Benzimidazopurine nucleosides from N⁶-aryl adenosine derivatives by

PhI(OAc)₂-mediated C-N bond formation, no metal needed

Sakilam Satishkumar and Mahesh K. Lakshman*

TABLE OF CONTENTS

Information	Page		
General Experimental Considerations			
Table S1. Synthesis of the <i>N</i> ⁶ -aryl 2'-deoxyadenosine and adenosine			
precursors			
General procedure for the synthesis of the benzimidazopurine nucleoside			
derivatives			
3',5'-Di-O-(<i>t</i> -Butyldimethylsilyl)-3 <i>H</i> -benzo[4,5]imidazo[2,1- <i>i</i>]purine 2'-			
deoxyribonucleoside (2)			
3',5'-Di-O-(t-Butyldimethylsilyl)-8-methyl-3 <i>H</i> -benzo[4,5]imidazo[2,1- <i>i</i>]purine	S-7		
2'-deoxyribonucleoside (5)			
3',5'-Di-O-(<i>t</i> -Butyldimethylsilyl)-8-methoxy-3 <i>H</i> -benzo[4,5]imidazo[2,1-			
<i>i</i>]purine 2'-deoxyribonucleoside (6)			
3',5'-Di-O-(<i>t</i> -Butyldimethylsilyl)-3 <i>H</i> -naphtho[1',2':4,5]imidazo[2,1- <i>i</i>]purine 2'-	S-8		
deoxyribonucleoside (7)			
((9-(3',5'-di- <i>0-t</i> -butyldimethylsilyl-2'-deoxy-β-D-ribofuranosyl)-9H-purin-6-	S-8		
yl)imino)naphthalen-1(4 <i>H</i>)-one (7')			
2',3',5'-Tri-O-(<i>t</i> -butyldimethylsilyl)-8-methyl-3 <i>H</i> -benzo[4,5]imidazo[2,1-	S-9		
<i>i</i>]purine ribonucleoside (8)			
2',3',5'-Tri-O-(<i>t</i> -butyldimethylsilyl)-8-chloro-3 <i>H</i> -benzo[4,5]imidazo[2,1-			
<i>i</i>]purine ribonucleoside (9)			
2',3',5'-Tri-O-(<i>t</i> -butyldimethylsilyl)-8-acetyl-3 <i>H</i> -benzo[4,5]imidazo[2,1-			
<i>i</i>]purine ribonucleoside (10)			
2',3',5'-Tri-O-(<i>t</i> -butyldimethylsilyl)-8-cyano-3 <i>H</i> -benzo[4,5]imidazo[2,1-	S-11		
<i>i</i>]purine ribonucleoside (11)			
2',3',5'-Tri-O-(<i>t</i> -butyldimethylsilyl)-10-methyl-3 <i>H</i> -benzo[4,5]imidazo[2,1-	S-11		
<i>i</i>]purine ribonucleoside (12)			
3',5'-Di-O-acetyl-8-methyl-3 <i>H</i> -benzo[4,5]imidazo[2,1- <i>i</i>]purine 2'-	S-12		
deoxyribonucleoside (13)			
2',3',5'-Tri-O-acetyl-8-methyl-3 <i>H</i> -benzo[4,5]imidazo[2,1- <i>i</i>]purine	S-13		
ribonucleoside (14)			
Radical inhibition experiments			
General procedure for radical inhibition experiments using 1,1-DPE in HFIP			
General procedure for radical inhibition experiments using BHT in HFIP			
500 MHz ¹ H NMR spectrum of compound 2 in CDCl ₃			

