Electronic Supplementary Information

Pre-organization of clefts for Ag- π interactions in $\mathbf{Z n}($ II $)$ bisdipyrrin helicates for the construction of heterometallic networks

Stéphane A. Baudron* and Mir Wais Hosseini*

Laboratoire de Tectonique Moléculaire, UMR UdS-CNRS 7140, icFRC
Institut Le Bel, Université de Strasbourg
4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg cedex, France
Fax: (+) 33368851325
E-mail: hosseini@unistra.fr ; sbaudron@unistra.fr

Scheme ESI1 Synthetic route for the preparation of [2+2] helicate 2.

Synthesis

$\mathrm{Ni}(\mathrm{II})$ complex $\mathbf{3}$ was synthesized following the protocol described for the $\mathrm{Zn}(\mathrm{II})$ analogue. ${ }^{1}$ ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a Bruker AV500 (500 MHz) with the deuterated solvent as the internal reference. NMR chemical shifts and J values are given in parts per million (ppm) and in Hertz, respectively. Mass spectrometry was performed by the Service commun d'analyse (University of Strasbourg).

Complex 4: To a toluene (225 mL) solution of complex $3(0.600 \mathrm{~g}, 0.86 \mathrm{mmol}$), a toluene (75 $\mathrm{mL})$ solution of DDQ ($0.220 \mathrm{~g}, 0.97 \mathrm{mmol}$) was added and the mixture was heated at reflux overnight. After evaporation to dryness, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane, $\left.1 / 1\right)$ affording 4 as a brown solid ($0.370 \mathrm{~g}, 62 \%$). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 6.11(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=1.2$ and $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{dd}, J=$ 1.2 and $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.45(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $4 \mathrm{H}), 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.59(\mathrm{~s}, 2 \mathrm{H}) . \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.7,117.7,125.4,126.2$, $127.0,128.0,128.2,130.0,130.2,130.9,131.4,134.5,137.5,140.6,140.8,153.4,161.7$. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right): 333$ (11600), 349 (17600), 368 (27000), 388 (33500), 412 (33000), 431 (28000, sh), 534 (9500), 571 (11000), 640 (3000, sh), 773 (5000). HRMS (ESI), $m / z:[M]^{+}$calcd. for $\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Ni}$: 694.1662; found: 694.1642. Single crystals were obtained by slow evaporation of a CHCl_{3} solution of the complex.

Fig. ESI1 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{4}$ in CDCl_{3}.

Fig. ESI2 ${ }^{13} \mathrm{C}$ NMR spectrum of complex 4 in CDCl_{3}.

Bis-dipyrrin 5: To a $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ solution of complex $4(0.300 \mathrm{~g}, 0.43 \mathrm{mmol})$, a 12 M solution of $\mathrm{HCl}(5 \mathrm{~mL})$ was added and the heterogeneous mixture was stirred at room temperature overnight. Upon addition of a saturated NaHCO_{3} solution, the organic layer turned from green to dark blue. The organic phase was recovered and washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 100 \mathrm{~mL})$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford ligand 5 as a dark blue solid $(0.250 \mathrm{~g}, 91 \%) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 5.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.18$ (d, $J=4.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.27 (dd, $J=1.7$ and $4.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.43$ (m, $4 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.69(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.11$ (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.64$ $(\mathrm{s}, 2 \mathrm{H}) . \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 116.4,120.9,125.5,126.0,126.3,126.6,128.1,128.5,130.7$, 131.2, 131.3, 131.5, 137.3, 138.9, 140.5, 147.4, 153.3. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right): 332$ (17000), 349 (23000), 367 (30000), 387 (35000), 412 (28000), 562 (31000), 590 (36000), 727 (11000). HRMS (ESI), $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{46} \mathrm{H}_{31} \mathrm{~N}_{4}: 639.2543$; found: 639.2565. Slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the ligand afforded single crystals suitable for X-Ray diffraction.

