* = 7.2 Hz), 1.63-1.73 (4H, m), 1.96 (6H, dd, *J* = 12.8, 6.4 Hz), 2.13-2.23 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 13.6, 17.9 (dd, *J* = 47.7, 10.5 Hz), 24.0 (d, *J* = 15.7 Hz), 24.3 (dd, *J* = 3.7, 1.5 Hz), 27.1 (dd, *J* = 42.4, 10.4 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 34.3 (d, *J* = 38.2 Hz), 47.4 (d, *J* = 38.2 Hz). IR (KBr) 2953, 2870, 1464, 1406, 952 cm⁻¹. MS (EI) m/z 270 (M⁺, 87%), 177 (M⁺-93, 100%). HRMS Calcd for C₁₀H₂₄P₂S₅: 270.0795. Found: 270.0759. Rf values (toluene): **2gi** Rf = 0.5, **1g** Rf = 0.2, **1j** Rf = 0.8.

1,1-Diethyl-2,2-dipropyldiphosphine disulfide (2hi): Colorless solid. Mp. 43.1-44.1 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.08 (6H, dt, J = 7.2, 1.2 Hz), 1.29 (6H, dt, 12.0, 7.6 Hz), 1.66-1.81 (4H, m), 2.06-2.30 (8H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 6.5 (dd, J = 3.8, 1.4 Hz), 15.5 (d, J = 17.1 Hz), 16.2 (dd, J = 3.7, 1.5 Hz), 21.2 (dd, J = 41.6, 9.7 Hz), 30.4 (dd, J = 41.0, 9.0 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 46.1 (d, J = 53.5 Hz), 51.0 (d, J = 51.8 Hz). IR (KBr) 2961, 2933, 2872, 1456, 1080, 1028 cm⁻¹. MS (EI) m/z 270 (M⁺, 100%), 241 (M⁺-29, 80%). HRMS Calcd for C₁₀H₂₄P₂S₂: 270.0795. Found: 270.0798. Rf values (hexane:ethyl acetate = 4:1): **2hi** Rf = 0.8, **1h** Rf = 0.7, **1i** Rf = 0.9.

1,1-Dibutyl-2,2-dipropyldiphosphine disulfide (2ij): Colorless oil. ¹H-NMR (400 MHz, CDCl₃) $\delta 0.94$ (3H, t, J = 7.2 Hz), 1.06 (3H, dt, J = 7.2, 1.2 Hz), 1.44 (2H, sextet, J = 7.2 Hz), 1.59-1.76 (4H, m), 2.15-2.21 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 13.6, 15.6 (d, J = 14.9 Hz), 16.3 (d, J = 15.2Hz), 24.1 (d, J = 14.1 Hz), 24.5 (dd, J = 3.7, 1.5 Hz), 27.9 (dd, J = 39.4, 10.4 Hz), 30.3 (dd, J = 39.5, 10.5 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 46.0 (d, J = 52.0 Hz), 46.8 (d, J = 53.6 Hz). IR (neat) 2957, 2930, 2871, 1464, 1089, 902 cm⁻¹. MS (EI) m/z 326 (M⁺, 100%). HRMS Calcd for C₁₄H₃₂P₂S₂: 326.1421. Found: 326.1423. Rf values (toluene): **2ij** Rf = 0.75, **1i** Rf = 0.7, **1j** Rf = 0.8.

Tetraphenyldiphosphine-1-oxide-2-sulfide (4)⁸⁾: Colorless solid. Mp. 96.8-98.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 7.36-7.41 (8H, m), 7.46-7.52 (4H, m), 7.76 (4H, ddd, J = 13.6, 6.8, 2.0 Hz), 7.87 (4H, ddd, J = 14.8, 7.2, 2.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 128.3, 128.5, 130.9 (dd, J = 140.0, 1.5 Hz), 131.3 (d, J = 12.7 Hz), 131.7 (d, J = 11.9 Hz), 132.2 (d, J = 3.0 Hz), 132.5 (d, J = 3.0 Hz), 133.8 (dd, J = 108.7, 1.5 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 28.9 (d, J = 39.7 Hz), 79.9 (d, J = 41.3 Hz). IR (KBr) 3056, 1437, 1130, 1110, 916 cm⁻¹. MS (EI) m/z 418 (M⁺, 12%), 201 (M⁺-C₁₂H₁₀PS, 100%). HRMS Calcd for C₂₄H₂₀OP₂S: 418.0710. Found: 418.0749. Rf values (hexane:ethyl acetate = 4:1): **4** Rf = 0.5, **1f** Rf = 0.6, **3** Rf = 0.02.

