Multifunctional Single-layered Vesicles Derived from Cu(II)-Metal-Organic-Polyhedra

Koushik Sarkar, Mithun Paul and Parthasarathi Dastidar*

Electronic Supporting Information

Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata-700032, India.

E-mail:<u>ocpd@iacs.res.in</u>, Phone: +91-33-2473-4971, Fax: +91-33-2473-2805

Contents Page No

1.	Experimental Section	S2-S3
2.	Single crystal X-ray diffraction studies, ORTEP plots, Hydrogen Bo	onding Parameters
	(Figure S1-S8 and Table S1-S6)	
3.	TGA of (CP1, CP2, CP3, MOP1, MOP2) (Figure S9-S13)	S16-S20
4.	¹ H NMR data for CP1-CP3, MOP1, MOP2 (Figure S14)	S20
5.	PXRD plots for CP1-CP3, MOP1, MOP2 (Figure S15-S19)	S21-S23
6.	TEM images for wall thickness measurement (Figure S20)	S24
7.	DLS data (Figure S21-S22)	
8.	Calculation of number of MOP needed for filling the surface and so	lid sphereS28-S29
9.	TEM images for single nanocage (Figure S23)	S29
10.	Calcein encapsulation (Figure S24-S25)	S29-S31
11.	DOX encapsulation in vesicle 1	S31-S32
12.	Biological studies (Figure S26-S29)	S32-S34
13.	DOX release study (Figure S30)	S34-S35
14.	Chymotrypsin inhibition study (Figure S31)	S35-S36
15.	Checkcif reports	S37-S58

Experimental Section:

Materials and Physical measurements:

All the chemicals were commercially available and used without further purification. 1,3,5tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene (L1) and 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene (L2) were synthesized by coupling of isonicotinoyl chloride with 1,3,5trisamine-2,4,6-trimethylbenzene or 1,3,5-trisamine-2,4,6-triethylbenzene. The central scaffold 1,3,5-trisamine-2,4,6-triethylbenzene 1,3,5-trisamine-2,4,6-trimethylbenzene and were synthesized following a known procedure.¹ FT-IR spectra were obtained on a FT-IR instrument (FTIR-8300, Shimadzu). The elemental compositions of the purified compounds were confirmed by elemental analysis (Perkin Elmer Precisely, Series-II, CHNO/S Analyser-2400). TGA analyses were performed on a SDT Q Series 600 Universal VA.2E TA instrument. X-ray powder diffraction patterns were recorded on a Bruker AXS D8 Advance Powder (Cu Kal radiation, λ =1.5406 Å) X-ray diffractometer. TEM images were recorded using a JEOL instrument with 300 mesh copper TEM grid. Diameter of the vesicle from TEM images was measured using ImageJ software (version- 1.410/Java 1.8.0_45). AFM images were taken with an NTMDT instrument, model no. AP-0100 in semi contact-mode. UV-Vis spectroscopic measurements were carried out on a Hewlett-Packard 8453 diode array spectrophotometer equipped with a Peltier temperature controller. NMR spectra were recorded using 300 MHz spectrometer (Bruker Ultrasheild Plus- 300). Emission spectra were recorded with a Horiba Jobin Yvon Fluoromax-4 spectrofluorometer. Fluorescence images has been collected in light microscope (BX51, Olympus) equipped with a 100 W mercury lamp housing for an exciter and a excitation band filter covering wavelengths 420-440 nm. Dynamic light scattering experiments were executed using Malvern Particle Size Analyser (Model No. ZEN 3690 ZETASIZER NANO ZS 90 version 7.03). MTT assay were conducted using a multiplate ELISA reader (Varioskan Flash Elisa Reader, Thermo Fisher). Confocal microscopy was done in a C1 Nikon confocal microscopy. CD data were collected in a JASCO CD spectrometer (model-J815).

Synthesis of coordination polymers and metal-organic polyhedra:

[{Cu(L1)·ClO₄}·4DMF]_α (CP1): CP1 was synthesized by layering a solution of ligand (40 mg, 0.0765 mmol) (L1) in DMF/ethanol (1:4, 15 ml) to an aqueous solution of Cu(ClO₄)₂ (28.3 mg, 0.0765 mmol) (3 ml).The resulting solution was kept for slow evaporation at room temperature. After four weeks well-formed block-shaped blue crystals were obtained. The crystals were washed with ethanol and characterized by elemental analysis, PXRD, and FT-IR. Yield: 25.99% (26 mg, 0.0198 mmol); elemental analysis calcd (%) for C₄₂H₅₈CuClN₁₀O₁₁: C 51.58, H 5.98, N 14.32; found: C 51.36, H 5.93, N 14.06; FT-IR (KBr pellet): $\tilde{\upsilon}$ =3380.98, 3357.84, 3110.97, 3074.32, 2960.53, 2923.88, 2854.45, 1643.24 (s), 1602.74, 1533.30 (s), 1425.30, 1369.37, 1290.29, 1201.57, 1145.64, 1110.92, 1087.78 (s), 1035.70, 970.13, 833.19, 796.55, 742.54, 702.04, 653.82, 626.82 cm⁻¹.