125 MHz ¹³ C NMR spectrum of compound 2 in CDCl ₃	S-16		
500 MHz ¹ H NMR spectrum of compound 2 obtained from a 0.9 mmol			
reaction, in CDCl ₃			
500 MHz ¹ H NMR spectrum of compound 5 in CDCl ₃	S-18		
125 MHz ¹³ C NMR spectrum of compound 5 in CDCl ₃	S-19		
500 MHz ¹ H NMR spectrum of compound 6 in CDCl ₃			
125 MHz ¹³ C NMR spectrum of compound 6 in CDCl ₃			
500 MHz ¹ H NMR spectrum of compound 7 in CDCl ₃	S-22		
125 MHz ¹³ C NMR spectrum of compound 7 in CDCl ₃			
gCOSY NMR spectrum of compound 7 in CDCl ₃	S-24		
Expansion of gCOSY NMR spectrum of compound 7 in $CDCl_3$	S-25		
500 MHz ¹ H NMR spectrum of compound 7 ′ in CDCl ₃	S-26		
125 MHz ¹³ C NMR spectrum of compound 7' in CDCl ₃	S-27		
gCOSY NMR spectrum of compound 7′ in CDCl₃	S-28		
Expansion of gCOSY NMR spectrum of compound $7'$ in CDCl ₃	S-29		
HRMS spectrum of compound 7 '	S-30		
500 MHz ¹ H NMR spectrum of compound 8 in CDCl ₃	S-31		
125 MHz ¹³ C NMR spectrum of compound 8 in CDCl ₃	S-32		
500 MHz ¹ H NMR spectrum of compound 9 in CDCl ₃	S-33		
125 MHz ¹³ C NMR spectrum of compound 9 in CDCl ₃	S-34		
500 MHz ¹ H NMR spectrum of compound 10 in CDCl ₃	S-35		
125 MHz 13 C NMR spectrum of compound 10 in CDCl $_3$	S-36		
500 MHz 1 H NMR spectrum of compound ${f 10}$ obtained from a 0.9 mmol	S-37		
reaction, in CDCl ₃			
500 MHz ¹ H NMR spectrum of compound 11 in CDCl ₃	S-38		
125 MHz 13 C NMR spectrum of compound 11 in CDCl $_3$	S-39		
500 MHz ¹ H NMR spectrum of compound 12 in CDCl ₃	S-40		
125 MHz 13 C NMR spectrum of compound 12 in CDCl $_3$	S-41		
500 MHz ¹ H NMR spectrum of compound 13 in CDCl ₃	S-42		
125 MHz 13 C NMR spectrum of compound 13 in CDCl ₃			
500 MHz ¹ H NMR spectrum of compound 14 in CDCl ₃	S-44		
125 MHz 13 C NMR spectrum of compound 14 in CDCl $_3$	S-45		
500 MHz ¹ H NMR spectrum of iodobenzene isolated from one of the large-	S-46		
scale reactions, in CDCl ₃			

General experimental considerations

Reactions were conducted in screw-cap glass vials with Teflon-lined caps. Thin layer chromatography was performed on 200 µm aluminum-foil-backed silica gel plates. Column chromatography was performed using 100–200 mesh silica gel in all cases unless otherwise mentioned. Toluene was distilled over Na prior to use and acetonitrile was distilled over CaH_{2.} Hexanes and EtOAc, used for column chromatography, were distilled over CaSO₄. Xantphos, Pd(OAc)₂, Pd₂(dba)₃, Cs₂CO₃, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), 2,2,2trifluoroethanol (TFE), and all other reagents were obtained from commercial suppliers and used as received. All N⁶-aryl adenine nucleosides were prepared by following literature procedures and this information is collected in Table S1. ¹H NMR spectra were obtained at 500 MHz in the solvents indicated under the individual compound headings and are referenced to residual protonated solvent resonances. ¹³C NMR spectra were obtained at 125 MHz in the solvents indicated under the individual compound headings, and are referenced to the solvent resonances. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (/) are in hertz (Hz). Standard abbreviations are used to designate resonance multiplicities.

