SmCp^R₂-mediated cross-coupling of allyl and propargyl ethers with ketoesters and a telescoped approach to complex cycloheptanols

Mateusz Plesniak, Xavier Just-Baringo, Fabrizio Ortu, David P. Mills* and David J. Procter*

School of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK

david.mills@manchester.ac.uk, david.j.procter@manchester.ac.uk

General information	2
Cyclic voltammetry	3
List of known compounds and procedures	3
Additional experiments	
Synthesis of cyclopentadienyl ligands and SmCp ^R ₂ complexes	5
Synthesis of δ -Keto acids and δ -Keto esters	7
Synthesis of 6-membered lactones	
One-pot approach to cycloheptanols	
X-Ray structure of <i>anti</i> -1a	
X-Ray structure of 4a	
X-Ray structure of 5b	
X-Ray structure of 5c	
X-Ray structure of 5e	
X-Ray structure of 5f	
Crystallographic method	
Table S1: Selected bond lengths (Å) and angles (°) for 5b , 5c , 5e , 5f	
Table S2: Crystallographic data for 5b, 5c, 5e, 5f	40
Table S3: Crystallographic data for anti-1a and 4a	41
References	
¹ H and ¹³ C spectra of new compounds	42

General information

Synthesis of water- and air-sensitive organometallic compounds: All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of dry argon. Solvents were dried by refluxing over potassium and were degassed before use. All solvents were stored over potassium mirrors (with the exception of THF, which was stored over activated 4 Å molecular sieves). Deuterated solvents were distilled from potassium, degassed by three freeze-pump-thaw cycles, and stored under argon. KH was obtained as a suspension in mineral oil and was washed three times with hexane and dried in *vacuo*.

Synthesis of non-air- and water-sensitive compounds: All experiments were performed under an atmosphere of nitrogen. THF was distilled from sodium/benzophenone and CH₂Cl₂ was distilled from CaH₂. All other solvents and reagents were purchased from commercial sources and used as supplied.

NMR yields were determined by ¹H NMR spectroscopy using a 1,2,4,5-tetrachloro-3nitrobenzene as internal standard. All NMR spectroscopic experiments were performed at 298 K. ¹H NMR spectra were recorded at 400 or 500 MHz, ¹³C NMR spectra were recorded at 100 or 125 MHz.. All chemical shift values are reported in parts per million (ppm) relative to the residual solvent signal and were determined in CDCl₃, C₆D₆ or pyridine-d₅ with coupling constant (J) values reported in Hz. The notation of signals is: Proton: δ chemical shift in ppm (multiplicity, J value (s), number of proton, proton assignment). Carbon: δ chemical shift in ppm (carbon assignment). Silicon: δ chemical shift in ppm (silicon assignment). Paramagnetic susceptibility and magnetic moments were evaluated according to Evans method.¹⁻³

Column chromatography was carried out using $35 - 70 \mu m$, 60 Å silica gel. Routine TLC analysis was carried out on silica gel 60 Å F254 coated aluminium sheets of 0.2 mm thickness. Plates were viewed using a 254 nm ultraviolet lamp and immersed in KMnO₄ in EtOH and heated.

Low resolution and high resolution mass spectra were obtained using either positive and/or negative electrospray ionisation (ES), electron impact ionisation (EI) and chemical ionisation (CI) techniques. IR spectra of non-air- and moisture-sensitive compounds were recorded on an FTIR spectrometer as evaporated films (from CDCl₃) or as neat liquids. For air- and

moisture-sensitive compounds FTIR spectra were recorded as Nujol mulls in KBr discs on a PerkinElmer Spectrum RX1 spectrometer.

Cyclic voltammetry

Cyclic voltammograms were collected for **5a** and **5e** at 1mM concentration in a 0.1 M $[N^nPr_4][BArF_{24}]$ THF solution. However, no data could be obtained for **5a** and **5e**, presumably because of immediate and irreversible degradation under our experimental setup, despite repeated attempts. All experiments were initially assessed at the open-circuit potential, and all voltammograms exhibited irreversible oxidation events; such peaks are very weak even at high scan rates and could be tentatively assigned as ligand-based processes.

List of known compounds and procedures

The following compounds are known and were prepared according to already published procedures. Cyclopentadiene neutral ligands: $C_5H_4(SiMePh_2)$,⁴ $C_5H_4(SiPh_3)$;⁵ potassium and sodium salts of cyclopentadienyl ligands: $K[C_5Me_5]$,⁶ [$K\{C_5H_3(SiMe_3)_3\}$]-1,3],⁷ $K[\{C_5H_2(SiMe_3)_3-1,2,4\}]$,⁷ $Na[C_5H_5]$;⁸ samarium (II) cyclopentadienyl complexes: [$Sm\{C_5Me_5\}(THF)_2$],⁹ [$Sm\{C_5H_3(SiMe_3)_3-1,3\}_2(THF)$],¹⁰ [$Sm\{C_5H_5\}$];¹¹ allylic and propargylic benzyl ethers: **2b**,¹² **2b**',¹³ **2c**,¹⁴ **2d**;¹⁵ δ -Keto esters: **3a**,¹⁶ **3c**,¹⁷ **3d**,¹⁸ **3e**.¹⁷ The following new compounds described below were prepared according to known procedures: potassium cyclopentadienyl ligands,⁷ samarium (II) cyclopentadienyl complexes,⁹ δ -keto acids and δ -keto esters.^{16,19}

Additional experiments

Unsuitability of SmI2 for the Barbier step

We studied the first stage of the process and the illustrative cross-coupling of allylbromide **1a-Br** and ketoester **3a.** From the outset it was clear that Kagan's classical Sm(II) ET reagent, SmI₂, gave unsatisfactory results in the coupling-lactonization: the desired lactone **1a** was obtained with poor diastereocontrol (dr 60:40) and significant quantities of regioisomer **1a'** were also obtained.

Incompatibility of transition metal additives

Various transition metal additives and reagents commonly used in Barbier reactions were tested for their compatibility with the SmI₂-H₂O system. In all cases the additive had a detrimental effect, causing an accelerated decay of Sm(II).

To a vial charged with the metal compound (0.014 mmol, 2 mol%) under nitrogen were added a 0.1 M solution of SmI₂ in THF (7 mL, 0.70 mmol), followed by H₂O (1.3 mL, 10.0 mmol). The resulting mixture was stirred at room temperature.

Metal source	Time to decolourization (min)	H ₂ evolution
TiCl ₄	40	Very slow
FeBr ₃	< 1	Fast
[IrCl(COD) ₂]	< 1	Fast
NiI ₂	< 1	Fast
HgCl ₂	180 ^a	Not observed
SnCl ₂	180 ^a	Very slow

^a The mixture turned from dark red to brown.

Tailoring of Sm(II) reagent for the lactone cyclization step

The requirements of the second stage of the telescoped sequence were assessed. As expected, *anti*-1a was unchanged after treatment with SmI_2 alone. It was required to tailor the Sm(II) reagent by adding H_2O to obtain a new reagent capable of achiving ET to the lactone carbonyl. Thus, when treated with SmI_2 - H_2O , *anti*-1a yielded 4a in excellent yield and with good diastereocontrol.

Synthesis of cyclopentadienyl ligands and SmCp^R₂ complexes

[K{C5H4(SiMePh2)}](Cp^{DPMS}K)S1

General procedure A. Crude (MePh₂Si)C₅H₅ (6.45 g, 24.6 mmol) was dried overnight over 4 Å molecular sieves, dissolved in toluene (10 mL) and cooled to -78 °C followed by drop-wise addition of KHMDS (3.92 g, 19.7 mmol) in toluene (30 mL). The reaction mixture was allowed to warm to room temperature and stirring was continued overnight to give a pale pink precipitate which was filtered on a frit and washed with hexanes (2 × 10 mL) to give a pale pink powder (5.60 g, 18.6 mmol, 95%) which was used in the next step without further purification. Analytically pure compound was obtained by recrystallization from THF to give the monosolvated THF complex as white needles. ¹H NMR (400 MHz, THF-*d*₈) δ 0.64 (s, 3 H, SiC*H*₃), 1.78 (br s, 4 H, THF-C*H*₂C*H*₂O), 3.62 (br s, 4 H, THF-C*H*₂C*H*₂O), 5.82 (d, *J* = 1.8 Hz, 2 H, Cp_{Ar}C*H*), 5.98 (d, *J* = 1.5 Hz, 2 H, Cp_{Ar}C*H*), 7.14 – 7.29 (m, 6 H, ArC*H*), 7.47 – 7.63 (m, 4 H, ArC*H*) ppm. ¹³C NMR (100 MHz, THF-*d*₈) δ -1.2 (SiCH₃), 25.9 (THF-CH₂CH₂O), 68.1 (THF-CH₂CH₂O), 105.1 (Cp_{Ar}C), 109.5 (Cp_{Ar}CH), 115.1 (Cp_{Ar}CH), 128.1 (ArCH), 128.5 (ArCH), 135.8 (ArCH), 143.4 (ArC). Anal calcd for C₂₂H₂₅KOSi: C, 70.91 %; H 6.76 %. Found: C, 70.73 %; H, 6.47%.²⁰ FTIR (Nujol,cm⁻¹): = v 1105 (s), 1040 (s), 783 (s).

$[K\{C_5H_4(SiPh_3)\}](Cp^{TPS}K)~S2$

This compound was synthesised according to general procedure A using crude (SiPh₃)C₅H₅ (5.00 g, 15.4 mmol) and KHMDS (2.27 g, 11.4 mmol) to give a pale yellow powder (3.84 g, yield, 10.6 mmol, 93%) which was used in the next step without further purification. Analytically pure compound was obtained by recrystallization from THF to give monosolvated THF complex as pale-yellow needles. ¹H NMR (500 MHz, THF- d_8) δ 1.68 – 1.84 (m, 4 H, THF-CH₂CH₂O), 3.55 – 3.68 (m, 4 H, THF-CH₂CH₂O), 5.90 (br s, 2 H,

Cp_{Ar}C*H*), 6.07 (br d, J = 2.2 Hz, 2 H, Cp_{Ar}C*H*), 7.15 – 7.29 (m, 9 H, ArC*H*), 7.51 – 7.62 (m, 6 H, ArC*H*) ppm; ¹³C NMR (125 MHz, THF- d_8) δ 26.6 (THF-CH₂CH₂O), 68.4 (THF-CH₂CH₂O), 102.5 (Cp_{Ar}C), 109.8 (Cp_{Ar}CH), 116.6 (Cp_{Ar}CH), 128.9 (ArCH), 128.74 (ArCH), 137.10 (ArCH), 141.55 (ArC) ppm. Anal calcd for C₂₇H₂₇KOSi: C, 74.60 %; H 6.26 %. Found: C, 71.84 %; H, 6.27 %.²⁰ FTIR (Nujol,cm⁻¹): = v 2360 (s), 2341 (s), 1259 (s), 1182 (m), 1103 (s), 1053 (s), 798 (s), 733 (s).

[Sm{C5H2(SiMe3)3-1,2,4}2(THF)] (Cp'''2Sm(THF)) 5c

General procedure B. To a dark blue suspension of SmI₂(THF)₂ (2.19 g, 4.00 mmol) in THF (10 mL), K[1,2,4-(Me₃Si)₃C₅H₂] (2.69 g, 8.40 mmol) in THF (15 mL) was added dropwise at -78 °C to give a dark purple solution. The reaction mixture was allowed to warm to room temperature and stirred overnight. The white precipitate was allowed to settle over 2 h and the solution was filtered and concentrated under vacuum. The crude solid was re-dissolved in toluene (10 mL), stirred for 1 h, filtered and concentrated *in vacuo* to give a dark green foam. The product was crystallized from hexanes as dark green crystals (1.48 g, 1.99 mmol, 48 % from one crop). ¹H NMR (400 MHz, C₆D₆) δ ppm -2.16 (s, 2 H, Cp_{Ar}CH), -0.25 - 0.49 (m, 4 H, THF-CH₂CH₂O), 3.12 (s, 4 H, THF-CH₂CH₂O), 4.19 (s, 36 H, Si(CH₃)₃ × 4), 5.89 (s, 2 H, Cp_{Ar}CH), 13.00 (s, 18 H, Si(CH₃)₃ × 2) ppm. Anal calcd for C₃₂H₆₆OSi₆Sm: C, 48.92 %; H, 8.47 %. Found: C, 43.81 %; H, 8.08 %.²⁰ Magnetic susceptibility: $\chi_M = 5183 \times 10^{-6}$ cgs; $\mu_{eff} = 3.65 \mu_B$. FTIR (Nujol,cm⁻¹): = v 1259 (m), 1091 (m), 1020 (m), 833 (s), 752 (s).

[Sm{C5H4(SiMePh2)}2(THF)] (Cp^{DPMS}2Sm(THF)) 5e

Synthesized according to a general procedure B using SmI₂(THF)₂ (5.48 g, 10.0 mmol) and [K{C₅H₄(SiMePh₂)}] (5.00 g, 21.0 mmol). The product was crystallized from toluene/THF as dark purple crystals (5.54 g, 7.43 mmol, 74% from two crops). ¹H NMR (400 MHz, C₆D₆/THF-*d*₈) δ 1.40 (s, 4 H, THF-CH₂CH₂O), 4.14 (s, 4 H, THF-CH₂CH₂O), 5.89 (s, 6 H, SiCH₃), 8.15 (s, 4 H, ArCH), 8.78 (s, 8 H, ArCH), 10.88 (s, 8 H, ArCH), 11.55 (s, 4 H, Cp_{Ar}CH), 16.26 (s, 4 H, Cp_{Ar}CH). Magnetic susceptibility: χ_M = 5305 x 10⁻⁶ cgs; μ_{eff} = 3.69 μ_B . Anal calcd for C₄₀H₄₂OSi₂Sm: C, 64.46 %; H, 5.68 %. Found: C, 63.16 %; H, 5.64 %.²⁰ FTIR (Nujol,cm⁻¹): = v 1529 (s), 1103 (m), 1036 (m), 792 (s), 698 (s).