1,1-Dimethyl-2,2-diphenyldiphosphine-2-oxide-1-sulfide (6g): Colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 2.09 (6H, d, *J* = 13.6 Hz), 7.49 (4H, dt, *J* = 7.6, 3.6 Hz), 7.58 (2H, dt, *J* = 7.6, 1.6 Hz),

7.86 (4H, ddd, J = 13.2, 6.8, 1.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 26.0 (d, J = 70.0 Hz), 128.7 (d, J = 13.4 Hz), 131.2 (d, J = 138.5 Hz), 131.4 (d, J = 11.1 Hz), 132.8 (d, J = 3.0 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 30.1 (d, J = 38.2 Hz), 93.4 (d, J = 39.8 Hz). IR (neat) 2914, 1439, 1233, 1130, 953, 905 cm⁻¹. MS (EI) m/z 294 (M⁺, 10%), 93 (M⁺-201, 100%). HRMS Calcd for C₁₄H₁₆OP₂S: 294.0397. Found: 294.0369. Rf values (hexane:ethyl acetate = 4:1): **6g** Rf = 0.1, **1g** Rf = 0.3, **3** Rf = 0.02.

1,1-Diethyl-2,2-diphenyldiphosphine-2-oxide-1-sulfide (6h): Colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 1.06 (6H, dt, J = 19.6, 7.6 Hz), 2.04-2.14 (4H, m), 7.51-7.56 (4H, m), 7.60 (2H, dt, J = 8.0, 1.2 Hz), 7.26 (4H, ddd, J = 11.6, 7.2, 1.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 6.1 (d, J = 5.2 Hz), 21.7 (dd, J = 41.0, 10.4 Hz), 128.7 (d, J = 11.9 Hz), 129.7 (dd, J = 85.6, 16.4 Hz), 132.0 (d, J = 8.2 Hz), 132.7 (d, J = 3.0 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 19.1 (d, J = 9.2 Hz), 46.4 (d, J = 7.6 Hz). IR (neat) 3057, 2935, 1438, 1261, 1180, 1108, 1027, 803 cm⁻¹. MS (EI) m/z 322 (M⁺, 57%), 166 (M⁺-156, 100%). HRMS Calcd for C₁₆H₂₀OP₂S: 322.0710. Found: 322.0712. Rf values (hexane:ethyl acetate = 4:1): **6h** Rf = 0.2, **1h** Rf = 0.6, **3** Rf = 0.02.

Addition Reaction of Diphosphine Disulfide to Aldehydes⁹⁾

In a two-necked flask equipped with a magnetic stirrer bar were placed RhH(dppe)₂ (5 mol%, 11.3 mg), **2gh** (0.25 mmol, 53.5 mg), and 4-tolaldehyde **10** (0.25 mmol, 29.5 μ L) in THF (1.0 mL) under an argon atmosphere, and the solution was heated at reflux for 1 h. Then, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel giving [1-(dimethylthiophosphinoyloxy)-4-methylbenzyl]diethylphosphine sulfide **11** (57.8 mg, 69%), [1-(dimethylthiophosphinoyloxy)-4-methylbenzyl]dimethylphosphine sulfide **13** (7.8 mg, 10%), and [1-(diethylthiophosphinoyloxy)-4-methylbenzyl]diethylphosphine sulfide **14** (7.9 mg, 9%). **11:** Colorless solid. Mp. 138.5-139.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.16 (3H, dt, *J* = 14.4, 7.6 Hz), 1.20 (3H, dt, *J* = 14.4, 7.6 Hz), 1.48 (3H, d, *J* = 13.2 Hz), 1.76-1.86