[{Cu(L1)·BF₄}·4DMF]_α (CP2): CP2 was synthesized by the similar procedure like CP1, except in place of Cu(ClO₄)₂, Cu(BF₄)₂ (18.15 mg, 0.0765 mmol) was used. After two weeks wellformed block-shaped blue crystals were obtained. The crystals were washed in ethanol and characterized by elemental analysis, PXRD, and FT-IR. Yield: 28.54% (28 mg, 0.022 mmol); elemental analysis calcd (%) for C₄₂H₅₈CuBF₄N₁₀O₇: C 52.26, H 6.06, N 14.51; found: C 52.36, H 5.93, N 14.06; FT-IR (KBr pellet): $\tilde{v} = 3736.01$ - 3127.12 (brs), 3058.46, 2962.83, 2915.43, 2846.77, 2463.46, 1964.90, 1650.24 (s), 1540.72 (s), 1492.5, 1424.66, 1349.47, 1287.55, 1226.06, 1061.77 (s), 850.09, 761.01, 692.35 cm⁻¹.

[{Cu(L1)·NO₃}·4DMF]_α (CP3): CP3 was synthesized by the similar procedure like CP1, except in place of Cu(ClO₄)₂, Cu(NO₃)₂ (18.5 mg, 0.0765 mmol) was used. After two weeks wellformed block-shaped blue crystals were obtained. The crystals were washed in ethanol and characterized by elemental analysis, PXRD, and FT-IR. Yield: 23.32% (22 mg, 0.018 mmol); elemental analysis calcd (%) for C₄₂H₅₈CuN₁₁O₁₀: C 53.63, H 6.22, N 16.38; found: C 54.06, H 6.43, N 16.06; FT-IR (KBr pellet): $\tilde{\upsilon}$ = 3411.84, 3263.33, 3055.03, 2968.24, 2923.88, 2854.45, 2426.28, 1764.75, 1643.24 (s), 1548.73 (s), 1492.80, 1450.37, 1382.87 (s), 1357.79, 1298.00, 1226.64, 1155.28, 1062.70, 1047.27, 1027.99, 850.55, 798.47, 759.90, 688.54 cm⁻¹.

[{ $Cu_6(L2)_{12}$ · Cl_6 · $6(H_2O)$ }·(NO_3)₆·8DMSO·90(H₂O)] (MOP1): MOP1 was synthesized by layering a solution of ligand (43 mg, 0.0765 mmol) (L2) in DMSO/acetonitrile (1:4, 15 ml) to an aqueous solution of Cu(NO_3)₂ (18.5 mg, 0.0765 mmol) (3 ml). The resulting solution was kept for slow evaporation at room temperature. After six weeks well-formed block-shaped blue crystals were obtained. The crystals were washed with acetonitrile and characterized by elemental analysis, PXRD, and FT-IR. Yield: 9.82% (42 mg, 0.007 mmol); elemental analysis calcd (%) for C₂₈₀H₅₂₈Cu₆Cl₆N₅₄O₁₄₆S₈: C 42.91, H 6.79, N 9.65; found: C 42.56, H 6.93, N 9.26; FT-IR (KBr pellet): $\tilde{\upsilon}$ = 3751.6- 3277.22 (brs), 3061.46,1656.23 (s), 1595.12 (s), 1532.25 (s), 1478.02, 1366.78 (s), 1295.55, 1153.34, 1052.22, 1029.29 (s), 953.43, 825.25, 700.11 cm⁻¹.

[{ $Cu_6(L2)_{12} \cdot (Br)_6$ } · (Br)₆ · 8DMSO · 90(H₂O)] (MOP2): MOP2 was synthesized by the similar procedure like MOP1, except in place of Cu(NO₃)₂, CuBr₂ (17.09 mg, 0.0765 mmol) was used. After two weeks well-formed block-shaped blue crystals were obtained. The crystals were washed in ethanol and characterized by elemental analysis, PXRD, and FT-IR. Yield: 12.05% (54 mg, 0.009 mmol); elemental analysis calcd (%) for C₂₈₀H₅₁₆Cu₆Br₁₂N₄₈O₁₂₂S₈: C 41.50, H 6.42, N 8.30; found: C 41.36, H 6.93, N 8.06; FT-IR (KBr pellet): $\tilde{\upsilon} = 3742.5$ - 3092.78 (brs), 3038.02, 2962.84, 2908.07, 2867.21, 2456.92, 1971.44, 1650.24 (s), 1526.83 (s), 1485.96, 1417.31, 1369.90, 1280.82, 1219.51, 1144.33, 1020.91(s), 945.72, 856.63, 754.47, 685.82 cm⁻¹.