[Sm{C₅H₄(SiPh₃)}₂(THF)₂] (Cp^{TPS}₂Sm(THF)₂) 5f

Synthesized according to general procedure B using $SmI_2(THF)_2$ (0.92 g, 1.67 mmol) and $K[(SiPh_3)C_5H_4]$ (1.21 g, 3.34 mmol). The product was crystallized from THF/Hexane as dark purple crystals (0.65 g, 0.69 mmol, 41 % from two crops). ¹H NMR (400 MHz, C₆D₆) δ 0.22 (s, 8 H, THF-CH₂CH₂O), 2.12 (s, 8 H, THF-CH₂CH₂O), 3.38 (s, 4 H, Cp_{Ar}CH), 8.02 (s, 6 H, ArCH), 10.71 (s, 12 H, ArCH), 16.11 (s, 12 H, ArCH), 20.06 (s, 4 H, Cp_{Ar}CH) ppm. Magnetic susceptibility: $\chi_M = 4280 \times 10^{-6} \text{ cgs}$; $\mu_{eff} = 3.37 \,\mu_B$. Anal calcd for C₅₄H₅₄O₂Si₂Sm: C, 68.89 %; H, 5.78 %. Found: C, 67.73 %; H, 5.78 %.²⁰ FTIR (Nujol,cm⁻¹): = v 1529 (s), 1103 (m), 1036 (m), 792 (s), 698 (s).

Synthesis of δ -Keto acids and δ -Keto esters

3,3-Dimethyl-5-oxo-5-isopropylpentanoic acid S3

General procedure C. 3,3-Dimethylglutaric anhydride (2.77 g, 19.5 mmol) and Fe(acac)₃ (0.28 g, 0.78 mmol) were dissolved in THF (20 mL) and the solution cooled to 0 $^{\circ}$ C. A

solution of isopropylmagnesium chloride (8.4 mL, 16.2 mmol, 1.93 M in Et₂O) was added by syringe pump over 45 min and the reaction mixture was allowed to warm to room temperature and was stirred overnight. The reaction was quenched at 0 °C with 2 M HCl (30 mL) and extracted with Et₂O (3 × 30 mL). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by flash chromatography eluting with *i*-PrOH/petroleum ether/AcOH (10:90:0.005) to give a colorless oil (2.31 g, 12.4 mmol, 76%). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.9 Hz, 6 H, CH(CH₃)₂), 1.11 (s, 6 H, C(CH₃)₂), 2.53 (s, 2 H, CH₂C(O)O), 2.57 (spt, *J* = 6.9 Hz, 1 H, CH(CH₃)₂), 2.61 (s, 2 H, CH₂C(O)) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 18.0 (CH(CH₃)₂), 28.3 (C(CH₃)₂), 32.6 (C(CH₃)₂), 42.0 (CH(CH₃)₂), 44.4 (CH₂C(O)O), 49.3 (CH₂C(O)), 177.9 (C(O)O), 214.8 (C(O)) ppm. IR (neat)/cm⁻¹ 2966, 1703 (C=O), 1466, 1383, 1366, 1243, 1048, 930. HRMS calcd for C₁₀H₁₉O₃ [M + H]⁺ 187.1329, found 187.1324.

5-Cyclohexyl-3,3-dimethyl-5-oxopentanoic acid S4

Prepared according to general procedure C using 3,3-dimethylglutaric anhydride (0.74 g, 5.20 mmol), Fe(acac)₃ (0.073 g, 0.20 mmol) and cyclohexylmagnesium chloride (2.42 mL, 4.72 mmol, 1.95 M in Et₂O) to give the title compound as a white solid (0.95 g, 4.20 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.11 (s, 6 H, C(CH₃)₂), 1.16 – 1.37 (m, 5 H, *c*-HexCH₂), 1.62 – 1.72 (m, 1 H, *c*-HexCH₂), 1.75 – 1.88 (m, 4 H, *c*-HexCH₂), 2.28 – 2.38 (m, 1 H, *c*-HexCH(CH₂)), 2.51 (s, 2 H, CH₂C(O)O), 2.59 (s, 2 H, CH₂C(O)), 10.52 (br s, 1 H, C(O)OH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ ppm 25.6 (*c*-HexCH₂), 25.8 (*c*-HexCH₂), 28.2 (C(CH₃)₂), 28.5 (*c*-HexCH₂), 33.0 (C(CH₃)₂), 44.6 (CH₂C(O)O), 49.5 (CH₂C(O)), 52.4 (*c*-HexCH(CH₂)₂), 175.6 (C(O)OH), 215.5 (C(O)) ppm. IR (neat)/cm⁻¹ 2929, 2854, 1703 (C=O), 1449, 1368, 1239, 1144, 1065, 932. M.p (CHCl₃) = 61 – 63 °C. HRMS calcd for C₁₃H₂₃O₃ [M + H]⁺ 227.1642, found 227.1635.

3,3-Tetramethylene-5-oxo-5-isopropylpentanoic acid S5

Prepared according to general procedure C using 3,3-tetramethyleneglutaric anhydride (2.0 g, 11.9 mmol), Fe(acac)₃ (0.13 g, 0.368 mmol) and isopropylmagnesium chloride (5.16 mL, 9.91 mmol, 1.92 M in Et₂O) to give title compound as a colorless oil (1.77 g, 8.34 mmol, 84%). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, J = 7.1 Hz, 6 H, CH(CH₃)₂), 1.44 – 1.58 (m, 2 H, *c*-PenCH₂), 1.58 – 1.74 (m, 6 H, *c*-PenCH₂), 2.57 (spt, J = 6.9 Hz, 1 H, CH(CH₃)₂), 2.61 (s, 2 H, CH₂C(O)O), 2.75 (s, 2 H, CH₂C(O)), 11.31 (br s, 1 H, C(O)OH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 18.2 (CH(CH₃)₂), 23.9 (*c*-PenCH₂ × 2), 38.5 (*c*-PenCH₂ × 2), 41.4 (CH₂C(O)O), 41.7 (*C*(CH₂)₄), 42.8 (CH(CH₃)₂), 47.6 (CH₂C(O)), 178.1 (C(O)OH), 215.1 (C(O)) ppm. IR (neat)/cm⁻¹ 2961, 2872, 1701, 1459, 1400, 1383, 1361, 1296, 1228, 1172, 1102, 1047, 929, 617. HRMS calcd for C₁₂H₂₁O₃ [M + H]⁺ 213.1485, found 213.1484.

Ethyl 5-oxo-5-cyclopropylpropylpentanoate 3b

To a stirred solution of glutaric acid monomethyl ester chloride (0.55 mL, 4.40 mmol) and CuI (0.08 g, 0.42 mmol) in THF (10 mL), cyclopropylmagnesium chloride (8.5 mL, 0.47 M in Et₂O was added during 1 h at -15 °C. After addition was complete, reaction was stirred for an additional 1 h at -15 °C and quenched with sat. NH₄Cl. The phases were separated and the aqueous layer washed with Et₂O (3×20 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO₄ and concentrated *in vacuo* to give an orange oil which was purified by flash chromatography eluting with EtOAc/Hexane (3:97 to 5:95) to give a colorless oil (0.42 g, 2.27 mmol, 57%). ¹H NMR (500 MHz, CDCl₃) δ 0.83 – 0.91 (m, 2 H, *c*- $PrCH_{2a}$, 0.97 – 1.06 (m, 2 H, *c*-PrCH_{2b}), 1.26 (t, *J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.88 – 1.96 (m, 3 H, 1 H from c-PrCH(CH₂)₂, 2 H from CH₂CH₂C(O)O), 2.33 (t, J = 7.3 Hz, 2 H, $CH_2CH_2C(O)O)$, 2.62 (t, J = 7.3 Hz, 2 H, $CH_2C(O)$), 4.13 (q, J = 7.2 Hz, 2 H, OCH_2CH_3) ppm; ¹³C NMR (125 MHz, CDCl₃) δ ppm 10.6 (*c*-PrCH₂), 14.2 (OCH₂CH₃), 19.1 (CH₂CH₂C(O)O), 20.4 (*c*-PrCH(CH₂)₂), 33.4 (CH₂CH₂C(O)O), 42.2 (CH₂C(O)), 60.3 (OCH₂CH₃), 173.2 (C(O)O), 210.0 (C(O)) ppm. IR (neat)/cm⁻¹ 2981, 1730 (C=O), 1696, 1446, 1389, 1310, 1247, 1180, 1104, 1087, 1020, 898, 858, 817. HRMS calcd for $C_{10}H_{16}O_3Na [M + Na]^+ 207.0992$, found 207.0986.

Ethyl 3,3-dimethyl-5-oxo-5-isopropylpentanoate 3g

General procedure D. 3,3-Dimethyl-5-oxo-5-isopropylpentanoic acid (2.31 g, 12.4 mmol) was dissolved in EtOH (30 mL) followed by the addition of conc. H₂SO₄ (0.5 mL). The reaction mixture was stirred overnight at 78 °C under reflux, concentrated *in vacuo*, diluted with water (15 mL), neutralized with saturated NaHCO₃ and extracted with Et₂O (3 × 40 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo* to give a yellow oil which was purified by flash chromatography eluting with EtOAc/petroleum ether (5:95 to 10:95) to give a colorless oil (2.08 g, 9.71 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.9 Hz, 6 H, CH(CH₃)₂), 1.09 (s, 6 H, C(CH₃)₂), 1.25 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃), 2.47 (s, 2 H, CH₂C(O)O), 2.56 (spt, *J* = 6.9 Hz, 1 H, CH(CH₃)₂), 2.60 (s, 2 H, CH₂C(O)), 4.10 (q, *J* = 7.2 Hz, 2 H, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) δ ppm 14.3 (OCH₂CH₃), 18.1 (CH(CH₃)₂), 28.1 (C(CH₃)₂), 32.5 (C(CH₃)₂), 41.9 (CH(CH₃)₂), 44.7 (CH₂C(O)O), 49.5 (CH₂C(O)), 59.9 (OCH₂CH₃), 172.3 (C(O)O), 214.2 (C(O)) ppm. IR (neat)/cm⁻¹ 2967, 2359, 1730 (C=O), 1467, 1229, 1150, 1035. HRMS calcd for C₁₂H₂₂O₃Na [M + Na]⁺ 237.1461, found 237.1455.

Ethyl 5-cyclohexyl-3,3-dimethyl-5-oxopentanoate 3h

Prepared according to general procedure D using 5-cyclohexyl-3,3-dimethyl-5 oxopentanoic acid (0.93 g, 4.12 mmol), H₂SO₄ (0.3 mL) and EtOH (12 mL) to give the title compound as a colorless oil (0.89 g, 3.50 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 1.08 (s, 6 H, C(*CH*₃)₂), 1.15 – 1.36 (m, 8 H, 3 H from OCH₂CH₃, 5 H from *c*-HexCH₂), 1.60 – 1.70 (m, 1 H, *c*-HexCH₂), 1.73 – 1.87 (m, 4 H, *c*-HexCH₂), 2.22 – 2.36 (m, 1 H, *c*-HexCH(CH₂)), 2.46 (s, 2 H, CH₂C(O)O), 2.58 (s, 2 H, CH₂C(O)), 4.10 (q, *J* = 7.2 Hz, 2 H, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.3 (OCH₂CH₃), 25.7 (*c*-HexCH₂), 25.9 (*c*-HexCH₂), 28.1 (C(*C*H₃)₂), 28.4 (*c*-HexCH₂), 32.5 (*C*(CH₃)₂), 44.6 (CH₂C(O)O), 49.7 (CH₂C(O)), 52.0 (*c*-HexCH(CH₂)₂), 59.9 (OCH₂CH₃), 172.4 (*C*(O)O), 213.6 (*C*(O)) ppm. IR (neat)/cm⁻¹ 2929, 2854, 2359, 1728 (C=O), 1706, 1449, 1367, 1345, 1228, 1143, 1064, 1035. HRMS calcd for C₁₅H₂₇O₃ [M + H]⁺ 255.1955, found 255.1947.

Ethyl 3,3-tetramethylene-5-oxo-5-isopropylpentanoate 3i

Prepared according to general procedure D using 3,3-tetramethylene-5-oxo-5isopropylpentanoic acid (1.77 g, 8.34 mmol), H₂SO₄ (0.4 mL) and EtOH (20 mL) to give the title compound as a colorless oil (1.59 g, 6.61 mmol, 80%). ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 7.1 Hz, 6 H, CH(CH₃)₂), 1.23 (t, *J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.44 – 1.55 (m, 2 H, *c*-PenCH₂), 1.56 – 1.71 (m, 6 H, *c*-PenCH₂), 2.55 (s, 2 H, CH₂C(O)O), 2.56 (spt, *J* = 6.9 Hz, 1 H, CH(CH₃)₂), 2.74 (s, 2 H, CH₂C(O)), 4.08 (q, *J* = 7.2 Hz, 2 H, OCH₂CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 14.3 (OCH₂CH₃), 18.2 (CH(CH₃)₂), 24.0 (*c*-PenCH₂), 38.5 (*c*-PenCH₂), 41.5 (CH₂C(O)O), 42.7 (CH(CH₃)₂), 47.8 (CH₂C(O)), 59.9 (OCH₂CH₃), 172.8 (C(O)O), 214.4 (C(O)) ppm. IR (neat)/cm⁻¹ 2962, 2872, 1728 (C=O), 1711, 1465, 1382, 1367, 1344, 1218, 1160, 1096, 1035, 940. HRMS calcd for C₁₄H₂₅O₃ [M + H]⁺ 241.1798, found 241.1797.