(2H, m), 1.90-1.99 (2H, m), 1.96 (3H, d, J = 13.2 Hz), 2.35 (3H, s), 5.91 (1H, dd, J = 14.8, 4.8 Hz), 7.18 (2H, d, J = 8.0 Hz), 7.38 (2H, J = 8.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 6.2 (d, J = 4.5 Hz), 6.6 (d, J = 5.2 Hz), 20.6, 21.0 (d, J = 12.0 Hz), 21.3 (d, J = 17.9 Hz), 23.9 (d, J = 77.4 Hz), 24.9 (d, J = 66.3 Hz), 74.4 (dd, J = 61.8, 8.2 Hz), 128.3 (d, J = 4.5 Hz), 129.1 (d, J = 2.2 Hz), 130.3, 139.3 (d, J = 2.9 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 59.7 (d, J = 27.5 Hz), 99.5 (d, J = 25.9 Hz). IR (KBr) 2907, 2883, 1411, 1003, 924 cm⁻¹. MS (EI) m/z 334 (M⁺, 17%), 213 (M⁺-121, 100%). HRMS Calcd for C₁₄H₂₄OP₂S₂: 334.0744. Found: 334.0762. The structure of **11** was determined by X-ray crystal structure analysis. X-Ray crystallography: CCDC 1483048 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement

Compound: 11 Formula: C14 H24 O P2 S2 Formula weight: 334.39 Wave length: 0.71075 Crystal system: orthorhombic Space group: P 21 21 21 Color of crystal: Colorless $\alpha = 90.00^{\circ}$ Unit cell parameters: a = 6.4559(4) Åb = 12.3783(6) Å $\beta = 90.00^{\circ}$ c = 22.5131(13) Å $\gamma = 90.00^{\circ}$ Temperature of data collection: 173(K) Values of Z, R, GOF: Z = 4, R(reflections) = 0.0606 (2694), wR2(reflections) = 0.1536 (4104)GOF = 1.061Radiation type: Mo K/a Radiation source: sealed X-ray tube Radiation monochromator: graphite Measurement device type: Rigaku R-AXIS RAPID Computing structure solution: SHELX Computing structure refinement: SHELXL-97 (Sheldrick, 1997)

[1-(Dimethylthiophosphinoyloxy)-4-methylbenzyl]dimethylphosphine sulfide (13): Colorless solid. Mp. 194.0-195.0 °C (Hexane/AcOEt = 1/3). ¹H-NMR (400 MHz, CDCl₃) δ 1.53 (3H, d, *J* = 13.2 Hz), 1.70 (3H, d, *J* = 12.8 Hz), 1.72 (3H, d, *J* = 12.8 Hz), 1.98 (3H, d, *J* = 13.6 Hz), 2.35 (3H, s), 5.89 (1H, dd, *J* = 15.2, 4.8 Hz), 7.19 (2H, d, *J* = 8.0 Hz), 7.35 (2H, dd, *J* = 8.0, 1.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 17.4 (d, *J* = 53.6 Hz), 18.6 (d, *J* = 54.3 Hz), 21.3, 23.9 (d, *J* = 77.4 Hz), 24.8 (d, *J* = 66.2 Hz), 76.1 (dd, *J* = 65.6, 7.5 Hz), 127.9 (d, *J* = 4.5 Hz), 129.1 (d, *J* = 2.2 Hz), 130.1, 139.3 (d, *J* = 3.0 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 43.8 (d, *J* = 25.9 Hz), 99.7 (d, *J* = 25.9 Hz). IR (KBr) 2980, 2904, 1514, 1413, 1289, 1011, 947, 913 cm⁻¹. MS (EI) m/z 306 (M⁺, 21%), 213 (M⁺-93, 100%). HRMS Calcd for C₁₂H₂₀OP₂S₇: 306.0431. Found: 306.0438.