Precursor synthesized	Yield	Method
	90%	Prepared from 3',5'-di- <i>O</i> -silyl 2'-deoxyadenosine and bromobenzene using Pd ₂ (dba) ₃ /Xantphos (e.g. F. N. Ngassa, K. A. DeKorver, T. S. Melistas, E. AH. Yeh and M. K. Lakshman, <i>Org. Lett.</i> , 2006, 8 , 4613–4616).
	58%	Prepared from the <i>O</i> ⁶ -(benzotriazol-1-yl)-2'- deoxyinosine derivative and <i>p</i> -toluidine (e.g. S. Bae and M. K. Lakshman, <i>J. Am. Chem. Soc.</i> , 2007, 129 , 782– 789).
	92%	Prepared from the <i>O</i> ⁶ -(benzotriazol-1-yl)-2'- deoxyinosine derivative and <i>p</i> -anisidine (e.g. S. Bae and M. K. Lakshman, <i>J. Am. Chem. Soc.</i> , 2007, 129 , 782– 789).
	94%	Prepared from 3',5'-di- <i>O</i> -silyl 2'-deoxyadenosine and 1-bromonaphthalene using Pd ₂ (dba) ₃ /Xantphos (e.g. F. N. Ngassa, K. A. DeKorver, T. S. Melistas, E. AH. Yeh and M. K. Lakshman, <i>Org. Lett.</i> , 2006, 8 , 4613–4616).
	73%	Prepared from 2',3',5'-tri- <i>O</i> -silyl 6-chloropurine riboside and <i>p</i> -toluidine using Pd(OAc) ₂ /Xantphos (e.g. P. F. Thomson, P. Lagisetty, J. Balzarini, E. De Clercq and M. K. Lakshman, <i>Adv. Synth. Catal.</i> , 2010, 352 , 1728–1735).
	73%	Prepared from 2',3',5'-tri- <i>O</i> -silyl 6-chloropurine riboside and <i>p</i> -chloroaniline using Pd(OAc) ₂ /Xantphos (e.g. P. F. Thomson, P. Lagisetty, J. Balzarini, E. De Clercq and M. K. Lakshman, <i>Adv. Synth. Catal.</i> , 2010, 352 , 1728–1735).
	93%	Prepared from 2',3',5'-tri- <i>O</i> -silyl 6-chloropurine riboside and <i>p</i> -aminoacetophenone using Pd(OAc) ₂ /Xantphos (e.g. P. F. Thomson, P. Lagisetty, J. Balzarini, E. De Clercq and M. K. Lakshman, <i>Adv. Synth.</i> <i>Catal.</i> , 2010, 352 , 1728–1735).

Table S1. Synthesis of the N^6 -aryl 2'-deoxyadenosine and adenosine precursors

General procedure for the synthesis of the benzimidazopurine nucleoside derivatives

In a clean, dry, 8 mL vial equipped with a stirring bar were placed C–N product (0.05 mmol, 1 equiv.), HFIP (0.5 mL, 0.1M in the C–N product), and PhI(OAc)₂ (20.95 mg, 0.065 mmol, 1.3 equiv.). The vial was flushed with nitrogen and capped, stirred at room temperature. Reaction progress was monitored by TLC. After completion, the reaction mixture was

concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (see specific compound headings for details).

3',5'-Di-*O*-(*t*-Butyldimethylsilyl)-3*H*-benzo[4,5]imidazo[2,1-*i*]purine 2'-deoxyribonucleoside (2)

Synthesized from the *N*⁶-phenyl-2'-deoxyadenosine precursor (27.8 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 50% EtOAc in hexanes gave product **2** (25.6 mg, 92% yield) as a pale-brown solid. R_f (SiO₂ and 40% EtOAc in hexanes) = 0.30. ¹H NMR (500 MHz, CDCl₃): δ 9.08 (s, 1H), 8.39 (s, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 6.56 (t, *J* = 6.4 Hz, 1H), 4.64–4.67 (m, 1H), 4.04–4.08 (m, 1H), 3.85 (dd, *J* = 4.3, 11.1 Hz, 1H), 3.79 (dd, *J* = 3.1, 11.1 Hz, 1H), 2.65 (app quint, *J*_{app} ~ 6.4 Hz, 1H), 2.51 (ddd, *J* = 4.2, 5.8, 13.0 Hz, 1H), 0.93 and 0.91 (2s, 18H), 0.13, 0.09, and 0.08 (3s, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 145.0, 144.5, 140.8, 139.2, 135.3, 127.7, 126.6, 123.4, 122.4, 120.7, 110.3, 88.3, 84.8, 72.1, 62.9, 41.7, 26.2, 26.0, 18.6, 18.2, -4.4, -4.5, -5.2, -5.3. HRMS (ESI/TOF) calcd for C₂₈H₄₄N₅O₃Si₂ [M + H]⁺: 554.2977, found 554.2970.

The larger-scale reaction was conducted with the N^6 -phenyl-2'-deoxyadenosine precursor (500.3 mg, 0.9 mmol), HFIP (9.0 mL), and PhI(OAc)₂ (376.9 mg, 1.17 mmol, 1.3 equiv.). Chromatography on a 200–300 mesh silica gel column by elution with hexanes and then 5% EtOAc in hexanes gave iodobenzene (88.1 mg). Subsequent elution with 20% EtOAc in hexanes and then 70% EtOAc in hexanes gave product **2** (426.4 mg, 86% yield) as a pale brown solid.