Ethyl (E)-5-oxo-9-phenylnon-8-enoate 3j

To a solution of ethyl 5-oxonon-8-enoate (430 mg, 1.57 mmol) and styrene (540 µL, 4.68 mmol) in degassed CH₂Cl₂ (10.0 mL) was added Hoveyda-Grubbs 2nd generation catalyst (10 mg, 0.016 mmol). The resulting solution was stirred at room temperature under a very slow stream of nitrogen for 16 h. Solvent was removed under vacuum and the resulting crude mixture was purified by silica gel column chromatography (pentane/Et₂O, 90:10 to 80:20) to give the title compound as a waxy solid (285 mg, 1.04 mmol, 66%). ¹H NMR (500 MHz, CDCl₃) δ ppm 1.26 (t, *J* = 7.3 Hz, 3 H, OCH₂CH₃), 1.88 – 1.96 (m, 2 H, C(O)CH₂CH₂), 2.34 (t, *J* = 7.3 Hz, 2 H, CH₂C(O)OEt), 2.46 – 2.54 (m, 4 H, 2 H from CH=CHCH₂CH₂C(O), 2 H from C(O)CH₂), 2.57 – 2.62 (m, 2 H, CH=CHCH₂CH₂C(O)), 4.13 (q, *J* = 7.3 Hz, 2 H, OCH₂CH₃), 6.19 (dt, *J* = 15.8, 6.8 Hz, 1 H, PhCH=CH), 6.41 (d, *J* = 15.8 Hz, 1 H, PhCH=CH), 7.18 – 7.23 (m, 1 H, ArCH), 7.27 – 7.35 (m, 4 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ ppm 14.2 (OCH₂CH₃), 18.9 (C(O)CH₂CH₂), 27.1 (CH=CHCH₂CH₂C(Q)), 3.3 (CH₂C(O)OEt), 41.7 (C(O)CH₂), 42.3 (CH=CHCH₂CH₂C(O)), 60.4 (OCH₂CH₃), 126.0 (ArCH), 127.1 (ArCH), 128.5 (ArCH), 128.8 (PhCH=CH), 130.8 (PhCH=CH), 137.4 (ArC), 173.2 (C(O)OEt), 209.2 (C(O)) ppm. IR (neat)/cm⁻¹ 2979, 1730, 1713, 1492, 1447, 1412,

1374, 1248, 1176, 1098, 1028, 967, 745. HRMS calcd for $C_{17}H_{23}O_3$ [M + H]⁺ 275.1642, found 275.1627.

Synthesis of 6-membered lactones

rac-(R)-6-Isopropyl-6-[*(R)*-1-phenylallyl]tetrahydro-2*H*-pyran-2-one *anti*-1a, *rac-(R)*-6-isopropyl-6-[*(S)*-1-phenylallyl]tetrahydro-2*H*-pyran-2-one *syn*-1a and *rac*-6-Cinnamyl-6-isopropyltetrahydro-2*H*-pyran-2-one 1a'

General procedure E. To a solution of Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) in toluene (0.5 mL), 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol) was added in toluene (0.5 mL) and the mixture stirred for 10 min to give a dark green solution which was then added dropwise to a stirred solution of ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol) in toluene (0.2 mL) and the reaction flask was sealed under argone. After 14 h at the room temperature, the reaction mixture was quenched with 1 M HCl (1.5 mL) and the phases were separated. The aqueous layer was extracted with Et₂O (3×1.5 mL). The combined organic layers were washed with brine (1.5 mL) and brine layer was additionally extracted with Et₂O (1.5 mL). The combined organic layers were dried over MgSO₄, concentrated in vacuo and purified by flash chromatography, eluting with EtOAc/Hexanes (1:99 to 2:98) to give the anti isomer of the title compound as a white solid (19.3 mg, 0.075 mmol, 75%), syn-1a as colorless oil (1 mg, 0.003 mmol 4 %) and isomer 1a' as colourless oil (1 mg, 0.003 mmol, 4%). ¹H NMR yield from crude product mixture (88% for anti-1a+syn-1a, d.r. 92:8; (anti-**1a**+syn-**1a**):**1a'**, 91:9). ¹H NMR (500 MHz, CDCl₃) (anti diastereoisomer) δ 0.49 – 0.59 (m, 1 H, $CH_{a}H_{b}CH_{2}C(O)O)$, 0.92 (d, J = 6.8 Hz, 3 H, $CH(CH_{3})_{a}(CH_{3})_{b}$), 0.96 (d, J = 6.9 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 1.33 – 1.41 (m, 1 H, $CH_aH_bCH_2C(O)O)$, 1.62 – 1.69 (m, 1 H, $CH_aH_bC-O)$, 1.79 (ddd, J = 14.4, 10.6, 5.2 Hz, 1 H, CH_aH_bC-O), 1.81 – 1.88 (m, 1 H, CH_aH_bC(O)O), 2.03 (ddd, J = 17.0, 10.6, 5.2 Hz, 1 H, CH_aH_bC(O)O), 2.35 (spt, J = 6.8 Hz, 1 H, CH(CH₃)₂), 3.40 $(d, J = 10.1 \text{ Hz}, 1 \text{ H}, CHPh), 5.10 (dd, J = 17.1, 1.6 \text{ Hz}, 1 \text{ H}, CH=CH_aH_b), 5.15 (dd, J = 10.1, 1.6 \text{ Hz}, 1 \text{ H}, CH=CH_aH_b), 5.15 (dd,$ 1.6 Hz, 1 H, CH=CH_aH_b), 6.49 (dt, J = 17.1, 10.1 Hz, 1 H, CH=CH₂), 7.22 - 7.26 (m, 3 H, ArCH), 7.27 - 7.32 (m, 2 H, ArCH); (syn diastereoisomer) δ 0.90 (d, J = 6.8 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 0.94 (d, J = 6.8 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 1.65 – 1.78 (m, 2 H, $CH_2CH_2C(O)O$, 1.89 (spt, J = 6.8 Hz, 1 H, $CH(CH_3)_2$), 1.90 – 1.96 (m, 2 H, CH_2C-O), 2.04 $(ddd, J = 17.1, 8.0, 5.7 Hz, 1 H, CH_aH_bC(O)O), 2.22 - 2.31 (m, 1 H, CH_aH_bC(O)O), 3.55 (d, 10.1 H, CH_aH_bC(O)O)), 3.55 (d, 10.1 H, CH_aH_bC(O)O))), 3.55 (d, 10.1 H, CH_aH_bC(O)O)))$ J = 10.0 Hz, 1 H, CHPh), 5.18 (dd, J = 10.0, 1.6 Hz, 1 H, CH=CH_aH_b), 5.20 (dd, J = 17.0, 1.6 Hz, 1 H, CH=CH_a H_b), 6.09 (dt, J = 17.0, 10.0 Hz, 1 H, CH=CH₂), 7.20 - 7.25 (m, 1 H, ArCH), 7.27 – 7.33 (m, 2 H, ArCH), 7.36 – 7.40 (m, 2 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ (anti diastereoisomer) 16.5 (CH(CH₃)₂), 16.9 (CH(CH₃)₂), 17.6 (CH₂CH₂C(O)O), 24.2 (CH₂C-O), 30.2 (CH₂C(O)O), 35.4 (CH(CH₃)₂), 59.2 (CHPh), 89.4 (CH₂C-O), 117.2 (CH=CH₂), 127.3 (ArCH), 128.8 (ArCH), 129.6 (ArCH), 137.2 (CH=CH₂), 140.7 (ArC), 172.3 (C(O)O); (syn diastereoisomer) 16.7 (CH(CH₃)_a(CH₃)_b), 17.0 (CH(CH₃)_a(CH₃)_b), 18.8 (CH₂CH₂C(O)O), 25.2 (CH₂C-O), 30.4 (CH₂C(O)O), 35.9 (CH(CH₃)₂), 59.6 (CHPh), 89.2 (CH₂C-O), 118.3 (CH=CH₂), 127.0 (ArCH), 128.6 (ArCH), 129.7 (ArCH), 137.2 (CH=CH₂), 140.3 (ArC), 172.5 (C(O)O) ppm. IR (neat)/cm⁻¹ 2964, 1727 (C=O), 1465, 1341, 1328, 1247, 1192, 1038, 1002, 992, 766, 720, 705. M.p = 111 - 113 °C. HRMS calcd for C₁₇H₂₂O₂Na [M + Na]⁺ 281.1512, found 281.1525.

Spectroscopic data for **1a**': ¹H NMR (400 MHz, CDCl₃) δ 0.98 (d, J = 6.8 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.99 (d, J = 6.8 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.70 – 1.92 (m, 4 H, 2 H from CH₂CH₂C(O)O, 2 H from CH₂C-O), 2.06 (spt, J = 6.8 Hz, 1 H, CH(CH₃)₂), 2.34 – 2.44 (m, 1 H, CH_aH_bC(O)O), 2.46 – 2.64 (m, 3 H, 1 H from CH_aH_bC(O)O, 2 H from CH₂CH=CH), 6.23 (dt, J = 15.9, 7.3 Hz, 1 H, CH₂CH=CH), 6.46 (d, J = 15.9 Hz, 1 H, CH₂CH=CH), 7.19 – 7.25 (m, 1 H, ArCH), 7.27 – 7.39 (m, 4 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 16.7 (CH(CH₃)_a(CH₃)_b), 16.9 (CH(CH₃)_a(CH₃)_b), 17.0 (CH₂CH₂C(O)O), 26.4 (CH₂C-O), 29.9 (CH₂C(O)O), 35.6 (CH(CH₃)₂), 40.5 (CH₂CH=CH), 88.5 (CH₂C-O), 124.3 (CH₂CH=CH), 126.3 (ArCH), 127.5 (ArCH), 128.7 (ArCH), 133.9 (CH₂CH=CH), 137.2 (ArC), 171.9 (C(O)O). IR (neat)/cm⁻¹ 2963, 1727 (C=O), 1448, 1327, 1251, 1031, 970, 924, 747, 693. HRMS calcd for C₁₇H₂₂O₂Na [M + Na]⁺ 281.1512, found 281.1516.

*rac-(R)-6-Cyclopropyl-6-((R)-1-phenylallyl)*tetrahydro-2*H-pyran-2-one anti-1b and rac-*(*R*)-6-cyclopropyl-6-((*S*)-1-phenylallyl)tetrahydro-2*H*-pyran-2-one syn-1b

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 5-oxo-5cyclopropylpropylpentanoate (18.4 mg, 0.1 mmol) to give the title compound (17.0 mg, 0.072, 72%) as a mixture of diastereoisomers of which the *anti* was the major. ¹H NMR yield from crude product mixture (84% for *anti*-1b:*syn*-1b, d.r; 85:15; (*anti*-1b+*syn*-1b):1b', 92:8). ¹H NMR (400 MHz, CDCl₃) δ (*anti* diastereoisomer) 0.20 – 0.28 (m, 1 H, *c*-PrCH₂), 0.31 – $0.39 \text{ (m, 1 H, } c\text{-PrCH}_2), 0.43 - 0.52 \text{ (m, 1 H, } c\text{-PrCH}_2), 0.54 - 0.68 \text{ (m, 2 H, 1 H from } c\text{-}$ PrCH₂, and c-PrCH(CH₂)), 1.59 – 1.69 (m, 1 H, CH_aH_bCH₂C(O)O), 1.75 – 1.82 (m, 1 H, CH_aH_bC-O), 1.87 – 1.98 (m, 2 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from CH_aH_bC-O), 2.15 – 2.26 (m, 1 H, $CH_aH_bC(O)O$), 2.39 – 2.49 (m, 1 H, $CH_aH_bC(O)O$), 3.58 (d, J = 8.5 Hz, 1 H, CHPh), 5.11 (dt, J = 17.3, 1.3 Hz, 1 H, CH=CH_aH_b), 5.16 (ddd, J = 10.3, 1.6, 0.9 Hz, 1 H, CH=CH_a H_b), 6.29 (ddd, J = 17.0, 10.4, 8.5 Hz, 1 H, CH=CH₂), 7.19 – 7.31 (m, 5 H, ArCH) (syn diastereoisomer diagnostic signals) 3.59 (br d, J = 9.5 Hz, 1 H, CHPh), 5.16 – 5.22 (m, 2 H, CH=CH₂), 6.23 - 6.33 (m, 1 H, CH=CH₂). ¹³C NMR (100 MHz, CDCl₃) δ (anti diastereoisomer) -0.1 (c-PrCH₂), 2.1 (c-PrCH₂), 16.6 (CH₂CH₂C(O)O), 19.8 (c-PrCH(CH₂)), 29.4 (CH₂C-O), 29.9 (CH₂C(O)O), 60.5 (CHPh), 84.9 (CH₂C-O), 118.3 (CH=CH₂), 127.0 (ArCH), 128.1 (ArCH), 129.6 (ArCH), 136.4 (CH=CH₂), 139.4 (ArC), 171.4 (C(O)O) (syn diastereoisomer) 0.4 (c-PrCH₂), 2.0 (c-PrCH₂), 16.7 (CH₂CH₂C(O)O), 19.5 (c-PrCH(CH₂)), 29.5 (CH₂C-O), 29.9 (CH₂C(O)O), 60.5 (CHPh), 84.3 (CH₂C-O), 118.7 (CH=CH₂), 126.8 (ArCH), 128.8 (ArCH), 129.6 (ArCH), 135.8 (CH=CH₂), 139.7 (ArC), 171.15 (C(O)O). IR (neat)/ cm⁻¹ 2929, 1728, 1493, 1452, 1417, 1328, 1238, 1190, 1116, 1090, 1024, 923, 829, 764, 703. HRMS calcd for $C_{17}H_{21}O_2$ [M + H]⁺ 257.1536, found 257.1535.

rac-(*R*)-6-Cyclohexyl-6-[(*R*)-1-phenylallyl]tetrahydro-2*H*-pyran-2-one *anti*-1c and *rac-*(*R*)-6-Cyclohexyl-6-[(*S*)-1-phenylallyl]tetrahydro-2*H*-pyran-2-one *syn-*1c