[1-(Diethylthiophosphinoyloxy)-4-methylbenzyl]diethylphosphine sulfide (14): Colorless solid. Mp. 73.0-74.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 0.86 (3H, dt, *J* = 20.8, 7.6 Hz), 1.16 (3H, dt, *J* = 18.8, 7.6 Hz), 1.19 (3H, dt, *J* = 18.8, 7.6 Hz), 1.28 (3H, dt, *J* = 20.4, 7.6 Hz), 1.44-1.56 (1H, m), 1.60-1.72 (1H, m), 1.78-1.84 (2H, m), 1.86-2.01 (2H, m), 2.35 (3H, s), 5.88 (1H, dd, *J* = 14.4, 4.4 Hz), 7.17 (2H, d, *J* = 8.0 Hz), 7.37 (2H, dd, *J* = 8.0, 1.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 6.1 (d, *J* = 4.5 Hz), 6.5 (d, *J* = 5.3 Hz), 6.5 (d, *J* = 5.3 Hz), 6.9 (d, *J* = 4.4 Hz), 20.6 (d, *J* = 54.4 Hz), 21.1 (d, *J* = 52.9 Hz), 21.2, 26.6 (d, *J* = 73.0 Hz), 27.8 (d, *J* = 63.3 Hz), 73.8 (dd, *J* = 61.1, 8.2 Hz), 128.1 (d, *J* = 3.5 Hz), 128.9 (d, *J* = 1.5 Hz), 130.5, 139.1 (d, *J* = 2.2 Hz). ³¹P{¹H}-NMR (162 MHz, CDCl₃) δ 60.1 (d, *J* = 22.8 Hz), 115.3 (d, *J* = 23.0 Hz). IR (KBr) 3022, 2974, 1454, 1048, 989 cm⁻¹. MS (EI) m/z 362 (M⁺, 21%), 241 (M⁺-121, 100%). HRMS Calcd for C₁₆H₂₈OP₂S₂: 362.1057. Found: 362.1074.

References

- 1) M. Arisawa, T. Ichikawa and M. Yamaguchi, Chem. Commun. 2015, 51, 8821.
- 2) G. W. Parshall, Org. Synth., V, 1973, 1016.
- 3) K. A. Pollart and H. J. Harwood, J. Org. Chem. 1962, 27, 4444.

- 4) H. Klaus, K. Olaf, B. Ingo, S. Patrick, F. Sabine, D. Peter, M. Klemens, D. Hartmut, F. Christoph and J. Geert, *PCT Int. Appl.* 2011, WO 2011029901.
- 5) J. E. Nycz, Phosphorus, sulfur, and silicon and the related elements, 2012, 187, 564-572.
- 6) C. Dorken, Chem. Ber. 1888, 21, 1505.
- 7) F. Ekkehard, I. Kurt, Chem. Ber. 1965, 98, 2674.
- 8) J. McKechnie, D. S. Payne and W. Sim, J. Chem. Soc. 1965, 3500.
- 9) M. Arisawa and M. Yamaguchi, Tetrahedron Lett. 2009, 50, 3639.

(1R*,2R*)-1-ethyl-2-methyl-1,2-diphenyldiphosphine disulfide [(1R*,2R*)-2ab]

1-Butyl-2,2-dimethyl-1-phenyldiphosphine disulfide (2de)

1,1-Diethyl-2,2-diphenyldiphosphine disulfide (2af)

1,1-diethyl-2,2-dimethyldiphosphine disulfide (2gh)

1,1-Dimethyl-2,2-dipropyldiphosphine disulfide (2gi)

1,1-Dimethyl-2,2-dibutyldiphosphine disulfide (2gj)

1,1-Dibutyl-2,2-dipropyldiphosphine Disulfide (2hi)

1,1-Dimethyl-2,2-diphenyldiphosphine 2-oxide 1-sulfide (6g)

1,1-Diethyl-2,2-diphenyldiphosphine 2-oxide 1-sulfide (6h)

[1-(Dimethylthiophosphinoyloxy)-4-methylbenzyl]diethylphosphine sulfide (11)

[1-(Dimethylthiophosphinoyloxy)-4-methylbenzyl]dimethylphosphine sulfide (13)