3',5'-Di-O-(t-Butyldimethylsilyl)-8-methyl-3H-benzo[4,5]imidazo[2,1-i]purine 2'-

deoxyribonucleoside (5)

Synthesized from the N^6 -(*p*-methylphenyl)-2'-deoxyadenosine precursor (28.5 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 50% EtOAc

in hexanes gave product **5** (22.6 mg, 80% yield) as a brown solid. R_f (SiO₂ and 50% EtOAc in hexanes) = 0.41. ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 1H), 8.26 (s, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.73 (s, 1H), 7.36 (d, J = 8.2 Hz, 1H), 6.55 (t, J = 6.3 Hz, 1H), 4.63–4.68 (m, 1H), 4.04–4.08 (m, 1H), 3.85 (dd, J = 4.4, 11.0 Hz, 1H), 3.79 (dd, J = 3.0, 11.2 Hz, 1H), 2.66 (app quint, $J_{app} \sim$ 6.3 Hz, 1H), 2.57 (s, 3H), 2.52–2.48 (m, 1H), 0.93 and 0.91 (2s, 18H), 0.12, 0.08, and 0.07 (3s, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 144.2, 143.1, 140.5, 139.0, 135.2, 132.6, 128.1, 127.8, 123.5, 120.2, 110.2, 88.2, 84.8, 72.1, 63.0, 41.6, 26.2, 26.0, 22.0, 18.6, 18.2, -4.4, -4.5, -5.2, -5.3. HRMS (ESI/TOF) calcd for C₂₉H₄₆N₅O₃Si₂ [M + H]⁺: 568.3134, found 568.3127.

3',5'-Di-*O*-(*t*-Butyldimethylsilyl)-8-methoxy-3*H*-benzo[4,5]imidazo[2,1-*i*]purine 2'deoxyribonucleoside (6)

Synthesized from the N^{6} -(*p*-methoxyphenyl)-2'deoxyadenosine precursor (29.3 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in

hexanes and 50% EtOAc in hexanes gave product **6** (25.8 mg, 88% yield) as a brown solid. $R_{\rm f}$ (SiO₂ and 50% EtOAc in hexanes) = 0.31. ¹H NMR (500 MHz, CDCl₃): δ 8.96 (s, 1H), 8.25 (s, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 7.16 (dd, *J* = 2.2, 9.0 Hz, 1H), 6.54 (t, *J* = 6.3 Hz, 1H), 4.62–4.68 (m, 1H), 4.03–4.08 (m, 1H), 3.93 (s, 3H), 3.85 (dd, *J* = 4.4, 11.2 Hz, 1H), 3.79 (dd, *J* = 3.2, 11.0 Hz, 1H), 2.65 (app quint, $J_{\rm app} \sim 6.3$ Hz, 1H), 2.52–2.49 (m, 1H), 0.93 and

0.91 (2s, 18H), 0.12, 0.083, and 0.077 (3s, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 156.2, 143.8, 140.1, 139.2, 138.9, 135.1, 127.9, 123.5, 121.1, 115.6, 94.3, 88.2, 84.7, 72.0, 62.9, 56.3, 41.6, 26.1, 26.05, 25.96, 18.6, 18.2, -4.4, -4.6, -5.2, -5.3. HRMS (ESI/TOF) calcd for C₂₉H₄₅N₅O₄Si₂Na [M + Na]⁺: 606.2902, found 606.2883.

3',5'-Di-*O*-(*t*-Butyldimethylsilyl)-3*H*-naphtho[1',2':4,5]imidazo[2,1-*i*]purine 2'-deoxyribonucleoside (7) and ((9-(3',5'-di-*O*-*t*-butyldimethylsilyl-2'-deoxy-β-D-ribo-

furanosyl)-9H-purin-6-yl)imino)naphthalen-1(4H)-one (7')