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 5-cyclohexyl-5oxopentanoate (22.6 mg, 0.1 mmol) to give the anti isomer of the title compound as a white solid (19.1 mg, 0.064 mmol, 64%) and syn-1c as colorless oil (2 mg, 0.007 mmol, 7 %). 1 H NMR yield from crude product mixture (81% for anti-1c:syn-1c, d.r. 88:12; (anti-1c+syn-**1c**):**1c'**, 87:13). ¹H NMR (500 MHz, CDCl₃) δ (*anti* diastereoisomer) 0.51 – 0.62 (m, 1 H, $CH_{a}H_{b}CH_{2}C(O)O), 0.97 - 1.27$ (m, 5 H, 5H from *c*-HexCH₂), 1.31 - 1.40 (m, 1 H, CH_aH_bCH₂C(O)O), 1.60 – 1.71 (m, 3 H, 1 H from CH_aH_bC-O, 2 H from c-HexCH₂), 1.74 – 1.86 (m, 5 H, 1 H from CH_aH_bC-O , 3 H from *c*-Hex CH_2 , 1 H from $CH_aH_bC=O$), 1.94 – 2.05 (m, 2 H, 1 H from *c*-HexCH(CH₂)₂, 1 H from CH_aH_bC(O)O), 3.42 (d, J = 10.0 Hz, 1 H, CHPh), 5.06 (dd, J = 17.1, 1.6 Hz, 1 H, CH=CH_aH_b), 5.14 (dd, J = 10.0, 1.6 Hz, 1 H, CH=CH_aH_b), 6.46 (dt, J = 17.1, 10.0 Hz, 1 H, CH=CH₂), 7.19 – 7.30 (m, 5 H, Ar-CH) (syn diastereoisomer) 0.91 – 1.24 (m, 6 H, CH₂), 1.65 – 1.83 (m, 7 H, 4 H from CH₂, CHCH₂, 2 H from CH₂CH₂C(O)O), 1.91 – 1.97 (m, 2 H, CH₂C-O), 2.04 (ddd, J = 5.4, 8.5, 17.1 Hz, 1 H, $CH_{a}H_{b}C(O)O)$, 2.21 – 2.32 (m, 1 H, $CH_{a}H_{b}C(O)O)$, 3.57 (d, J = 9.8 Hz, 1 H, CHPh), 5.15 – 5.22 (m, 2 H, CH=CH₂), 6.04 – 6.15 (m, 1 H, CH=CH₂), 7.20 – 7.25 (m, 1 H, ArCH), 7.27 – 7.33 (m, 2 H, ArCH), 7.33 – 7.39 (m, 2 H, ArCH) ppm. ¹³C NMR (125 MHz, CDCl₃) δ (anti diastereoisomer) 17.8 (CH₂CH₂C(O)O), 25.6 (CH₂C-O), 26.3 (c-HexCH₂), 26.4 (c-HexCH₂), 26.6 (c-HexCH₂), 26.6 (c-HexCH₂), 26.8 (c-HexCH₂), 30.3 (CH₂C(O)O), 45.8 (c-HexCH(CH₂)₂), 58.8 (CHPh), 89.1 (CH₂C-O), 117.1 (CH=CH₂), 127.2 (ArCH), 128.8 (ArCH), 129.7 (ArCH), 137.3 (CH=CH₂), 140.7 (ArC), 172.4 (C(O)O) (syn diastereoisomer) 18.9 (CH₂CH₂C(O)O), 26.0 (CH₂C-O), 26.3 (CH₂), 26.4 (CH₂), 26.4 (CH₂), 26.4 (CH₂), 27.2 (CH₂), 30.4 (CH₂C(O)O), 46.2 (CHCH₂), 59.1 (CHPh), 89.1 (CH₂C-O), 118.3 (CH=CH₂), 127.0 (ArCH), 128.5 (ArCH), 129.7 (ArCH), 137.3 (CH=CH₂), 140.2 (ArC), 172.6 (C(O)O) ppm. IR (neat)/cm⁻¹ 2927, 2853, 1728 (C=O), 1452, 1331, 1033, 921, 765, 705. M.p = 124 -127 °C. HRMS calcd for $C_{20}H_{26}O_2Na [M + Na]^+$ 321.1830, found 321.1846.

rac-(*S*)-6-Ethyl-6-((*R*)-1-phenylallyl)tetrahydro-2*H*-pyran-2-one *anti*-1d, *rac*-(*S*)-6-ethyl-6-((*S*)-1-phenylallyl)tetrahydro-2*H*-pyran-2-one *syn*-1d

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 5-oxoheptanoate (17.2 mg, 0.1 to give the title compound (18.0 mg, 0.074, 74%) as a mixture of diastereoisomers of which the anti was the major. ¹H NMR yield from crude product mixture (79% for anti-1d+syn-1d, d.r. 57:43; (anti-1d+syn-1d):1d', 80:20). ¹H NMR (500 MHz, CDCl₃) (anti diastereoisomer) δ 0.95 (t, J = 7.6 Hz, 3 H, CH₂CH₃), 1.43 - 1.52 (m, 1 H, CH_aH_bCH₂C(O)O)), 1.58 – 1.82 (m, 4 H, 1 H from CH_aH_bCH₂C(O)O, 2 H from CH₂C-O, 1 H from $CH_aH_bCH_3$, 1.89 – 1.98 (m, 1 H, $CH_aH_bCH_3$), 2.03 – 2.12 (m, 1 H, $CH_aH_bC(O)O$), 2.37 - 2.44 (m, 1 H, CH_aH_bC(O)O), 3.42 (d, J = 9.5 Hz, 1 H, CHPh), 5.10 - 5.15 (m, 1 H, $CH=CH_{a}H_{b}$), 5.17 – 5.20 (m, 1 H, $CH=CH_{a}H_{b}$), 6.37 – 6.46 (m, 1 H, $CH=CH_{2}$), 7.22 – 7.27 (m, 2 H, ArCH), 7.29 - 7.33 (m, 2 H, ArCH), 7.35 - 7.39 (m, 1 H, ArCH); (syn diastereoisomer) 0.91 (t, J = 7.5 Hz, 3 H, CH₂CH₃), 1.60 – 1.83 (m, 5 H, 1 H from CH_aH_bCH₃, 2 H from CH₂C-O, 2 H from CH₂CH₂C(O)O), 1.87 – 2.00 (m, 1 H, CH_aH_bCH₃), 2.07 - 2.19 (m, 1 H, $CH_aH_bC(O)O$), 2.44 - 2.48 (m, 1 H, $CH_aH_bC(O)O$), 3.52 (d, J = 9.6 Hz, 1 H, CHPh), 5.16 – 5.20 (m, 1 H, CH=CH_aH_b), 5.20 – 5.23 (m, 1 H, CH=CH_aH_b), 6.17 (dt, J = 16.9, 9.9 Hz, 1 H, CH=CH₂), 7.22 – 7.33 (m, 5 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ (anti diastereoisomer) 8.0 (CH₂CH₃), 16.6 (CH₂CH₂C(O)O)), 27.0 (CH₂C-O), 29.7 (CH₂C(O)O), 30.3 (CH₂CH₃), 57.7 (CHPh), 87.6 (CH₂C-O), 117.6 (CH=CH₂), 127.0 (ArCH), 128.5 (ArCH), 129.4 (ArCH), 136.7 (CH=CH₂), 140.1 (ArC), 171.3 ((C(O)O)). δ (syn diastereoisomer) 7.8 (CH₂CH₃), 16.9 (CH₂CH₂C(O)O)), 26.9 (CH₂C-O), 29.7 (CH₂C(O)O), 30.5 (CH₂CH₃), 57.9 (CHPh), 87.3 (CH₂C-O), 118.4 (CH=CH₂), 126.9 (ArCH), 128.3 (ArCH), 129.5 (ArCH), 136.6 (CH=CH₂), 139.8 (ArC), 171.3 (C(O)O) ppm. IR (neat)/cm⁻¹ 2967, 1727, 1491, 1453, 1417, 1362, 1328, 1244, 1191, 1132, 1085, 1040, 1016, 924, 834, 763, 703. HRMS calcd for $C_{16}H_{21}O_2$ [M + H]⁺ 245.1536, found 245.1525.

rac-(*R*)-6-Methyl-6-((*R*)-1-phenylallyl)tetrahydro-2*H*-pyran-2-one *syn*-1e, *rac*-(*S*)-6-methyl-6-((*R*)-1-phenylallyl)tetrahydro-2*H*-pyran-2-one *anti*-1e

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 5-methyl-5-oxopentanoate (15.8 mg, 0.1 mmol) to give title compound (12.2 mg, 0.053 mmol, 53%) as a mixture of diastereoisomers. ¹H NMR yield from crude (58% for *anti*-1e+syn-1e, d.r. 29:71, (anti-1e+syn-1e):1e' 81:19). ¹H NMR (400 MHz, CDCl₃) δ (syn diastereoisomer) 1.29 (s, 3) H, CH₃), 1.58 – 1.63 (m, 1 H, CH_aH_bC-O), 1.77 – 1.90 (m, 2 H, CH₂CH₂C(O)O), 1.96 (ddd, J = 13.5, 10.0, 6.3 Hz, 1 H, CH_aH_bC-O), 2.20 - 2.29 (m, 1 H, CH_aH_bCH₂C(O)O), 2.48 - 2.55(m, 1 H, $CH_aH_bCH_2C(O)O$), 3.41 (d, J = 9.3 Hz, 1 H, CHPh), 5.16 (ddd, J = 17.0, 1.5, 0.9Hz, 1 H, CH=CH_aH_b), 5.23 (dd, J = 10.2, 1.5 Hz, 1 H, CH=CH_aH_b), 6.22 (ddd, J = 17.0, 10.2, 9.3 Hz, 1 H, CH=CH₂), 7.21 – 7.27 (m, 2 H, ArCH), 7.28 – 7.34 (m, 3 H, ArCH); (anti diastereoisomer) 1.39 (s, 3 H, CH₃), 1.58 – 1.65 (m, 1 H, CH_aH_bC-O), 1.65 – 1.74 (m, 2 H, $CH_2CH_2C(O)O$, 1.77 – 1.90 (m, 1 H, CH_aH_bC-O), 2.13 (ddd, J = 18.0, 10.9, 6.9 Hz, 1 H, $CH_{a}H_{b}CH_{2}C(O)O)$, 2.45 – 2.47 (m, 1 H, $CH_{a}H_{b}CH_{2}C(O)O)$, 3.34 (d, J = 9.3 Hz, 1 H, CHPh), 5.14 (ddd, J = 17.0, 1.6, 0.7 Hz, 1 H, CH=CH_aH_b), 5.20 (dd, J = 10.2 Hz, 1.6, 1 H, CH=CH_aH_b), 6.35 (ddd, J = 10.2, 9.3, 17.0 Hz, 1 H, CH=CH₂), 7.22 – 7.26 (m, 2 H, ArCH), 7.28 – 7.33 (m, 3 H, ArCH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ (syn diastereoisomer) 16.8 (CH₂CH₂C(O)O), 25.3 (CH₃), 29.7 (CH₂C(O)O), 30.6 (CH₂C-O), 60.8 (CHPh), 85.4 (CH₂C-O), 118.9 (CH=CH₂), 127.1 (ArCH), 128.5 (ArCH), 129.6 (ArCH), 136.5 (CH=CH₂), 139.8 (ArC), 171.2 (C(O)O); (anti diastereoisomer) 16.6 (CH₂CH₂C(O)O), 25.7 (CH₃), 29.7 (CH₂C(O)O), 30.6 (CH₂C-O), 61.0 (CHPh), 77.4 (CH₂C-O), 118.4 (CH=CH₂), 127.2 (ArCH), 128.7 (ArCH), 129.5 (ArCH), 136.7 (CH=CH₂), 134.0 (ArC), 171.3 (C(O)O) ppm. IR (neat)/ cm⁻¹ 2957, 1726 (C=O), 1453, 1417, 1244, 1131, 1084, 1053, 1001, 919, 765, 703. HRMS calcd for $C_{15}H_{18}O_2K [M + K]^+$ 269.0944, found 269.0948.

*rac-(R)-6-Isopropyl-4,4-dimethyl-6-[(R)-1-phenylallyl]tetrahydro-2H-pyran-2-one anti-*1g

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 3,3-dimethyl-5-oxo-5isopropylpentanoate (21.4 mg, 0.1 mmol) to give the anti isomer of the title compound as a white solid (24.6 mg, 0.086 mmol, 86%). ¹H NMR yield from crude product mixture (92% for *anti*-1g:*syn*-1g, d.r. 98:2; (*anti*-1g+*syn*-1g):1g', 98:2). ¹H NMR (400 MHz, CDCl₃) δ 0.51 (s, 3 H, $C(CH_3)_a(CH_3)_b$), 0.71 (d, J = 16.1 Hz, 1 H, $CH_aH_bC(O)O$)), 0.89 (s, 3 H, $C(CH_3)_a(CH_3)_b)$, 0.95 (d, J = 6.8 Hz, 6 H, $CH(CH_3)_2$), 1.65 – 1.73 (m, 2 H, CH_2C -O), 1.74 – 1.81 (m, 1 H, $CH_aH_bC(O)O$)), 2.31 (spt, J = 6.8 Hz, 1 H, $CH(CH_3)_2$), 3.35 (d, J = 10.0 Hz, 1 H, CHPh), 5.07 (dd, J = 17.1, 1.0 Hz, 1 H, CH=CH_aH_b), 5.13 (dd, J = 10.2, 1.6 Hz, 1 H, $CH=CH_aH_b$, 6.53 (dt, J = 17.1, 10.2 Hz, 1 H, $CH=CH_2$), 7.20 - 7.34 (m, 5 H, ArCH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.5 (C(CH₃)_a(CH₃)_b), 17.8 (C(CH₃)_a(CH₃)_b), 29.8 (C(CH₃)₂), 30.0 (C(CH₃)_a(CH₃)_b), 30.6 (C(CH₃)_a(CH₃)_b), 35.2 (CH₂C-O), 35.9 (CH(CH₃)₂), 42.9 (CH₂C(O)O), 59.9 (CHPh), 88.7 (C-O), 116.7 (CH=CH₂), 127.4 (ArCH), 128.6 (ArCH), 130.3 (ArCH), 137.3 (CH=CH₂), 140.5 (ArC), 172.8 (C(O)O) ppm. IR (neat)/cm⁻¹ 2960, 1732, 1491, 1466, 1421, 1389, 1370, 1352, 1318, 1298, 1257, 1206, 1160, 1136, 1115, 1034, 1007, 970, 915, 787, 762, 709, 622, 610. M.p (CHCl₃) = 84 - 86 °C. HRMS calcd for $C_{19}H_{27}O_2 [M + H]^+ 287.2006$ found 287.2003.