Single crystal X-ray diffraction: Single crystal X-ray data were collected using Mo K α ($\lambda = 0.7107$ Å) radiation on a SMART APEX- II diffractometer equipped with CCD area detector. Data collection, data reduction, structure solution and refinement were carried out using the

software package of SMART APEX-II. All the structures were solved by direct methods and refined in a routine manner. For CP1-CP3 two of the three pyridyl rings and for CP1 and CP3 metal bound anions were found to be rotationally disordered over two positions (site occupancy factors (SOF) for CP1 - 0.482(7), 0.518(7); 0.446(8), 0.554(8) and for perchlorate anion 0.398(14), 0.602(14)), for CP2 - 0.555(9), 0.445(9) and for CP3 - 0.526(13), 0.474(13) and for nitrate anion 0.36(3), 0.64(3)).

In all the cases, non-hydrogen atoms were treated anisotropically except for the disordered atoms. Whenever possible, the hydrogen atoms were located on a difference Fourier map and refined. In other cases, the hydrogen atoms were geometrically fixed at their idealized positions. Unaccounted electron densities preferably disordered solvent molecules were SQUEEZED out.

Crystallographic data for the structural analysis of compounds reported herein have been deposited at the Cambridge Crystallographic Data Centre, CCDC Nos. 1495331-1495335. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1233 336 033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/deposit).

Crystal	CP1	CP2	CP3	MOP1	MOP2
parameters					
CCDC No	1495331	1495332	1495333	1495334	1495335
empirical	C ₄₂ H ₅₈ CuClN	C ₄₂ H ₅₈ CuBF	$C_{42}H_{58}CuN_{11}O_1$	$C_{280}H_{528}Cu_6Cl_6$	$C_{280}H_{516}Cu_6Br_{12}N_{48}$
formula	$_{10}O_{11}$	$_4N_{10}O_7$	0	$N_{54}O_{146}S_8$	$O_{122}S_8$
formula weight	977.96	965.32	940.52	7835.93	8101.67
crystal size/mm	0.36 imes 0.24 imes	0.32×0.20	0.26 imes 0.16 imes	0.42 imes 0.38 imes	$0.39 \times 0.36 \times 0.24$
	0.16	× 0.14	0.10	0.26	
crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
space group	<i>C</i> 2/c	<i>C</i> 2/c	<i>C</i> 2/c	PĪ	<i>C</i> 2/c
a /Å	36.068(8)	35.729(3)	35.509(10)	24.331(3)	34.915(3)
b/Å	14.096(3)	13.9528(11)	14.304(4)	24.388(3)	33.412(3)
c /Å	16.023(4)	15.8889(13)	15.395(4)	24.415(3)	34.291(3)
$\alpha/^0$	90	90	90	118.745(2)	90
β/ ⁰	109.397(7)	109.211(2)	108.369(19)	91.861(2)	90.352(4)
$\gamma/^{0}$	90	90	90	118.748(2)	90
volume/Å ³	7684(3)	7479.9(11)	7421(4)	10461(2)	40002(5)
Ζ	4	4	4	1	4
F(000)	2716.0	2652.0	2572.0	2910.0	11968.0
μ MoK α /mm ⁻¹	0.414	0.362	0.354	0.392	1.560
temperature/K	100	100	100	120	120
R _{int}	0.0696	0.0732	0.1386	0.0600	0.0716
range of h, k, l	$-47 \le h \le 44$,	$-37 \le h \le$	$-38 \le h \le 38, -$	$-27 \le h \le 27, -$	$-30 \le h \le 30, -29 \le$
	$-18 \le k \le 18$,	37, $-14 \le k$	$15 \le k \le 15, -$	$26 \le k \le 23, -$	$k \le 29, -30 \le l \le 30$

 Table S1: Crystallographic parameter table.

	$-21 \le l \le 20$	\leq 14, -16 \leq 1	$16 \le l \le 15$	$27 \le l \le 19$	
		≤16			
θmin/max/°	1.197/28.274	1.207/	1.547/ 22.835	1.669/23.542	1.454/ 18.352
		21.726			
Reflections	52099/9360	25737/4430	16405/ 4893	33387/ 17221	266496 / 14367
collected/unique					
data/restraints/pa	9360/0/499	4430/0/468	4893/0/469	17221/1/1714	14367/0/1569
rameters					
goodness of fit	1.018	1.041	0.985	0.978	1.032
on F ²					
final R indices	$R_1 = 0.0872,$	$R_1 = 0.0819,$	$R_1 = 0.0844,$	$R_1 = 0.0823,$	$R_1 = 0.0842, wR_2 =$
$[I>2\sigma(I)]$	$wR_2 = 0.2608$	$wR_2 =$	$wR_2 = 0.2365$	$wR_2 = 0.2204$	0.2205
		0.2313			
R indices (all	$R_1 = 0.1320,$	$R_1 = 0.1322,$	$R_1 = 0.1559,$	$R_1 = 0.1350,$	$R_1 = 0.0991, wR_2 =$
data)	$wR_2 = 0.2833$	$wR_2 =$	$wR_2 = 0.2962$	$wR_2 = 0.2475$	0.2350
		0.2587			

