Electronic Supplementary Information

Heteropentanuclear metal string complex $[Mo_2NiMo_2(tpda)_4(NCS)_2]$ with two linearly aligned quadruply bonded Mo_2 units connected by a Ni ion and a meso configuration of the complex

Wei-Chieh Hung, Marc Sigrist, Shao-An Hua, Lai-Chin Wu, Tsai-Jung Liu, Bih-Yaw Jin, Gene-Hsiang Lee, Shie-Ming Peng*

X-ray Structure Determinations:

For compound 1, crystallographic data were collected on a NONIUS Kappa CCD diffractometer using graphite-monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). Cell parameters were retrieved and refined using DENZO-SMN software on all observed reflections. Data reduction was performed with the DENZO-SMN software. An empirical absorption was based on the symmetry-equivalent reflection and absorption corrections were applied with the SORTAV program. The structures were solved and refined with SHELX programs. There are also some difficulties in the refinement of anion and solvent molecule. The hydrogen atoms were included in calculated positions and refined using a riding mode.

Fig. S1 Molar magnetic susceptibility χ_M (\circ) and effective magnetic moment (μ_{eff}) (\bullet) for [Mo₂NiMo₂(tpda)₄(NCS)₂] (1).

X-ray absorption Experiment section

Soft X-ray absorption $L_{2,3}$ edge measurement was carried out at beamline BL20A1, NSRRC. Ni(SO₄)·6H₂O, Ni(acac)₂(H₂O)₂ and K₂[Ni(CN)₄] were used as Ni(II) standards. A series of Ni-contained EMAC compounds, Ni₃(dpa)₄Cl₂, MnNiMn(dpa)₄Cl₂, NiPdNi(dpa)₄Cl₂ and Mo₂NiMo₂(tpda)₄(NCS)₂ were chosen for comparison. All spectra were measured in X-ray total electron yield mode in an ultrahigh-vacuum chamber. The energy scan was performed using a high-energy spherical grating monochromator in "FLY" scan mode with an energy resolution of 0.01 eV. Five scans for each standard and 25 scans for each EMAC compound were measured and averaged, Each spectrum was recorded for 40 seconds. Energy calibration was carried out according to Ni oxide (870.3 and 853.2 eV for L₂ and L₃ absorption edge).

The HS compounds NiSO₄·6H₂O, Ni(acac)₂(H₂O)₂ and the LS compound K₂[Ni(CN)₄] have been measured as standards for comparison. The L₃ (2p_{3/2}) absorption peaks for NiSO₄·6H₂O and Ni(acac)₂(H₂O)₂ are located at 852.898 eV and 853.516 eV respectively, while the L₃ peak of K₂[Ni(CN)₄] is shifted ~ 2.5 eV to a higher energy of 855.322 eV. The L₂ (2p_{1/2}) peaks of the two HS compounds are broadened in comparison to the shaper L₂ peak, of K₂[Ni(CN)₄].

Fig. S2 X-ray absorption $L_{2,3}$ -edge of Ni(II) standards and Mo₂NiMo₂(tpda)₄(NCS)₂ (1).

	L ₃	L_2	Branch ratio	Spin state
	Area	Area	$L_3/(L_3+L_2)$	
$K_2[Ni(CN)_4]$	11.115	5.763	0.659	LS
NiSO ₄ ·6H ₂ O	19.404	6.436	0.751	HS
$Ni(acac)_{2}(H_2O_{)2}$	20.579	7.433	0.735	HS
MnNiMn(dpa) ₄ Cl ₂	9.753	4.979	0.662	LS
NiPdNi(dpa) ₄ Cl ₂	13.585	4.658	0.745	HS
$Ni_3(dpa)_4Cl_2$	11.180	4.446	0.715	LS,HS
Mo ₂ NiMo ₂ (tpda) ₄ (NCS) ₂	10.516	3.800	0.735	HS
0.80 0.75 0.70		 K₂ Nis Ni(Mn NiF Ni, Mo 	$ \begin{array}{c c} & K_2Ni(CN)_4 \\ \bullet & NiSO_4 \cdot 6H_2O \\ \bullet & Ni(acac)_2(H_2O)_2 \\ \hline & MnNiMn(dpa)_4Cl_2 \\ \bullet & NiPdNi(dpa)_4Cl_2 \\ \bullet & Ni_3(dpa)_4Cl_2 \\ \bullet & Mo_2NiMo_2(tpda)_4(NCS)_2 \end{array} $	

Table. S1 The integration area of $L_{2,3}$ absorption peak and branch ration of Nicomplexes.

Fig. S3 The correlation diagram of L_3 absorption centroids vs. branch ratio of $[L_3/(L_2+L_3)]$.