*rac-(R)-6-*Cyclohexyl-4,4-dimethyl-6-[(*R*)-1-phenylallyl]tetrahydro-2*H*-pyran-2-one *anti*-1h

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), $Cp^{DPMS}_2Sm(THF)$ (179 mg, 0.24 mmol) and ethyl 5-cyclohexyl-3,3-dimethyl-5-oxopentanoate (25.4 mg, 0.1 mmol) to give the *anti* isomer of the title compound as a white solid (26.4 mg, 0.081 mmol, 81%). ¹H NMR yield from crude product mixture (86% for *anti*-**1h**:*syn*-**1h**, d.r. 98:2; (*anti*-**1h**+*syn*-**1h**):**1h**', 99:1). ¹H NMR (500 MHz, CDCl₃) δ 0.46 (s, 3 H, C(CH₃)_a(CH₃)_b), 0.70 (d, J = 16.1 Hz, 1 H, CH_aH_bC(O)O), 0.87 (s, 3 H,

C(CH₃)_a(CH₃)_b), 0.97 – 1.26 (m, 5 H, *c*-HexCH₂), 1.62 – 1.69 (m, 2 H, 1 H from *c*-HexCH₂, 1 H from CH_aH_bC-O), 1.69 – 1.82 (m, 6 H, 4 H from *c*-HexCH₂, 1 H from CH_aH_bC-O, 1 H from CH_aH_bC(O)O,), 1.92 (tt, J = 11.7, 2.6 Hz, 1 H, *c*-HexCH(CH₂)), 3.37 (d, J = 10.1 Hz, 1 H, CHPh), 5.03 (dd, J = 17.2, 1.4 Hz, 1 H, CH=CH_aH_b), 5.12 (dd, J = 10.1, 1.6 Hz, 1 H, CH=CH_aH_b), 6.49 (dt, J = 17.1, 10.2 Hz, 1 H, CH=CH₂), 7.16 – 7.33 (m, 5 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 26.3 (*c*-HexCH₂), 26.3 (*c*-HexCH₂), 26.4 (*c*-HexCH₂), 26.5 (*c*-HexCH₂), 27.5 (*c*-HexCH₂), 29.9 (C(CH₃)_a(CH₃)_b), 29.9 (C(CH₃)₂), 30.6 (C(CH₃)_a(CH₃)_b), 36.4 (CH₂C-O), 43.0 (CH₂C(O)O), 46.4 (*c*-HexCH(CH₂)₂), 59.5 (CHPh), 88.3 (*C*-O), 116.6 (CH=CH₂), 127.3 (ArCH), 128.6 (ArCH), 130.4 (ArCH), 137.3 (CH=CH₂), 140.5 (ArC), 172.9 (*C*(O)O). IR (neat)/cm⁻¹ 2927, 2853, 1732 (C=O), 1453, 1369, 1349, 1304, 1254, 1167, 1128, 1034, 1012, 914, 709. M.p (CHCl₃) = 104 – 105 °C. HRMS calcd for C₂₂H₃₁O₂ [M + H]⁺ 327.2319, found 327.2312.

rac-(R)-9-Isopropyl-9-[(R)-1-phenylallyl]-8-oxaspiro[4.5]decan-7-one anti-1i

Prepared according to general procedure E using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), Cp^{DPMS}₂Sm(THF) (179 mg, 0.24 mmol) and ethyl 3,3-tetramethylene-5oxo-5-isopropylpentanoate (24.0 mg, 0.1 mmol) to give the anti isomer of the title compound as a colorless oil (25.0 mg, 0.080 mmol, 80%). ¹H NMR yield from crude product mixture (85% for *anti*-**1i**+*syn*-**1i**, d.r. 99:1, (*anti*-**1i**+*syn*-**1i**):**1i**' 99:1). ¹H NMR (400 MHz, CDCl₃) δ 0.78 - 0.88 (m, 3 H, 2 H from $CH_2CH_2CH_2$, 1 H from $CH_aH_bC(O)O$), 0.93 (d, J = 6.8Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.95 (d, J = 6.8 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.28 - 1.35 (m, 2 H, CH₂CH₂CH₂CH₂CH₂), 1.36 - 1.47 (m, 2 H, CH₂CH₂CH₂CH₂CH₂), 1.47 - 1.62 (m, 2 H, $CH_2CH_2CH_2CH_2$), 1.77 – 1.88 (m, 2 H, CH_2C -O), 1.91 (dd, J = 16.1, 1.0 Hz, 1 H, $CH_aH_bC(O)O)$, 2.31 (spt, J = 6.9 Hz, 1 H, $CH(CH_3)_2$, 3.36 (d, J = 10.0 Hz, 1 H, CHPh), 5.07 $(dd, J = 17.2, 1.1 Hz, 1 H, CH=CH_aH_b), 5.12 (dd, J = 10.2, 1.6 Hz, 1 H, CH=CH_aH_b), 6.51$ (dt, J = 17.1, 10.2 Hz, 1 H, CH=CH₂), 7.20 – 7.31 (m, 5 H, ArCH) ppm; ¹³C NMR (125) MHz, CDCl₃) δ 16.5 (C(CH₃)_a(CH₃)_b), 17.6 (C(CH₃)_a(CH₃)_b), 22.5 (CH₂CH₂CH₂CH₂), 23.2 (CH₂CH₂CH₂CH₂), 34.0 (CH₂C-O), 35.9 (CH(CH₃)₂), 38.9 (CH₂CH₂CH₂CH₂CH₂), 39.8 (CH₂C(O)O), 39.9 (CH₂CH₂CH₂CH₂), 40.9 (CCH₂C(O)O), 59.7 (CHPh), 88.5 (C-O), 116.7 (CH=CH₂), 127.3 (ArCH), 128.6 (ArCH), 130.3 (ArCH), 137.4 (CH=CH₂), 140.5 (ArC), 172.8 (*C*(O)O) ppm; IR (neat)/cm⁻¹ 2956, 2875, 1731, 1453, 1422, 1389, 1353, 1317, 1250, 1056, 1032, 1012, 959, 915, 790, 709. HRMS calcd for $C_{21}H_{29}O_2$ [M + H]⁺ 312.2162, found 313.2159.

rac-(R)-6-Isopropyl-6-[(R,E)-1-phenylbut-2-en-1-yl]tetrahydro-2H-pyran-2-one anti-1j
and rac-(R)-6-Isopropyl-6-[(S,E)-1-phenylbut-2-en-1-yl]tetrahydro-2H-pyran-2-one syn1j

Prepared according to general procedure E using (E)-(3-(benzyloxy)but-1-en-1-yl)benzene(31.0 mg, 0.13 mmol), Cp^{*}₂Sm(THF)₂ (136 mg, 0.24 mmol) and ethyl 5-oxo-5isopropylpentanoate (18.6 mg, 0.1 mmol) to give single *anti* isomer of the title compound as a white solid (16.3 mg, 60%) and mixture of diastereoisomers (2 mg, 0.007 mmol, 7%) in a ratio syn:anti (38:62). ¹H NMR yield from crude product mixture (86% for anti-1j:syn-1j, d.r. 75:25; (*anti*-1j+*syn*-1j):*anti*-1j', 97:3). ¹H NMR (500 MHz, CDCl₃) δ (*anti* diastereoisomer) 0.46 - 0.59 (m, 1 H, $CH_aH_bCH_2C(O)O$), 0.92 (d, J = 7.2 Hz, 3 H, $CH(CH_3)_a(CH_3)_b$), 0.95 (d, J = 7.0 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.32 - 1.41 (m, 1 H, CH_aH_bCH₂C(O)O), 1.61 - 1.67 (m, 1 H, $CH_{a}H_{b}C$ -O), 1.69 (dd, J = 6.5, 1.6 Hz, 3 H, CH=CHCH₃), 1.73 – 1.81 (m, 1 H, CH_aH_bC-O), 1.83 - 1.90 (m, 1 H, $CH_aH_bC(O)O$), 1.99 - 2.08 (m, 1 H, $CH_aH_bC(O)O$), 2.38 (spt, J =6.8 Hz, 1 H, CH(CH₃)₂), 3.36 (d, J = 10.1 Hz, 1 H, CHPh), 5.53 (dq, J = 15.2, 6.4 Hz, 1 H, CH=CHCH₃), 6.08 - 6.16 (m, 1 H, CH=CHCH₃), 7.17 - 7.36 (m, 5 H, ArCH); (syn diastereoisomer) 0.89 (d, J = 6.8 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.92 (d, J = 6.8 Hz, 3 H, $CH(CH_3)_a(CH_3)_b$, 1.31 – 1.42 (m, 1 H, $CH_aH_bCH_2C(O)O$), 1.61 – 1.81 (m, 5 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from CH_aH_bC-O, 3 H from CH=CHCH₃), 1.82 – 1.94 (m, 2 H, 1 H from CH(CH₃)₂, 1 H from CH_aH_bC-O), 1.98 – 2.08 (m, 1 H, CH_aH_bC(O)O), 2.22 – 2.32 (m, 1 H, $CH_aH_bC(O)O$), 3.49 (d, J = 9.0 Hz, 1 H, CHPh), 5.58 – 5.75 (m, 2 H, CH=CH), 7.27 – 7.32 (m, 3 H, ArCH), 7.35 – 7.40 (m, 2 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ (anti diastereoisomer) 16.4 (CH(CH₃)_a(CH₃)_b), 16.7 (CH(CH₃)_a(CH₃)_b), 17.4 (CH₂CH₂C(O)O), 18.1 (CH=CHCH₃), 24.1 (CH₂C-O), 30.0 (CH₂C(O)O), 35.1 (CH(CH₃)₂), 57.8 (CHPh), 89.6 (CH₂C-O), 126.9 (ArCH), 127.7 (CH=CHCH₃), 128.6 (ArCH), 129.4 (ArCH), 129.6 (CH=CHCH₃), 141.1 (ArC), 172.2 (C(O)O); (syn diastereoisomer) 16.6 (CH(CH₃)_a(CH₃)_b), 16.8 (CH(CH₃)_a(CH₃)_b), 18.2 (CH₂CH₂C(O)O), 18.7 (CH=CHCH₃), 25.0 (CH₂C-O), 30.3

(CH₂C(O)O), 35.7 (CH(CH₃)₂), 58.3 (CHPh), 89.5 (CH₂C-O), 126.7 (ArCH), 128.4 (CH=CHCH₃), 128.8 (ArCH), 129.6 (ArCH), 129.8 (CH=CHCH₃), 140.7 (ArC), 172.7 (C(O)O) ppm. IR ν_{max} (thin film)/cm⁻¹ 2963, 2880, 1727, 1495, 1452, 1389, 1341, 1328, 1265, 1249, 1232, 1191, 1115, 1067, 1036, 973, 922, 902, 757, 704. M.p (CHCl₃) = 116 – 118 °C. HRMS calcd for C₁₈H₂₅O₂ [M + H]⁺ 273.1849, found 273.1848.

rac-(*R*)-6-[(*S*)-But-3-en-2-yl]-6-isopropyltetrahydro-2*H*-pyran-2-one *anti*-1k and *rac-*(*R*)-6-[(*R*)-But-3-en-2-yl]-6-isopropyltetrahydro-2*H*-pyran-2-one *syn*-1k

Prepared according to general procedure E using ((but-2-en-1-yloxy)methyl)benzene (21.1 mg, 0.13 mmol), Cp^{*}₂Sm(THF)₂ (136 mg, 0.24 mmol) and ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol) to give title compound (15.1 mg, 0.077 mmol, 77%) as a mixture of diastereoisomers of which the *anti* was the major. ¹H NMR yield from crude product mixture (87% for *anti*-1k:*syn*-1k, d.r; 90:10; (*anti*-1k+*syn*-1k):1l, 96:4). ¹H NMR (500 MHz, CDCl₃) δ (anti diastereoisomer) 0.93 (d, J = 6.9 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.97 (d, J = 6.6 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 1.06 (d, J = 6.9 Hz, 3 H, $CHCH_3$), 1.73 – 1.89 (m, 4 H, 2 H from $CH_2CH_2C(O)O$, 2 H from CH_2C -O), 2.07 (spt, J = 6.8 Hz, 1 H, $CH(CH_3)_2$), 2.35 – 2.40 (m, 2) H, CH₂C(O)O), 2.56 – 2.65 (m, 1 H, CHCH₃), 5.06 – 5.11 (m, 2 H, CH=CH₂), 5.86 – 5.96 (m, 1 H, CH=CH₂); (syn diastereoisomer diagnostic signals) 1.09 (d, J = 6.6 Hz, 1 H, CHCH₃), 2.13 (spt, J = 6.9 Hz, 1 H, CH(CH₃)₂), 5.75 (ddd, J = 17.2, 10.3, 8.8 Hz, 1 H, CH=CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃) δ (anti diastereoisomer) 14.6 (CHCH₃), 16.8 (CH(CH₃)_a(CH₃)_b), 16.9 (CH(CH₃)_a(CH₃)_b), 18.6 (CH₂CH₂C(O)O), 24.4 (CH₂C-O), 30.4 (CH₂C(O)O), 35.9 (CH(CH₃)₂), 45.9 (CHCH₃), 89.4 (CH₂C-O), 116.4 (CH=CH₂), 139.2 (CH=CH₂), 172.5 (C(O)O) ppm. IR (neat)/cm⁻¹ 2967, 1730, 1473, 1422, 1328, 1248, 1197, 1102, 1083, 1067, 1017, 919, 698, 569. HRMS calcd for C₁₂H₂₁O₂ [M + H]⁺ 197.1536, found 197.1536.