Fig. ESI3 ${ }^{1} \mathrm{H}$ NMR spectrum of bis-dipyrrin 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. ESI4 ${ }^{13} \mathrm{C}$ NMR spectrum of bis-dipyrrin 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Helicate 2: A MeOH (15 mL) solution of $\mathrm{Zn}(\mathrm{OAc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(35 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added to a $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ solution of ligand $\mathbf{5}(100 \mathrm{mg}, 0.16 \mathrm{mmol})$. The mixture was stirred for three days at room temperature. After evaporation under vacuum, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /\right.$ cyclohexane, 1/1) affording 2 as a green solid (80 mg , $73 \%) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.13$ (dd, $J=0.8$ and $\left.4.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.18-6.22(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.37$ (m, 4H), 7.43-7.46 (m, 4H), $7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}), 8.53(\mathrm{~s}, 4 \mathrm{H}) . \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 118.1, 118.8, 125.1, 125.3, 125.9, 126.1, 127.0, $127.1,127.4,127.5,128.2,130.6,130.8,131.1,131.4,131.7,132.4,133.1,143.0,143.3$, 144.0, 149.3, 154.2. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right): 351$ (42800), 368 (58600), 389 (57400), 431 (91900), 487 (18000, sh), 634 (51500), 680 (67000), 740 (42000). HRMS (ESI), $m / z:[M]^{+}$calcd. for $\mathrm{C}_{92} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{Zn}_{2}$: 1404.3192; found: 1404.3261. Single crystals were obtained by slow evaporation of a toluene solution of the helicate.

Fig. ESI5 ${ }^{1} \mathrm{H}$ NMR spectrum of helicate $\mathbf{2}$ in CDCl_{3}.

Fig. ESI6 ${ }^{13} \mathrm{C}$ NMR spectrum of helicate $\mathbf{2}$ in CDCl_{3}.

Networks 6 and 7: An excess of $\mathrm{Ag}(\mathrm{TfO})$ was added to a toluene solution (3 mL) of helicate $\mathbf{1}$ ($5 \mathrm{mg}, 0.0049 \mathrm{mmol}$). The mixture was sonicated and filtered. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into the filtrate afforded few crystals of $\mathbf{6}$ and $\mathbf{7}$ after few days.

Network 8: An excess of $\operatorname{Ag}(\mathrm{TfO})$ was added to a o-xylene solution (4 mL) of helicate 2 (10 $\mathrm{mg}, 0.007 \mathrm{mmol})$. The mixture was sonicated and filtered. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into the filtrate afforded crystals of $\mathbf{8}$ after several days ($5.1 \mathrm{mg}, 33 \%$). Found: C, 58.81 ; H, 3.32; $\mathrm{N}, 5.81 . \mathrm{C}_{94} \mathrm{H}_{56} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Zn}_{2}$ requires C, 58.86; H, 2.94; N, 5.84.

X-Ray diffraction

Single-crystal data (Tables ESI1 and ESI2) were collected on a Bruker SMART CCD diffractometer with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation at 173 K . The structures were solved using SHELXS97 and refined by full matrix least-squares on F^{2} using SHELXL-2014 with anisotropic thermal parameters for all non-hydrogen atoms. ${ }^{2}$ The hydrogen atoms were introduced at calculated positions and not refined (riding model). In the structure of $\mathbf{2 , 3}$ and 7, highly disordered molecules are present, the SQUEEZE command has been employed to account for the corresponding electron density. ${ }^{3}$ In the structure of 8, one diethyl ether molecule is disordered over two positions. The hydrogen atoms on this molecule have not been introduced but are taken into account in the compound formula.

CCDC 1506006-1506012 contain the supplementary crystallographic data for compounds 2-
8. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Fig. ESI7 Simulated (a) and experimental (b) PRXD pattern for network 8. The difference in intensities results from preferential orientation.