Synthesized from the N^6 -(1-naphthyl)-2'deoxyadenosine precursor (30.3 mg, 0.05 mmol), using MeCN (0.5 mL) as solvent. Chromatography on a 200–300 mesh silica

gel column by sequential elution with 10% EtOAc in hexanes and 20% EtOAc in hexanes gave compound **7'** (3.8 mg, 12% yield) as a colorless gum. Then elution with 50% EtOAc in hexanes gave product **7** (11.4 mg, 38% yield) as a pale brown, thick gum. R_f (SiO₂ and 50% EtOAc in hexanes): **7'** = 0.56 and **7** = 0.34. ¹H NMR of **7'** (500 MHz, CDCl₃): δ 8.83 (s, 1H), 8.59 (d, J = 7.8 Hz, 1H), 8.34 (s, 1H), 8.16 (d, J = 7.3 Hz, 1H), 7.76 (t, J = 7.3 Hz, 1H), 7.72 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 10.2 Hz, 1H), 6.70 (d, J = 10.7 Hz, 1H), 6.57 (t, J = 6.6 Hz, 1H), 4.62–4.68 (m, 1H), 4.06–4.08 (m, 1H), 3.89 (dd, J = 11.5, 4.1 Hz, 1H), 3.80 (dd, J = 11.2, 3.4 Hz, 1H), 2.71 (app quint, $J_{app} \sim 6.5$ Hz, 1H), 2.53–2.48 (m, 1H), 0.94 and 0.90 (2s, 18H), 0.13, 0.09, and 0.08 (3s, 12H). ¹³C NMR of **7'** (125 MHz, CDCl₃): δ 185.1, 159.2, 158.4, 152.9, 152.0, 143.0, 135.5, 134.0, 133.6, 132.6, 132.1, 131.9, 127.0, 126.5, 125.5, 88.4, 84.9, 72.3, 63.1, 41.6, 26.2, 26.01, 18.7, 18.3, -4.4, -4.5, -5.1, -5.2. HRMS (ESI/TOF) of **7'** calcd for C₃₂H₄₆N₅O₄Si₂ [M + H]⁺: 620.3083, found 620.3065. ¹H NMR of **7** (500 MHz, CDCl₃): δ 9.20 (s, 1H), 8.99 (d, J = 8.3 Hz,

1H), 8.39 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 6.63 (t, *J* = 6.3 Hz, 1H), 4.74–4.70 (m, 1H), 4.11–4.09 (m, 1H), 3.92 (dd, *J* = 4.1, 11.0 Hz, 1H), 3.84 (dd, *J* = 3.4, 11.2 Hz, 1H), 2.71 (app quint, $J_{app} \sim 6.5$ Hz, 1H), 2.61 (ddd, *J* = 3.9, 5.9, 10.0 Hz, 1H), 0.97 and 0.95 (2s, 18H), 0.16 and 0.13 (2s, 12H). ¹³C NMR of **7** (125 MHz, CDCl₃): δ 143.4, 141.7, 140.0, 139.3, 134.5, 132.5, 128.5, 127.14, 127.07, 126.4, 124.0, 123.9, 123.6, 123.2, 109.8, 88.3, 84.9, 72.0, 63.0, 41.9, 26.2, 26.0, 18.7, 18.2, -4.4, -4.5, -5.1, -5.2. HRMS (ESI/TOF) of **7** calcd for C₃₂H₄₆N₅O₃Si₂ [M + H]⁺: 604.3134, found 604.3118. **2',3',5'-Tri-***O***-(***t***-butyldimethylsilyl)-8-methyl-3***H***-benzo[4,5]imidazo[2,1-***i***]purine**

ribonucleoside (8)

Synthesized from the N^6 -(*p*-methylphenyl)adenosine precursor (35.0 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 50% EtOAc in hexanes

gave product **8** (29.6 mg, 85% yield) as a pale-brown foam. R_f (SiO₂ and 20% EtOAc in hexanes) = 0.11. ¹H NMR (500 MHz, CDCl₃): δ 9.11 (s, 1H), 8.40 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.80 (s, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 6.17 (d, *J* = 4.9 Hz, 1H), 4.59 (t, *J* = 4.6 Hz, 1H), 4.35 (t, *J* = 3.9 Hz, 1H), 4.18–4.16 (m, 1H), 4.02 (dd, *J* = 3.7, 11.5 Hz, 1H), 3.83 (dd, *J* = 2.7, 11.5 Hz, 1H), 2.58 (s, 3H), 0.97, 0.95, and 0.79 (3s, 27H), 0.16, 0.15, 0.12, 0.11, -0.03, and -0.22 (6s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 143.1, 141.3, 140.1, 134.9, 133.1, 128.4, 127.2, 122.6, 119.3, 110.4, 88.5, 85.7, 71.9, 62.5, 26.1, 25.9, 25.7, 21.8, 18.6, 18.1, 17.9, -4.4, -4.6, -4.7, -5.0, -5.3. HRMS (ESI/TOF) calcd for C₃₅H₆₀N₅O₄Si₃ [M + H]⁺: 698.3948, found 698.3932. **2',3',5'-Tri-***O***-(***t***-butyldimethylsilyl)-8-chloro-3***H***-benzo[4,5]imidazo[2,1-***i***]purine**