rac-6-(But-2-en-1-yl)-6-isopropyltetrahydro-2H-pyran-2-one 11

Prepared according to general procedure E using ((but-2-en-1-yloxy)methyl)benzene (21.1 mg, 0.13 mmol), $Cp^{DPMS}_{2}Sm(THF)$ (179 mg, 0.24 mmol) and ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol) to give title compound (10.0 mg, 0.051 mmol, 51%) as a mixture of E/Z isomers 1:1 and regioisomers **11** and **1k** (86:14). ¹H NMR yield from crude product mixture (63% for **11**; **11:1k**, 82:18). ¹H NMR (500 MHz, CDCl₃) δ ppm 0.93 (d, *J* = 6.9 Hz, 6 H, CH(C*H*₃)₂), 1.64 – 1.69 (m, 4 H, 3 H from CH=CHC*H*₃, 1 H from C*H*_aH_bC-O), 1.70 – 1.88 (m, 3 H, 1 H from CH_aH_bC-O, 2 H from C*H*₂CH=CHCH₃, 1 H from C*H*_aH_bC(O)O), 2.43 – 2.51 (m, 1 H, CH_aH_bC(O)O), 5.38 – 5.47 (m, 1 H, CH₂CH=CHCH₃), 5.47 – 5.56 (m, 1 H, CH₂CH=CHCH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.6 (CH(*C*H₃)_a)(CH₃)_b), 16.7 (*C*H₂CH₂C(O)O), 16.8 (CH(CH₃)_a(*C*H₃)_b), 18.2 (CH=CHCH₃), 26.0 (CH₂C-O), 29.8 (*C*H₂C(O)O), 35.2 (*C*H(CH₃)₂), 39.9 (*C*H₂CH=CHCH₃), 88.3 (CH₂C-O), 125.0 (CH₂CH=CHCH₃), 129.6 (CH₂CH=CHCH₃), 172.0 (*C*(O)O) ppm. IR (neat)/cm⁻¹ 2959, 2925, 1729 (C=O), 1465, 1428, 1371, 1328, 1259, 1191, 1117, 1029, 972, 924, 877, 790, 736, 720, 700. HRMS calcd for C₁₂H₂IO₂ [M + H]⁺ 197.1536, found 197.1536.

rac-6-Isopropyl-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one 1m

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene (28.9 mg, 0.13 mmol), $Cp^*_2Sm(THF)_2$ (136 mg, 0.24 mmol) and ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol) to give the title compound as a colorless oil (21.0 mg, 0.082 mmol, 82%). ¹H NMR yield from crude product mixture (92% for **1m**; **1m**:**1m**', 99:1). ¹H NMR (500 MHz, CDCl₃) δ 0.94 (d, J = 6.9 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.03 (d, J = 6.6 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.81 – 1.90 (m, 2 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from CH_aH_bC-O), 2.02 – 2.14 (m, 2 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from CH_aH_bC-O), 2.16 (spt, J = 6.8 Hz, 1 H, CH(CH₃)₂), 2.38 – 2.46 (m, 1 H, CH_aH_bC(O)O), 2.56 – 2.63 (m, 1 H, CH_aH_bC(O)O), 5.07 (s, 2 H, C=C=CH₂), 7.23 – 7.29 (m, 1 H, ArCH), 7.29 – 7.34 (m, 2 H, 1 H, CH_aCH₂C(O)O)

ArC*H*), 7.40 – 7.45 (m, 2 H, ArC*H*) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 16.6 (CH(*C*H₃)_a(CH₃)_b), 16.7 (*C*H₂CH₂C(O)O), 16.9 (CH(CH₃)_a(*C*H₃)_b), 25.1 (*C*H₂C-O), 29.4 (*C*H₂C(O)O), 35.2 (*C*H(CH₃)₂), 78.0 (C=C=*C*H₂), 88.8 (CH₂C-O), 108.9 (*C*=C=CH₂), 127.5 (ArCH), 128.4 (ArCH), 129.2 (ArCH), 134.4 (ArC), 171.6 (*C*(O)O), 208.5 (C=*C*=CH₂) ppm. IR (neat)/cm⁻¹ 2967, 1943, 1731 (C=O), 1492, 1462, 1444, 1386, 1368, 1328, 1244, 1192, 1158, 1115, 1073, 1026, 988, 925, 850, 762, 699. HRMS calcd for C₁₇H₂₁O₂ [M + H]⁺ 257.1536, found 257.1531.

rac-6-Cyclopropyl-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one 1n

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene $(28.9 \text{ mg}, 0.13 \text{ mmol}), \text{ Cp}^{*}_{2}\text{Sm}(\text{THF})_{2}$ (136 mg, 0.24 mmol) and ethyl 5-oxo-5cyclopropylpropylpentanoate (18.4 mg, 0.1 mmol) dissolved in THF (rather than toluene) to give the title compound as a colorless oil (19.6 mg, 0.077 mmol, 77%). ¹H NMR yield from crude product mixture (90% for 1n; 1n:1n', 99:1). ¹H NMR (500 MHz, CDCl₃) δ 0.42 – 0.56 (m, 3 H, *c*-PrCH₂), 0.63 – 0.71 (m, 1 H, *c*-PrCH₂), 1.15 – 1.23 (m, 1 H, *c*-PrCH(CH₂)₂), 1.74 -1.82 (m, 1 H, CH_aH_bC-O), 1.85 - 1.93 (m, 1 H, CH_aH_bCH₂C(O)O), 1.94 - 2.04 (m, 1 H, $CH_aH_bCH_2C(O)O)$, 2.09 – 2.17 (m, 1 H, $CH_aH_bC-O)$, 2.38 – 2.47 (m, 1 H, $CH_aH_bC(O)O)$, 2.47 - 2.55 (m, 1 H, CH_aH_bC(O)O), 5.03 (d, J = 11.5 Hz, 1 H, C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C=CH_aH_b), 5.06 (d, J = 11.5 Hz, 1 H, C=C=C= 11.5 Hz, 1 H, C=C=CH_aH_b), 7.24 - 7.29 (m, 1 H, ArCH_(o)), 7.29 - 7.34 (m, 2 H, ArCH_(m)), 7.37 - 7.42 (m, 2 H, ArCH_(p)) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 1.3 (c-PrCH₂), 2.4 (c-PrCH₂), 16.5 (CH₂CH₂C(O)O), 20.8 (c-PrCH(CH₂)₂), 29.4 (CH₂C(O)O), 30.9 (CH₂C-O), 78.3 (C=C=CH₂), 83.7 (CH₂C-O), 110.0 (C=C=CH₂), 127.5 (ArCH), 128.2 (ArCH), 129.2 (ArCH), 134.7 (ArC), 171.0 (C(O)O), 207.4 (C=C=CH₂) ppm. IR (neat)/cm⁻¹ 2922, 2854, 1950, 1736 (C=O), 1491, 1459, 1443, 1374, 1327, 1239, 1125, 1080, 1031, 990, 921, 850, 760, 700, 668, 658, 644. HRMS calcd for $C_{17}H_{19}O_2 [M + H]^+ 255.1380$, found 255.1373.

rac-6-Cyclohexyl-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one 10

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene $(28.9 \text{ mg}, 0.13 \text{ mmol}), \text{ Cp}^{*}_{2}\text{Sm}(\text{THF})_{2}$ (136 mg, 0.24 mmol) and ethyl 5-cyclohexyl-5oxopentanoate (22.6 mg, 0.10 mmol) to give single isomer of the title compound as a colorless oil (24.9 mg, 0.084 mmol, 84%). ¹H NMR yield from crude product mixture (93% for 10; 10:10', 99:1). ¹H NMR (500 MHz, CDCl₃) δ 1.01 – 1.27 (m, 5 H, *c*-HexCH₂), 1.62 (br d, J = 5.7 Hz, 1 H, c-HexCH₂), 1.70 - 1.85 (m, 5 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from c-HexCH(CH₂)₂, 3 H from c-HexCH₂), 1.85 – 1.92 (m, 2 H, 1 H from c-HexCH₂, 1 H from CH_aH_bC-O), 1.97 – 2.09 (m, 2 H, 1 H from CH_aH_bCH₂C(O)O, 1 H from CH_aH_bC-O), 2.34 – 2.43 (m, 1 H, $CH_aH_bC(O)O$), 2.52 – 2.59 (m, 1 H, $CH_aH_bC(O)O$), 5.03 (s, 2 H, $C=C=CH_2$), 7.22 – 7.26 (m, 1 H, ArCH), 7.27 – 7.32 (m, 2 H, ArCH), 7.35 – 7.40 (m, 2 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 16.8 (CH₂CH₂C(O)O), 25.8 (CH₂C-O), 26.3 (c-HexCH₂), 26.4 (c-HexCH₂), 26.5 (c-HexCH₂), 26.6 (c-HexCH₂), 27.2 (c-HexCH₂), 29.5 (CH₂C(O)O), 45.4 (*c*-Hex*C*H(CH₂)₂), 78.0 (C=C=*C*H₂), 88.6 (CH₂*C*-O), 108.6 (*C*=C=CH₂), 127.4 (Ar*C*H), 128.4 (ArCH), 129.1 (ArCH), 134.4 (ArC), 171.6 (C(O)O), 208.5 (C=C=CH₂) ppm. IR (neat)/cm⁻¹ 2928, 2852, 1943, 1731 (C=O), 1492, 1445, 1328, 1254, 1234, 1197, 1179, 1077, 1026, 1003, 993, 924, 895, 847, 802, 762, 698, 647. HRMS calcd for $C_{20}H_{25}O_2$ [M + H]⁺ 297.1843, found 297.1849.

rac-6-Methyl-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one 1p

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene (28.9 mg, 0.13 mmol), $Cp^*_2Sm(THF)_2$ (136 mg, 0.24 mmol) and ethyl 5-methyl-5-oxopentanoate (15.8 mg, 0.1 mmol) to give the title compound as a colorless oil (13.4 mg, 0.059 mmol, 59%). ¹H NMR yield from crude product mixture (70% for **1p**; **1p**:1**p**', 99:1). ¹H NMR (500 MHz, CDCl₃) δ 1.53 (s, 3 H, CH₃), 1.69 (ddd, J = 14.1, 9.5, 4.7 Hz, 1 H, CH_aH_bC-O), 1.76 – 1.85 (m, 1 H, CH_aH_bCH₂C(O)O), 1.88 – 1.99 (m, 1 H, CH_aH_bCH₂C(O)O), 2.10 (ddd, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH₂C(O)O), 4.99 (d, J = 14.2, 6.6, 4.7 Hz, 1 H, CH_aH_bC-O), 2.42 (t, J = 7.1 Hz, 2 H, CH_aH_bC-O)

= 11.7 Hz, 1H, C=C=C H_aH_b), 5.01 (d, J = 11.7 Hz, 1H, C=C=C H_aH_b), 7.17 – 7.34 (m, 5 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 16.8 ($CH_2CH_2C(O)O$), 28.1 (CH_3), 29.0 ($CH_2C(O)O$), 32.1 (CH_2C -O), 78.6 (C=C= CH_2), 83.4 (CH_2C -O), 110.3 (C=C= CH_2), 127.5 (ArCH), 128.4 (ArCH), 129.0 (ArCH), 134.4 (ArC), 170.9 (C(O)O), 207.3 (C=C=C H_2) ppm. IR (neat)/cm⁻¹ 2979, 1947, 1731 (C=O), 1447, 1376, 1354, 1327, 1249, 1169, 1113, 1071, 1052, 986, 930, 855, 768, 700. HRMS calcd for C₁₅H₁₇O₂ [M + H]⁺ 229.1223, found 229.1219.

rac-6-Phenyl-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one 1q

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene (14.5 mg, 0.07 mmol), Cp^{*}₂Sm(THF)₂ (68 mg, 0.12 mmol) and ethyl 5-oxo-5-phenylpentanoate (11.0 mg, 0.05 mmol) to give the title compound as a pale-yellow oil (7.0 mg, 0.048 mmol, 48%). ¹H NMR yield from crude product mixture (52% for **1q**: **1q**:**1q**', 99:1). ¹H NMR (500 MHz, CDCl₃) δ ppm 1.66 – 1.79 (m, 1 H, CH_aH_bCH₂C(O)O), 1.95 – 2.05 (m, 1 H, CH_aH_bCH₂C(O)O), 2.12 – 2.21 (m, 1 H, CH_aH_bC-O), 2.43 – 2.52 (m, 1 H, CH_aH_bC-O), 2.52 – 2.66 (m, 2 H, CH₂C(O)O), 5.28 (d, *J* = 12.2 Hz, 1 H, C=C=CH_aH_b), 5.29 (d, *J* = 12.2 Hz, 1 H, C=C=CH_aH_b), 5.29 (d, *J* = 12.2 Hz, 1 H, C=C=CH_aH_b), 7.45 (d, *J* = 7.8 Hz, 2 H, ArCH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 15.5 (CH₂CH₂C(O)O), 28.1 (CH₂C(O)O), 33.0 (CH₂C-O), 78.6 (C=C=CH₂), 85.7 (CH₂C-O), 109.2 (C=C=CH₂), 124.5 (ArCH), 126.2 (ArCH), 126.7 (ArCH), 127.0 (ArCH), 127.5 (ArCH), 127.7 (ArCH), 132.2 (ArC), 141.9 (ArC), 169.9 (C(O)O), 207.4 (C=C=CH₂) ppm. IR (neat)/cm⁻¹ 2922, 1941, 1737, 1493, 1446, 1328, 1238, 1238, 1206, 1182, 1114, 1036, 999, 932, 857, 757, 697. HRMS calcd for C₂₀H₁₈O₂Na [M + Na]⁺ 313.1199, found 313.1193.

