Electronic Supplementary Information

For

Hierarchical Construction of SHG-active Polar Crystals by Using

Multi-component

Tetsuya Miyano, Tatsuya Sakai, Ichiro Hisaki, Hideki Ichida, Yasuo Kanematsu, and Norimitsu Tohnai*

Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

E-mail: tohnai@mls.eng.osaka-u.ac.jp
Fax: (+81) 668797404

Experimental section

Preparation of 4-aminoazobenzene-4-sulfonic acid (AAS): Sodium (E)-4-((4-aminophenyl)diazenyl) benzenesulfonate $(0.898 \mathrm{~g}, 3.00 \mathrm{mmol})$ was dissolved into water and 0.5 M aqueous solution of HCl was added to yield precipitates. The precipitates were dried in vaco to yield AAS $(0.730 \mathrm{~g}, 2.63 \mathrm{mmol}, 88 \%)$ as a pale orange powder.

Preparation of salt 1 and salt 2: AAS and (R)-1-(4-Chlorophenyl) ethylamine or (R)-1-Phenylethylamine were mixed in methanol in a 1:1 molar ratio. The solution was evaporated to yield orange powder of the crude salt.

Preparation of single crystals: AAS single crystals were prepared by recrystallization from water. The crude salts 1 and 2 were dissolved in methanol and then various guest solvents were added to the solution. Slow evaporation of the solvent gave each single crystals.

Crystallographic analysis of single crystals: X-ray diffraction data except for AAS crystal were collected on a Rigaku R-AXIS RAPID diffractometer with a 2D area detector by using graphite-monochromatized $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). Diffraction data of AAS crystal collected on a two-dimensional X-ray detector (PILATUS $200 \mathrm{~K} /$ R) equipped in Rigaku XtaLAB PRO diffractometer using thin multi-layer mirror monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54187 \AA$). The cell refinements were performed with a software CrysAlisPro 1.171.39.5a. ${ }^{\text {S1 }} \mathrm{A}$ direct method of SHELXT ${ }^{\mathrm{S} 2}$ was used for the structure solution of the crystals. All calculations were performed with the observed reflections [I>2 $>(\mathrm{I})]$ with the program CrystalStructure crystallographic software packages ${ }^{53}$, except for refinement which was performed by SHELXL ${ }^{\text {S4 }}$. All non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were placed in idealized positions and refined as rigid atoms with the relative isotropic displacement parameters.

Powder SHG measurement: The powder SHG measured by the Kurtz-Perry method. ${ }^{\text {S5 }}$ The samples were placed in a quartz cell and measured SHG signals at $1.4,1.5,1.6 \mu \mathrm{~m}$ by using an optical parametric amplifier and a Nd: YAG solid-state laser ($1064 \mathrm{~nm}, 1 \mathrm{kHz}$). We measured the intensity of the frequency-doubled output emitted from the sample using a photomultiplier tube. The second harmonic efficiency of the sample was compared to that of a standard powder sample of Urea.

S1. Rigaku Oxford Diffraction (2015), Software CrysAlisPro 1.171.39.5a Rigaku Corporation, Tokyo, Japan.

S2. SHELXT Version 2014/5. Sheldrick, G. M. Acta Cryst. 2014. A70, C1437.
S3. Rigaku (2015). CrystalStructure. Versions 4.2. Rigaku Corporation, Tokyo, Japan.
S4. SHELXL Version 2014/7. Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.
S5. Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798-3792.