Synthesized from the N^6 -(*p*-chlorophenyl)adenosine precursor (36.0 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 50% EtOAc in hexanes

gave product **9** (32.1 mg, 89% yield) as a pale-brown foam. R_f (SiO₂ and 20% EtOAc in hexanes) = 0.15. ¹H NMR (500 MHz, CDCl₃): δ 9.07 (s, 1H), 8.42 (s, 1H), 7.99 (s, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 6.17 (d, J = 4.9 Hz, 1H), 4.57 (t, J = 4.4 Hz, 1H), 4.35 (t, J = 3.7 Hz, 1H), 4.18–4.17 (m, 1H), 4.02 (dd, J = 3.2, 11.2 Hz, 1H), 3.82 (dd, J = 1.5, 11.2 Hz, 1H), 0.97, 0.94, and 0.80 (3s, 27H), 0.16, 0.15, 0.12, 0.10, -0.02, and -0.20 (6s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 144.7, 142.8, 141.3, 140.2, 135.0, 128.2, 128.1, 127.4, 123.1, 121.2, 110.9, 88.8, 88.7, 85.8, 72.0, 62.6, 26.3, 26.0, 25.9, 18.8, 18.3, 18.1, -4.2, -4.4, -4.5, -4.8, -5.1. HRMS (ESI/TOF) calcd for C₃₄H₅₆ClN₅O₄Si₃Na [M + Na]⁺: 740.3221, found 740.3227.

2',3',5'-Tri-*O*-(*t*-butyldimethylsilyl)-8-acetyl-3*H*-benzo[4,5]imidazo[2,1-*i*]purine ribonucleoside (10)

Synthesized from the *N*⁶-(*p*-acetylphenyl)adenosine precursor (36.4 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 70% EtOAc in hexanes

gave product **10** (33.2 mg, 91.4% yield) as a yellow solid. *R*_f (SiO₂ and 50% EtOAc in hexanes) = 0.19. ¹H NMR (500 MHz, CDCl₃): δ 9.20 (s, 1H), 8.66 (s, 1H), 8.45 (s, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 6.18 (d, *J* = 4.4 Hz, 1H), 4.59 (t, *J* = 4.4 Hz, 1H), 4.36 (t, *J* = 4.1 Hz, 1H), 4.18–4.17 (m, 1H), 4.04 (dd, *J* = 3.6, 11.5 Hz, 1H), 3.83 (dd, *J* = 2.4, 11.2 Hz, 1H), 2.73 (s, 3H), 0.97, 0.94, and 0.81 (3s, 27H), 0.17, 0.15, 0.12, 0.10, -0.01, and -0.18 (6s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 197.2, 148.5, 146.9, 142.0, 140.5, 135.4, 131.5, 128.0, 127.4, 123.3, 120.0, 111.1, 88.90, 88.87, 85.7, 71.9, 62.6, 27.1, 26.3, 26.0, 25.9, 18.7, 18.3, 18.1, -4.2, -4.4, -4.5, -4.8, -5.2. HRMS (ESI/TOF) calcd for C₃₆H₆₀N₅O₅Si₃ [M + H]⁺: 726.3897, found 726.3898. The larger-scale reaction was conducted with the *N*⁶-(*p*-acetylphenyl)adenosine precursor (655.4 mg, 0.9 mmol), HFIP (9.0 mL), and PhI(OAc)₂ (376.9 mg, 1.17 mmol, 1.3 equiv.). Chromatography on a 200–300 mesh silica gel column by elution with hexanes and then 5% EtOAc in hexanes gave iodobenzene (82.2 mg). Subsequent elution with 20% EtOAc in hexanes and then 90% EtOAc in hexanes gave product **10** (608.5 mg, 93% yield) as a pale-yellow foamy solid.