Table ESI1 Crystallographic data for compounds 2-5

	$\mathbf{2}$	$\mathbf{3}$ (Toluene)	$\mathbf{4}$	$\mathbf{5}$	
Formula	$\mathrm{C}_{92} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{Zn}_{2}$	$\mathrm{C}_{53} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{Ni}$	$\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Ni}$	$\mathrm{C}_{46} \mathrm{H}_{30} \mathrm{~N}_{4}$	
FW	1404.18	789.58	695.43	638.74	
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	
Space group	$P 2 / c$	$P 2 / n$	$P c a 2_{1}$	$C 2 / c$	
a / \AA	$10.8018(6)$	$10.7748(4)$	$18.0300(8)$	$26.2435(13)$	
b / \AA	$17.3515(9)$	$11.5828(4)$	$11.0785(5)$	$13.5308(5)$	
c / \AA	$26.7953(16)$	$35.9716(11)$	$16.2510(7)$	$9.4070(4)$	
$\beta /{ }^{\circ}$	$97.145(3)$	$93.971(2)$		$99.357(4)$	
V / \AA^{3}	$4983.2(5)$	$4478.6(3)$	$3246.1(2)$	$3295.9(3)$	
Z	4	4	4	4	
T / K	$173(2)$	$173(2)$	$173(2)$	$173(2)$	
$\mu /$ mm $^{-1}$	0.521	0.472	0.640	0.076	
Refls. coll.	97746	48069	41621	48796	
Ind. refls. $($ Rint $)$	$14675(0.0625)$	$12232(0.0446)$	$9244(0.0823)$	$4850(0.0456)$	
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.0586	0.0633	0.0491	0.0645	
$w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.1573	0.1724	0.1174	0.1632	
$R_{1}(\text { all data })^{a}$	0.1039	0.1024	0.0689	0.1058	
$w R_{2}(\text { all data })^{a}$	0.1836	0.1998	0.1244	0.1881	
GOF	1.034	1.047	1.001	1.028	
$a R_{1}=\sum \\| F_{o} \mathrm{I}-\left\|F_{c} \mathrm{II} / \sum\right\| F_{o} \mathrm{I} ; w R_{2}=\left[\sum w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \sum \mathrm{w} F_{o}^{4}\right]^{1 / 2}$					

Table ESI2 Crystallographic data for compounds 6-8

	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Formula	$\mathrm{C}_{136} \mathrm{H}_{110} \mathrm{Ag}_{4} \mathrm{~F}_{12} \mathrm{~N}_{16} \mathrm{O}_{15} \mathrm{~S}_{4} \mathrm{Zn}_{4}$	$\mathrm{C}_{63} \mathrm{H}_{40} \mathrm{Ag}_{3} \mathrm{~F}_{9} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}_{3} \mathrm{Zn}_{2}$	$\mathrm{C}_{216} \mathrm{H}_{172} \mathrm{Ag}_{4} \mathrm{~F}_{12} \mathrm{~N}_{16} \mathrm{O}_{17} \mathrm{~S}_{4} \mathrm{Zn}_{4}$
FW	3257.59	1774.56	432.89
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_{1} / n$	$P 2_{1} / n$	$P-1$
a / \AA	$9.4384(3)$	$11.3487(3)$	$15.4217(5)$
b / \AA	$34.9486(12)$	$18.6122(5)$	$16.4449(5)$
c / \AA	$20.3325(7)$	$33.9443(10)$	$22.1055(7)$
$\alpha /{ }^{\circ}$			$69.989(2)$
$\beta /{ }^{\circ}$	$101.347(2)$	$95.100(2)$	$69.909(2)$
$\gamma /{ }^{\circ}$		$7141.5(3)$	$73.752(2)$
V / \AA^{3}	$6575.8(4)$	4	$4863.4(3)$
Z / K	2	$173(2)$	1
T / K	$173(2)$	1.639	$173(2)$
μ / mm^{-1}	1.450	242815	1.001
Refls. coll.	201092	$20962(0.0411)$	161393
Ind.	refls.	$19535(0.0704)$	$26162(0.0496)$
(Rint)		0.0447	0.0536
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.0562	0.1238	0.1388
$w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.1128	0.0660	0.0882
R_{1} (all data)	0.0928	0.1363	0.1587
$w R_{2}(\text { all data })^{a}$	0.1266	1.030	1.068
GOF	1.100		

References

1 Y. Mei, C. J. Frederikson, L. J. Giblin, J. H. Weiss, Y. Medvedeva and P. A. Bentley, Chem. Comтип., 2011, 47, 7107-7109.
2. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

3 A. L. Spek, PLATON, The university of Utrecht, Utrecht, The Netherlands, 1999.