*rac-(E)-6-(4-Phenylbut-3-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-*2-one 1r

Prepared according to general procedure E using (3-(benzyloxy)prop-1-yn-1-yl)benzene (23.1 mg, 0.10 mmol), Cp^{*}₂Sm(THF)₂ (109 mg, 0.19 mmol) and ethyl (E)-5-oxo-9phenylnon-8-enoate (21.9 mg, 0.08 mmol) to give title product as a white wax (21 mg, 0.061 mmol, 76%). ¹H NMR yield from crude product mixture (80% for **1r**; **1r**:**1r**', 99:1). ¹H NMR (400 MHz, CDCl₃) δ 1.75 – 1.89 (m, 2 H, CH_aH_bCH₂CH₂C(O)O + CH₂CH_aH_bCH₂C(O)O), 1.94 - 2.09 (m, 3H, CH₂CH_aH_bCH₂C(O)O + CH₂CH₂CH=CHAr), 2.11 - 2.21 (m, 1 H, $CH_aH_bCH_2CH_2C(O)O)$, 2.25 – 2.61 (m, 4 H, $CH_2CH_2CH=CHAr + CH_2CH_2CH_2C(O)O)$, 5.06 (d, J = 12.0 Hz, 1 H, ArC=C=CH_aH_b), 5.09 (d, J = 12.0 Hz, 1 H, ArC=C=CH_aH_b), 6.11 $(dt, J = 15.8, 6.8 Hz, 1 H, CH_2CH_2CH=CHAr), 6.34 (d, J = 15.8 Hz, 1 H, CH_2CH_2CH=CHAr)$ CH₂CH₂CH=CHAr), 7.12 – 7.19 (m, 1 H, ArH), 7.21 – 7.41 (m, 9 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.6 (CH₂CH₂CH₂C(O)O), 27.2 (CH₂CH₂CH=CHAr), 29.1 $(CH_2CH_2CH_2C(O)O),$ 30.2 (*C*H₂CH₂CH₂C(O)O), 39.7 (CH₂CH₂CH=CHAr), 78.6 (ArC=C=CH₂), 85.6 (CO), 108.8 (ArC=C=CH₂), 125.9 (ArCH), 127.0 (ArCH), 127.6 (ArCH), 128.5 (ArCH), 128.5 (ArCH), 128.8 (ArCH), 129.4 (CH₂CH₂CH=CHAr), 130.4 (CH₂CH₂CH=CHAr), 134.2 (ArC), 137.4 (ArC), 171.0 (CH₂CH₂CH₂C(O)O), 208.2 $(ArC=C=CH_2)$ ppm; IR v_{max} (neat/cm⁻¹): 3024, 2953, 1943, 1731 (C=O), 1492, 1447, 1240, 1043; HRMS calcd for C₂₄H₂₄O₂Na [M+Na]⁺: 367.1669, found 367.1658.

One-pot approach to cycloheptanols

rac-Hemiketal 4a

General procedure F. To a solution of $Cp^{DPMS}_2Sm(THF)$ (179 mg, 0.24 mmol) in toluene (0.5 mL), 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol) was added in toluene (0.5 mL) and stirred for 10 min to give a dark green solution which was then added dropwise to a stirred solution of ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol) in THF (0.2 mL) in a Schlenk flask under argon. After 16 h at the room temperature, a mixture of 0.1 M SmI₂

in THF (10 mL, 1.00 mmol) and degassed distilled H₂O (1.8 mL, 100 mmol) was added and the resulting solution was stirred for 4 days. Saturated solution of Rochelle's salt was then added, the mixture was extracted with Et₂O (3×15 mL) and the combined organic layers were washed with brine, dried (MgSO₄) and concentrated in vacuo. The resulting crude product mixture was purified by silica gel column chromatography (hexane/EtOAc, 98:2 to 95:5) to obtain the title product as white crystals (14 mg, 0.053 mmol, 53%), mp (CH₂Cl₂) 92–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.89 (d, J = 7.0 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.94 (d, J = 7.0 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.06 (d, J = 7.0 Hz, 3 H, CHCH₃), 1.46–1.53 (m, 1 H, CH_aH_bCH₂CH₂COH), 1.54–1.64 (m, 1 H, CH_aH_bCH₂CH₂COH), 1.72–1.88 (m, 3 H, $CH_2CH_aH_bCH_2COH + CH_2CH_2COH)$, 1.93 (hept, J = 7.0 Hz, 1 H, $CH(CH_3)_2$), 1.98-2.14 (m, 1 H, CH₂CH_aH_bCH₂COH), 2.50 (quint, J = 7.0 Hz, 1 H, CHCH₃), 2.63 (s, 1 H, OH), 2.92 (d, J = 7.0 Hz, 1 H, CHPh), 7.21–7.27 (m, 1 H, ArH), 7.29–7.39 (m, 4 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.0 (CHCH₃), 17.6 (CH(CH₃)_a(CH₃)_b), 17.7 (CH(CH₃)_a(CH₃)_b), 19.0 (CH₂CH₂CH₂COH), 25.6 (CH₂CH₂CH₂COH), 35.8 (CH(CH₃)₂), 35.9 (CH₂CH₂CH₂COH), 44.7 (CHCH₃), 60.2 (CHPh), 86.0 (*i*-PrCO), 102.3 (OCOH), 126.5 (ArCH), 128.5 (ArCH), 128.6 (ArCH), 140.1 (ArC) ppm; IR v_{max} (neat/cm⁻¹): 3400, 2961, 2879, 1732, 1465, 1228, 1036, 953; HRMS calcd for C₁₇H₂₄O₂Na [M+Na]⁺: 283.1669, found 283.1667.

rac-Hemiketal 4b

Prepared according to general procedure F using 1-[(cinnamyl-oxy)methyl]benzene (29.2 mg, 0.13 mmol), $Cp^{DPMS}_2Sm(THF)$ (179 mg, 0.24 mmol) and ethyl 5-cyclohexyl-5-oxopentanoate (22.6 mg, 0.1 mmol), followed by 0.1 M SmI₂ in THF (10 mL, 1.00 mmol) and H₂O (1.8 mL, 100 mmol). The resulting crude product mixture was purified by silica gel column chromatography (hexane/EtOAc, 99:1 to 95:5) to give the title product as a colourless oil (14 mg, 0.047 mmol, 47%). ¹H NMR (400 MHz, CDCl₃) δ 0.99–1.29 (m, 8 H, CHCH₃ + *c*-HexCH_aH_b × 5), 1.50–1.88 (m, 11 H, CH₂CH_aH_bCH₂COH + CH₂CH₂CH₂COH + *c*-HexCH_aH_b × 5 + CH₂CH₂CH₂COH + *c*-HexCH), 1.96–2.12 (m, 1 H, CH₂CH_aH_bCH₂COH), 2.45 (quint, *J* = 7.6 Hz, 1 H, CHCH₃), 2.63 (s, 1 H, OH), 2.93 (d, *J* = 7.6, 1 H, CHPh),

7.22–7.27 (m, 1 H, Ar*H*), 7.29–7.37 (m, 4 H, Ar*H*) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.0 (CHCH₃), 19.1 (CH₂CH₂CH₂COH), 26.1 (CH₂CH₂CH₂COH), 26.5 (*c*-Hex*C*H₂), 26.8 (*c*-Hex*C*H₂), 26.9 (*c*-Hex*C*H₂), 27.4 (*c*-Hex*C*H₂), 27.6 (*c*-Hex*C*H₂), 36.0 (CH₂CH₂CH₂COH), 44.9 (CHCH₃), 46.7 (*c*-Hex*C*H), 60.4 (CHPh), 85.9 (*c*-Hex*C*O), 102.3 (OCOH), 126.5 (Ar*C*H), 128.5 (Ar*C*H), 128.6 (Ar*C*H), 140.3 (Ar*C*) ppm; IR ν_{max} (thin film/cm⁻¹): 3395, 2925, 2851, 1451, 1227; HRMS calcd for C₂₀H₂₈O₂Na [M+Na]⁺: 323.1982, found 323.1979.

rac-Diol 4c

Prepared according to general procedure F using (3-(benzyloxy)prop-1-yn-1-yl)benzene (28.9 mg, 0.13 mmol), Cp^{*}₂Sm(THF)₂ (136 mg, 0.24 mmol) and ethyl 5-oxo-5-isopropylpentanoate (18.6 mg, 0.1 mmol), followed by 0.1 M SmI₂ in THF (10 mL, 1.00 mmol) and H₂O (9.0 mL, 500 mmol). The resulting crude product mixture was purified by silica gel column chromatography (hexane/EtOAc, 99:1 to 80:20) to give the title product as a colourless oil (19 mg, 0.072 mmol, 72%). ¹H NMR (400 MHz, CDCl₃) δ 0.68 (d, J = 6.4 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 0.87 (d, J = 7.2 Hz, 3 H, $CH(CH_3)_a(CH_3)_b)$, 1.19 (d, J = 7.2 Hz, 3 H, CHCH₃), 1.64–1.90 (m, 4 H, $CH(CH_3)_2 + CH_2CH_2CH_aH_bCHOH + CH_2CH_2CH_2CHOH$), 1.99–2.09 (m, 1 H, CH_aH_bCH₂CH₂CHOH), 2.15–2.25 (m, 1 H, CH_aH_bCH₂CH₂CHOH), 2.39–2.50 (m, 1 H, CH₂CH₂CH₂CH_aH_bCHOH), 2.81–2.91 (m, 2 H, CHPh + CHCH₃), 3.76 (td, J = 8.8, 4.3 Hz, 1 H, CHOH), 7.25 (t, J = 7.4 Hz, 1 H, ArH), 7.33 (t, J = 7.4 Hz, 2 H, ArH), 7.43 (d, J = 7.4 Hz, 2 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 16.5 (CH(CH₃)_a(CH₃)_b), 17.1 (CH(CH₃)_a(CH₃)_b), 19.2 (CH₂CH₂CH₂CHOH), 19.6 (CHCH₃), 34.7 (CH(CH₃)₂), 35.2 (CHCH₃), 36.6 (CH₂CH₂CH₂CHOH), 40.9 (CH₂CH₂CH₂CHOH), 58.9 (CHPh), 75.6 (CHOH), 76.7 (*i*-PrCOH), 126.6 (ArCH), 128.4 (ArCH), 130.7 (ArCH), 139.9 (ArC) ppm; IR v_{max} (thin film/cm⁻¹): 3563, 3457, 2934, 2871, 1452, 964; HRMS calcd for C₁₇H₂₆O₂Na [M+Na]⁺: 285.1825, found 285.1816.

rac-Diol 4d

Prepared according to general procedure F using (3-(benzyloxy)prop-1-yn-1-yl)benzene (28.9 mg, 0.13 mmol), Cp^{*}₂Sm(THF)₂ (136 mg, 0.24 mmol) and ethyl 5-cyclohexyl-5oxopentanoate (22.6 mg, 0.10 mmol), followed by 0.1 M SmI₂ in THF (10 mL, 1.00 mmol) and H₂O (9.0 mL, 500 mmol). The resulting crude product mixture was purified by silica gel column chromatography (hexane/EtOAc, 99:1 to 80:20) to give the title product as a pale solid (21 mg, 0.068 mmol, 68%), mp (CH₂Cl₂) 47–50 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.67-0.81 (m, 1H, *c*-HexCH_aH_b), 0.87-1.10 (m, 4 H, *c*-HexCH_aH_b × 4), 1.19 (d, J = 7.2 Hz, 3 H, CH₃), 1.24–1.34 (m, 1 H, CH-c-Hex), 1.45–1.60 (m, 3 H, c-HexCH_aH_b \times 3), 1.64–1.89 (m, 5 H, CH₂CH₂CH₂CHOH + c-HexCH_a $H_b \times 2$ + CH₂CH₂CH_a H_b CHOH), 1.96–2.06 (m, 1 H, CH_aH_bCH₂CH₂CHOH), 2.17–2.26 (m, 1 H, CH_aH_bCH₂CH₂CHOH), 2.38–2.48 (m, 1 H, CH₂CH₂CH_a*H*_bCHOH), 2.79–2.91 (m, 2 H, C*H*Ph + C*H*CH₃), 3.75 (td, *J* = 8.8, 4.1 Hz, 1 H, CHOH), 7.24 (t, J = 7.6 Hz, 1 H, ArH), 7.32 (t, J = 7.6 Hz, 2 H, ArH), 7.41 (d, J = 7.6 Hz, 2 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 19.2 (CH₂CH₂CH₂CHOH), 19.5 (CH₃), 25.9 (c-HexCH₂), 26.1 (c-HexCH₂), 26.4 (c-HexCH₂), 26.4 (c-HexCH₂), 26.7 (c-HexCH₂), 35.3 (CHCH₃), 36.6 (CH₂CH₂CH₂CHOH), 40.6 (CH₂CH₂CH₂CHOH), 44.8 (c-HexCH), 58.4 (CHPh), 75.7 (CHOH), 76.9 (c-HexCOH), 126.6 (ArCH), 128.4 (ArCH), 130.7 (ArCH), 139.9 (ArC) ppm; IR v_{max} (neat/cm⁻¹): 3445, 2924, 2850, 1450, 965; HRMS calcd for C₂₀H₃₀O₂Na [M+Na]⁺: 325.2138, found 325.2124.

rac-Diol 4e

Prepared according to general procedure F using (3-(benzyloxy)prop-1-yn-1-yl)benzene (43.4 mg, 0.19 mmol), $Cp^*_2Sm(THF)_2$ (204 mg, 0.36 mmol) and **3j** (41.1 mg, 0.15 mmol), followed by 0.1 M SmI₂ in THF (15 mL, 1.50 mmol) and H₂O (13.5 mL, 750 mmol) to give the title product as a colourless oil (16 mg, 45.6×10^{-3} mmol, 30%). ¹H NMR (400 MHz, CDCl₃) δ 1.23–1.39 (m, 4 H, CHCH₃ + CH_aH_bCH₂CH=CHAr), 1.45 (bs, 1 H, OH), 1.52 –

1.89 (m, 5 H, CH₂CH₂CH₂CHOH + CH₂CH₂CH_aH_bCHOH + CH_aH_bCH₂CH₂CH₂CHOH + CH_aH_bCH₂CH=CHAr), 2.02 – 2.31 (m, 4H, CH₂CH₂CH=CHAr + CH₂CH₂CH₂CH_aH_bCHOH + CH_aH_bCH₂CH=CHAr), 2.40 – 2.51 (m, 1 H, CHCH₃), 3.01 (s, 1 H, CHAr), 3.83 – 3.95 (m, 1 H, CH₂CH₂CH₂CH₂CHOH), 6.08 (dt, J = 15.8, 6.8 Hz, 1 H, CH₂CH₂CH=CHAr), 6.30 (d, J = 15.8 Hz, 1 H, CH₂CH₂CH=CHAr), 6.08 (dt, J = 15.8, 6.8 Hz, 1 H, CH₂CH₂CH=CHAr), 6.30 (d, J = 15.8 Hz, 1 H, CH₂CH₂CH=CHAr), 7.14 – 7.22 (m, 1 H, ArH), 7.23 – 7.41 (m, 9 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 13.3 (CHCH₃), 18.5 (CH₂CH₂CH₂CHOH), 26.7 (CH₂CH₂CH=CHAr), 34.5 (CH₂CH₂CH₂CHOH), 39.8 (CH₂CH₂CH₂CHOH), 40.4 (CH₂CH₂CH=CHAr), 41.6 (CHCH₃), 56.3 (CHAr), 76.0 (COH), 77.0 (CH₂CH₂CH₂CHOH), 125.8 (ArCH), 126.6 (ArCH), 126.9 (ArCH), 128.4 (ArCH), 128.4 (ArCH), 129.7 (ArCH), 129.8 (CH₂CH₂CH=CHAr), 131.0 (CH₂CH₂CH=CHAr), 137.6 (ArC), 143.0 (ArC) ppm; IR v_{max} (neat/cm⁻¹): 3413 (O-H), 3024, 2932, 2861, 1598, 1493, 1447, 1295, 1034; HRMS calcd for C₂₄H₃₀O₂Na [M+Na]⁺: 373.2138, found 373.2138.