2',3',5'-Tri-*O*-(*t*-butyldimethylsilyl)-8-cyano-3*H*-benzo[4,5]imidazo[2,1-*i*]purine ribonucleoside (11)

Synthesized from the N^6 -(*p*-cyanophenyl)adenosine precursor (35.5 mg, 0.05 mmol), column chromatography by sequential elution with 20% EtOAc in hexanes and 50% EtOAc in hexanes

gave product **11** (29.2 mg, 82% yield) as a brown foam. R_f (SiO₂ and 50% EtOAc in hexanes) = 0.36. ¹H NMR (500 MHz, CDCl₃): δ 9.18 (s, 1H), 8.53 (s, 1H), 8.36 (s, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.85 (dd, J = 1.2, 8.5 Hz, 1H), 6.22 (d, J = 4.9 Hz, 1H), 4.59 (t, J = 4.4 Hz, 1H), 4.38 (t, J = 4.1 Hz, 1H), 4.22–4.20 (m, 1H), 4.06 (dd, J = 3.6, 11.5 Hz, 1H), 3.86 (dd, J = 2.4, 11.2 Hz, 1H), 1.00, 0.96, and 0.83 (3s, 27H), 0.20, 0.19, 0.14, 0.13, -0.02, and -0.16 (6s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 148.1, 146.9, 142.0, 140.7, 135.1, 130.1, 127.6, 123.2, 121.5, 119.5, 115.4, 105.0, 88.85, 88.82, 85.8, 72.0, 62.6, 26.3, 26.0, 25.9, 18.8, 18.3, 18.1, -4.1, -4.4, -4.5, -4.8, -5.1. HRMS (ESI/TOF) calcd for C₃₆H₅₆N₆O₄Si₃Na [M + Na]⁺: 731.3563, found 731.3565. **2',3',5'-Tri-***O***-(***t***-butyldimethylsilyl)-10-methyl-3***H***-benzo[4,5]imidazo[2,1-***i***]purine**

Synthesized from the N^6 -(*o*-methylphenyl)adenosine precursor (35.0 mg, 0.05 mmol), column chromatography by sequential elution with 10% EtOAc in hexanes and 20% EtOAc in hexanes gave product **12** (30.4 mg, 87% yield) as a pale-orange gum. R_f (SiO₂ and

20% EtOAc in hexanes) = 0.34. ¹H NMR (500 MHz, CDCl₃): δ 9.09 (s, 1H), 8.53 (s, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.40–7.33 (m, 2H), 6.19 (d, *J* = 4.4 Hz, 1H), 5.75–5.71 (m, 1H), 4.53 (t, *J* = 4.4 Hz, 1H), 4.37 (t, *J* = 4.4 Hz, 1H), 4.20–4.18 (m, 1H), 4.07 (dd, *J* = 3.2, 11.5 Hz, 1H), 3.85 (dd, *J* = 1.7, 11.5 Hz, 1H), 2.77 (s, 3H), 0.99, 0.94, and 0.83 (3s, 27H), 0.19, 0.18, 0.12, 0.11, 0.01, and –0.13 (6s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 144.1, 143.8, 140.9, 139.6, 135.4, 131.0, 127.3, 127.0, 123.4, 122.4, 107.7, 88.82, 88.78, 85.6, 72.0, 62.6, 26.3, 26.1, 25.9, 18.8, 18.3, 18.1, 17.3, –4.1, –4.4, –4.5, –4.8, –5.1. HRMS (ESI/TOF) calcd for C₃₅H₆₀N₅O₄Si₃ [M + H]⁺: 698.3948, found 698.3943.