Table S1. X-ray crystallographic parameters for the crystals.

crystal	AAS	$\mathbf{1}-\mathrm{GF}$	1-dMSO
Formula	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}\right.$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClN}\right.$
$F w$	$\mathrm{~N})$	$) \cdot\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)$	
Crystal system	432.92	432.92	511.05
Space group	Triclinic	Monoclinic	Monoclinic
Temperature (K)	$P-1$	$P 2_{1}$	$P 2_{1}$
$a(\AA)$	213	213	213
$b(\AA)$	$5.8245(3)$	$7.3493(2)$	$5.99452(11)$
$c(\AA)$	$7.5038(4)$	$6.04446(19)$	$23.7139(4)$
α	$13.8162(4)$	$23.3114(6)$	$9.33438(17)$
β	$94.785(3)$	90	90
γ	$94.970(3)$	$94.6950(17)$	$108.5280(11)$
$V\left(\AA \AA^{3}\right)$	$95.755(4)$	90	90
Z	$595.96(5)$	$1032.07(5)$	$1258.14(4)$
reflections	2	2	2
observed	5827	11000	12525
reflections			
unique	2411	3640	4386
$R 1[I>2.0 \sigma(I)]$	0.0560	0.0724	0.0789
$R w($ all data $)$	0.1506	0.1559	0.1667
CCDC no.	1504254	1504262	1504257

Table S1. X-ray crystallographic parameters for the crystals.

crystal	1-dioxane	1-dMF	1-dMA
Formula	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}\right.$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}\right.$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClN}\right.$
	$\mathrm{N}) \cdot\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$	$\mathrm{N}) \bullet\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)$	$) \cdot\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)$
$F w$	521.03	506.02	520.05
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1}$	$P 1$	$P 2_{1}$
Temperature (K)	213	213	213
$a(\AA)$	$6.00155(11)$	$5.94757(14)$	$6.11235(13)$
$b(\AA)$	$26.1427(5)$	$9.5911(2)$	$28.1898(6)$
$c(\AA)$	$8.40735(15)$	$11.4509(3)$	$7.71338(17)$
α	90	$83.8975(16)$	90
β	$105.2470(9)$	$82.0150(15)$	$92.9285(13)$
γ	90	$71.9997(15)$	90
$V\left(\AA \AA^{3}\right)$	$1272.66(4)$	$613.82(3)$	$1327.33(5)$
Z	2	1	2
reflections	13914	6470	13867
observed			
reflections	4492	3604	4695
unique	0.0499	0.0851	
$R 1[I>2.0 \sigma(I)]$	0.1047	0.2281	0.1118
$R w($ all data $)$	1504260	1504255	0.2752
CCDC no.			1504256

Table S1. X-ray crystallographic parameters for the crystals.

crystal	1-DEF	2-Dioxane	2-DMA
Formula	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}\right.$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right.$	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right) \cdot$
	$\mathrm{N}) \cdot\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}\right)$	$) \cdot\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$	$\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)$
Mw	534.07	486.58	485.60
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1}$	$P 2_{1}$	$P 2_{1}$
Temperature (K)	213	213	213
$\mathrm{a}(\mathrm{A})$	6.26161(11)	6.06973(12)	6.19100(11)
b (A)	25.9240(5)	23.5497(5)	26.0113(5)
c (A)	8.62429(16)	9.2011(2)	8.06978(15)
α	90	90	90
β	102.2264(7)	108.6090(12)	102.6890(10)
γ	90	90	90
$\mathrm{V}\left(\AA^{3}\right)$	1368.19(4)	1246.44(5)	1267.79(4)
Z	2	2	2
reflections observed	14234	13460	14197
reflections unique	4864	4359	4506
$R 1[I>2.0 \sigma(I)]$	0.0739	0.0814	0.0764
$R w$ (all data)	0.1847	0.1545	0.1583
CCDC no.	1504253	1504259	1504258

Table S1. X-ray crystallographic parameters for the crystals.

crystal	2-def
Formula	$\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right.$
	$) \cdot\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}\right)$
$F w$	499.63
Crystal system	Monoclinic
Space group	$P 2_{1}$
Temperature (K)	213
$a(\AA)$	$6.21672(11)$
$b(\AA)$	$26.5810(5)$
$c(\AA)$	$7.98985(14)$
α	90
β	$99.5040(7)$
γ	90
$V\left(\AA \AA^{3}\right)$	$1302.17(4)$
Z	2
reflections	13515
observed	
reflections	4617
unique	0.0513
$R I[I>2.0 \sigma(I)]$	0.1175
$R w$ (all data $)$	1504261
CCDC no.	