Oxidation of allene cyclisation product

rac-Hemiketal 4c'

Dess-Martin periodinane (39 mg, 0.092 mmol) was added in one portion to a solution of diol **4c** (16 mg, 0.061 mmol) in CH₂Cl₂ (0.9 mL) at 0 °C and the resulting mixture was stirred allowing it to slowly warm up to room temperature. After 3 h the reaction was quenched with a mixture of saturated aqueous solutions Na₂S₂O₃/NaHCO₃ (1:1.5 mL). Layers were separated and the aqueous fraction was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were dried (MgSO₄) and concentrated under vacuum. The resulting crude mixture was purified by silica gel column chromatography (hexane/EtOAc, 90:10 to 80:20) to obtain the title product as a pale solid (12 mg, 0.046, 76%), mp (CH₂Cl₂) 98–100 °C. ¹H NMR (500 MHz, CDCl₃) δ 0.75 (d, *J* = 8.0 Hz, 3 H, CH(CH₃), 0.77 (d, *J* = 7.0 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 0.88 (d, *J* = 7.0 Hz, 3 H, CH(CH₃)_a(CH₃)_b), 1.63–1.74 (m, 2 H, CH₂CH₂CH_aH_bCOH + CH_aH_bCH₂CH₂COH), 1.86–2.02 (m, 4 H, CH₂CH_aH_bCH₂COH + CH_aH_bCH₂CH₂CH₂COH + CH(CH₃)₂), 2.04–2.19 (m, 1 H, CH₂CH_aH_bCH₂COH), 2.47–2.56 (m, 1 H, CHCH₃), 3.69 (d, *J* = 13.5 Hz, 1 H, CHPh),

7.19–7.25 (m, 3 H, Ar*H*), 7.27–7.31 (m, 2 H, Ar*H*) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 11.3 (CH*C*H₃), 17.4 (CH(*C*H₃)_a(CH₃)_b), 18.4 (CH(CH₃)_a(*C*H₃)_b), 19.2 (CH₂CH₂CH₂CH₂COH), 25.7 (*C*H₂CH₂CH₂COH), 31.5 (CH₂CH₂CH₂COH), 38.9 (*C*H(CH₃)₂), 46.8 (*C*HCH₃), 54.4 (CHPh), 88.5 (*i*-PrCO), 104.8 (OCOH), 126.2 (Ar*C*H), 128.3 (Ar*C*H), 130.2 (Ar*C*H), 139.6 (Ar*C*) ppm; IR v_{max} (neat/cm⁻¹): 3358, 3261, 2958, 2873, 1732, 1453, 1366, 1356, 940; HRMS calcd for C₁₇H₂₄O₂Na [M+Na]⁺: 283.1669, found 283.1656.

X-Ray structure of anti-1a

X-Ray structure of 4a

X-Ray structure of 5b

X-Ray structure of 5c

X-Ray structure of 5e

X-Ray structure of 5f

CCDC = 1472305

Crystallographic method

The crystal data for compounds anti-1a, 4a, 5b, 5c, 5e and 5f are compiled in Tables S2 and S3; relevant bond lengths and angles are listed in Table S1. Crystals were examined using Supernova Agilent (anti-1a, 4a, 5b, 5c, 5e) and Xcalibur Oxford Diffraction (5f) diffractometers, both equipped with CCD area detector and mirror-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). Intensities were integrated from data recorded on 1° frames by ω rotation. Cell parameters were refined from the observed positions of all strong reflections in each data set. A Gaussian grid face-indexed (4a, 5b, 5c), analytical (5f) or multi-scan (anti-**1a**, **5e**) absorption correction with a beam profile correction was applied.¹ The structures were solved variously by direct and heavy atom methods using SHELXS^{2a} or SIR2004,³ and were refined by full-matrix least-squares on all unique F^2 values,^{2b} with anisotropic displacement parameters for all non-hydrogen atoms, and with constrained riding hydrogen geometries; $U_{iso}(H)$ was set at 1.2 (1.5 for methyl groups) times U_{eq} of the parent atom. The largest features in final difference syntheses were close to heavy atoms and were of no chemical significance. CrysAlis^{Pro} was used for control and integration;¹ SHELX² and SIR2004³ were employed through OLEX2⁴ for structure solution and refinement. ORTEP-3⁵ and POV-Ray⁶ were employed for molecular graphics. CCDC (anti-1a, 4a, 5b, 5c, 5e, 5f) contain the supplementary crystal data for this article. These data can be obtained free of charge Cambridge Crystallographic Centre from the Data via www.ccdc.cam.ac.uk/data request/cif.

- 1. CrysAlis^{Pro}, Agilent Technologies: Yarnton, England, 2010.
- a) G. M. Sheldrick, *Acta Cryst., Sect. A*, 2008, 64, 112–122; b) G. M. Sheldrick, *Acta Cryst., Sect. C.*, 2015, 71, 3–8;
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro,
 C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Cryst.*, 2007, 40, 609–613.

- 4. Olex2: O. V., Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K.Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339–341.
- 5. L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- 6. POV-Ray, Pesistence of Vision Raytracer Pty. Ltd.: Williamstown, Australia, 2004.

	5b	5c	5e	5f
M–Cent _{Cp}	2.5347(14)	2.5737(2)	2.5178(2)	2.561(2)
		2.5810(2)		2.5955(5)
M–O	2.470(7)	2.566(3)	2.78(3)	2.574(9)
				2.564(10)
Ср–М–Ср	137.24(2)	144.979(8)	135.294(2)	124.52(2)

Table S1: Selected bond lengths (Å) and angles (°) for 5b, 5c, 5e, 5f

	5b	5c	5e	5f		
Formula	C ₂₇ H ₅₁ OSi ₄ Sm	$C_{32}H_{66}OSi_6Sm$	$C_{44}H_{50}O_2Si_2Sm$	$C_{54}H_{54}O_2Si_2Sm$		
Fw	654.39	785.73	817.37	941.50		
cryst size, mm	0.05 x 0.20 x 0.37	0.08 x 0.13 x 0.23	0.10 x 0.10 x 0.17	0.16 x 0.23 x 0.41		
crystal syst	orthorhombic	monoclinic	tetragonal	monoclinic		
space group	$Cmc2_1$	P21/n	<i>I</i> -4	Сс		
<i>a,</i> Å	11.6326(6)	11.2870(3)	13.1871(2)	17.1230(6)		
b, Å	13.7770(7)	22.3415(7)	13.1871(2)	9.6421(3)		
<i>c</i> , Å	21.1559(14)	16.9210(5)	11.4268(4)	27.6291(11)		
α, °	90	90	90	90		
β, °	90	97.974(3)	90	99.283(4)		
γ, °	90	90	90	90		
V, Å ³	3390.5(3)	4225.7(2)	1987.12(9)	4501.9(3)		
Z	4	4	2	4		
$ ho_{ m calcd},{ m g}{ m cm}^3$	1.282	1.235	1.366	1.389		
µ, mm⁻¹	1.889	1.581	1.572	1.398		
F(000)	1356	11648	840	1936		
no. of reflections (unique)	6444(2876)	17017(7723)	7156(1808)	8182(31392)		
Sa	1.06	1.04	1.10	1.08		
$R_1(wR_2) \ (F^2 > 2\sigma(F^2))$	0.0530(0.1050)	0.0438(0.0918)	0.0729(0.1842)	0.0624(0.1586)		
Rint	0.058	0.039	0.049	0.123		
min., max. diff map, e Å ⁻³	-0.67, 1.40	-0.51, 1.20	-1.42, 1.74	-1.48, 1.98		
^a Conventional $R = \Sigma F_0 - F_c /\Sigma F_0 $; $R_w = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$; $S = [\Sigma w (F_0^2 - F_c^2)^2 / \text{no. data - no. params})^{1/2}$ for all data.						

Table S2: Crystallographic data for 5b, 5c, 5e, 5f

	anti -1a	4a				
Formula	C ₁₇ H ₂₂ O ₂	C ₁₇ H ₂₄ O ₂				
Fw	258.34	260.36				
cryst size, mm	0.05 x 0.07 x 0.30	0.28 x 0.31 x 0.52				
crystal syst	triclinic	monoclinic				
space group	<i>P</i> -1	P21/n				
<i>a,</i> Å	8.9679(13)	12.7728(5)				
b, Å	11.9038(16)	8.2427(3)				
<i>c</i> , Å	14.801(2)	14.1842(6)				
<i>α</i> , °	91.758(11)	90				
β, °	94.311(12)	103.024(4)				
γ, °	110.931(13)	90				
<i>V</i> , Å ³	1468.8(4)	1454.93(10)				
Z	4	4				
$ ho_{ m calcd}$, g cm 3	1.168	1.189				
μ , mm ⁻¹	0.075	0.076				
F(000)	560	568				
no. of reflections (unique)	9199(5365)	9115(2658)				
Sª	1.03	1.04				
$R_1(wR_2) (F^2 > 2\sigma(F^2))$	0.0816(0.2048)	0.0473(0.1220)				
Rint	0.060	0.037				
min., max. diff map, e Å ⁻³	-0.24, 0.38	-0.20, 0.21				
^a Conventional $R = \Sigma F_0 - F_c / \Sigma F_0 $; $R_w = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$; $S =$						

Table S3: Crystallographic data for anti-1a and 4a

 $[\Sigma w(F_0^2 - F_c^2)^2/\text{no. data} - \text{no. params})]^{1/2}$ for all data.

References

- 1 D. F. Evans, J. Chem. Soc. 1959, 2003.
- 2 D. H. Grant, J. Chem. Educ. 1995, 72, 39.
- 3 S. K. Sur, J. Magn. Reson. 1989, 82, 169.
- 4 Y. Landais and L. Parra-Rapado, *European J. Org. Chem.* 2000, **2000**, 401.
- 5 K. Yoshihisa, K. Koji and N. Masatoshi, 1994, US5360921 (A).
- 6 P. L. Watson, J. F. Whitney and R. L. Harlow, *Inorg. Chem.* 1981, **20**, 3271.
- 7 M. J. Harvey, T. P. Hanusa and M. Pink, J. Chem. Soc. Dalt. Trans. 2001, 2, 1128.
- 8 E. J. Palmer, R. J. Strittmatter, K. T. Thornley, J. C. Gallucci and B. E. Bursten, *Polyhedron* 2013, **58**, 120.
- 9 W. J. Evans, J. W. Grate, H. W. Choi, I. Bloom, W. E. Hunter and J. L. Atwood, J. *Am. Chem. Soc.* 1985, **107**, 941.
- 10 W. J. Evans, R. a Keyer and J. W. Ziller, J. Organomet. Chem. 1990, **394**, 87.
- 11 J. Collin, J. L. Namy, C. Bied and H. B. Kagan, *Inorganica Chim. Acta* 1987, **140**, 29.
- 12 H. Sajiki and K. Hirota, *Tetrahedron* 1998, **54**, 13981.
- 13 Y. Xie, M. Yu and Y. Zhang, *Synthesis* 2011, 2803.
- A. M. Al-Etaibi, N. a. Al-Awadi, M. R. Ibrahim and Y. a. Ibrahim, *Molecules* 2010, 15, 407.
- X. Huo, M. Quan, G. Yang, X. Zhao, D. Liu, Y. Liu and W. Zhang, Org. Lett. 2014, 16, 1570.
- 16 D. Guijarro, Ó. Pablo and M. Yus, J. Org. Chem. 2013, 78, 3647.
- 17 D. Parmar, H. Matsubara, K. Price, M. Spain and D. J. Procter, J. Am. Chem. Soc. 2012, **134**, 12751.
- 18 X. Yang, K. Wang, S. Zhu, J. Xie and Q. Zhou, J. Am. Chem. Soc., 2014, 136, 17426.
- 19 D. V Gribkov, K. C. Hultzsch and F. Hampel, J. Am. Chem. Soc. 2006, **128**, 3748.
- Despite repeated attempts, satisfactory carbon values in elemental analysis could not be obtained for S1, S2, 5c, 5e, 5f, which is a common occurrence for silicon-rich complexes: a) P. B. Hitchcock, M. F. Lappert, L. Maron, A. V. Protchenko, *Angew. Chem. Int. Ed.* 2008, 47, 1488.; b) C. A. P. Goodwin, F. Tuna, E. J. L. McInnes, S. T. Liddle, J. McMaster, I. J. Vitorica-Yrezabal, D. P. Mills, *Chem. Eur. J.* 2014, 20, 14579.; c) C. A. P. Goodwin, A. Smith, F. Ortu, I. J. Vitorica-Yrezabal, D. P. Mills, *Dalton Trans.* 2015, 6004.

400 MHz, C₆D₆

400 MHz, C₆D₆

1H.1r

Ph-Si, Ph

Ph-Ph Ph'Si∕

1H.1r

500 MHz, CDCl₃

500 MHz, CDCl₃

400 MHz, CDCl₃

Relative stereochemistry elucidation of 4c by NOE in CD₃OD (500 MHz)