3',5'-Di-*O*-acetyl-8-methyl-3*H*-benzo[4,5]imidazo[2,1-*i*]purine 2'-deoxyribonucleoside (13)

Synthesized from the N^{6} -(*p*-methylphenyl)-2'-deoxyadenosine precursor (21.3 mg, 0.05 mmol), column chromatography by sequential elution with 50% EtOAc in hexanes, EtOAc, and then

10% MeOH in EtOAc gave product **13** (18.7 mg, 88% yield) as a white solid. R_f (SiO₂ and 50% EtOAc in hexanes) = 0.09. ¹H NMR (500 MHz, CDCl₃): δ 9.04 (s, 1H), 8.14 (s, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.73 (s, 1H), 7.38 (d, J = 8.3 Hz, 1H), 6.52 (t, J = 6.8 Hz, 1H), 5.49–5.47 (m, 1H), 4.45–4.35 (m, 3H), 3.03 (app quint, $J_{app} \sim$ 7.0 Hz, 1H), 2.70 (ddd, J = 2.9, 6.8, 11.9 Hz, 1H), 2.58 (s, 3H), 2.16 (s, 3H), 2.09 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 170.5, 143.9, 143.0,

140.4, 138.8, 135.5, 132.9, 128.3, 127.8, 123.9, 120.2, 110.3, 85.3, 82.9, 74.7, 64.0, 38.0, 22.0, 21.1, 21.0. HRMS (ESI/TOF) calcd for C₂₁H₂₂N₅O₅ [M + H]⁺: 424.1615, found 424.1612.

2',3',5'-Tri-O-acetyl-8-methyl-3H-benzo[4,5]imidazo[2,1-i]purine ribonucleoside (14)

AcO

Synthesized from the N^6 -(*p*-methylphenyl)adenosine precursor (24.1 mg, 0.05 mmol), column chromatography by sequential elution with 50% EtOAc in hexanes, EtOAc, and then 10% MeOH in EtOAc gave product 14 (20.6 mg, 86% yield) as a white solid. R_f (SiO₂ and 100% EtOAc) = 0.23. ¹H NMR (500 MHz, CDCl₃): δ 9.07 (s, 1H), 8.13 (s, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.73 (s, 1H), 7.39 (d, J = 7.8 Hz, 1H), 6.25 (d, J = 4.9 Hz, 1H), 6.04 (t, J = 5.1 Hz, 1H), 5.64–5.69 (m, 1H), 4.54–4.46 (m, 2H), 4.42–4.40 (m, 1H), 2.58 (s, 3H), 2.16 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 170.6, 170.0, 169.5, 143.7, 143.0, 140.4, 139.4, 135.8, 133.0, 128.4, 127.7, 124.2, 120.3, 110.3, 87.1, 73.4, 70.8, 63.3, 22.0, 21.0, 20.7, 20.6. HRMS (ESI/TOF) calcd

for C₂₃H₂₄N₅O₇ [M + H]⁺: 482.1670, found 424.1663.

Radical inhibition experiments

General procedure for radical inhibition experiments using 1,1-DPE in HFIP

In a clean, dry, 8 mL vial equipped with a stirring bar were placed C–N product (0.05 mmol, 1.0 equiv.), 1,1-DPE (7.1µL, 0.05 mmol, 1.0 equiv.), HFIP (0.5 mL, 0.1 M in the C–N product) and PhI(OAc)₂ (20.9 mg, 0.065 mmol, 1.3 equiv.). The vial was flushed with nitrogen and capped, stirred at room temperature. Then, the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel. Reaction times and yields of recovered starting materials are reported in Table 2 of the manuscript.

General procedure for radical inhibition experiments using BHT in HFIP

In a clean, dry, 8 mL vial equipped with a stirring bar were placed C–N product (0.05 mmol, 1.0 equiv.), BHT (11.0 mg, 0.05 mmol, 1.0 equiv.), HFIP (0.5 mL, 0.1 M in the C–N product) and PhI(OAc)₂ (20.9 mg, 0.065 mmol, 1.3 equiv.). The vial was flushed with nitrogen and capped, stirred at room temperature. Then, the reaction mixture was concentrated under reduced pressure and residue was purified by column chromatography on silica gel. Reaction times and yields of the recovered starting materials are reported in Table 2 of the manuscript.

S-24

Expansion of the aromatic region in the gCOSY NMR spectrum

gCOSY NMR spectrum

Expansion of the aromatic region in the gCOSY NMR spectrum

 $\begin{array}{l} \mbox{Calculated molecular mass $C_{32}H_{45}N_5O_4Si_2$: 619.3010 \\ \mbox{Calculated for $C_{32}H_{45}N_5O_4Si_2$ [M]^+: 619.3005 \\ \mbox{Calculated for $C_{32}H_{46}N_5O_4Si_2$ [M + H]^+: 620.3083 \\ \end{array}$

S-35

S-38