ORTEP plots and Hydrogen Bonding parameters CP1 – CP3 and MOP1, MOP2:

CP1

Figure S1. ORTEP plot of CP1 (30% ellipsoid probability). Few atoms are not marked to maintain the clarity.

D(D-H)	<dha< th=""><th>d(DA)</th><th>А</th><th>Symmetry</th><th>operation</th><th></th></dha<>	d(DA)	А	Symmetry	operation	
C17-H17	155.09	3.412	N1	-x+3/2,	-y+1/2,	-z+2
C30A_a-H30A_a	132.78	3.581	Cl1A_a	х,	у,	Z
C30A_a-H30A_a	163.17	3.12	O5A_a	Х,	у,	Z
C27A_a-H27A_a	129.74	3.533	Cl1A_a	х,	-у,	z+1/2
C28A_a-H28A_a	124.48	3.195	O4	-x+1,	-у,	-Z
C28A_a-H28A_a	135.6	3.224	O6A_a	Х,	-у,	z+1/2
C16-H16	142.44	3.353	O7A_a	Х,	у,	z+1
N6-H6_a	163.85	2.949	O2	х,	-у,	z-1/2
N4-H4_a	165.72	3.12	01	-x+3/2,	-y+1/2,	-z+1
C24A_a-H24A_a	158.19	3.052	01	-x+3/2,	-y+1/2,	-z+1
C21A_a-H21A_a	112.66	3.059	O6A_a	-x+3/2,	-y+1/2,	-Z
C22A_a-H22A_a	126.24	3.21	04	x+1/2,	-y+1/2,	z+1/2
C22A_a-H22A_a	126.56	2.896	O6A_a	-x+3/2,	-y+1/2,	-Z
C30B_b-H30B_b	158.81	3.092	02	х,	-у,	z-1/2
C29B_b-H29B_b	148.26	3.341	O6B_b	X,	y,	Z
C24B_b-H24B_b	141.59	3.63	Cl1B_b	Х,	у,	Z
C24B_b-H24B_b	117.25	3.128	O4	Х,	у,	Z
C24B_b-H24B_b	145.06	2.806	O6B_b	Х,	у,	Z

 Table S2: Hydrogen bonding parameters for CP1

CP2

Figure S2. ORTEP plot of CP2 (30% ellipsoid probability). Few atoms are not marked to maintain the clarity.

D-H	<dha< th=""><th>d(DA)</th><th>А</th><th>Symmetry</th><th>y operation</th><th>n</th></dha<>	d(DA)	А	Symmetry	y operation	n
N4_a-H4_a	163.05	2.913	O6_a	х,	-y+1,	z+1/2
N5_a-H5_a	168.26	3.086	O5_a	-x+1/2,	-y+3/2,	-z+1
C29_a-H29_a	152.18	3.376	N1_a	-x+1/2,	-y+3/2,	-Z
C18A_a-	166.06	3.08	O6_a	х,	-y+1,	z+1/2
H18A_a						
C17A_a-	134.19	3.209	F2	-x+1,	-y+1,	-z+2
H17A_a						
C23A_a-	121.9	3.158	F1	-x+1/2,	y+1/2,	z+3/2
H23A_a						
C23A_a-	130.95	2.951	F3	x-1/2,	y+1/2,	Z
H23A_a						
C21A_a-	151.09	3.058	O5_a	-x+1/2,	-y+3/2,	-z+1
H21A_a						
C16A_a-	116.38	3.148	F1	х,	у,	Z
H16A_a						
C23B_b-	118.25	3.058	F1	x-1/2,	-y+3/2,	z-1/2
H23B_b						
C23B_b-	167.42	3.071	F2	x-1/2,	-y+3/2,	z-1/2
H23B_b						
C15B_b-	154.42	3.482	F2	-x+1,	у,	-z+3/2
H15B_b						
C22B_b-	124.05	3.213	F1	-x+1/2,	y+1/2,	-z+3/2
H22B_b						
C22B_b-	168.89	3.457	F4	-x+1/2,	y+1/2,	-z+3/2
H22B_b						
C17B_b-	151.88	2.961	F4	-x+1,	-y+1,	-z+2
H17B_b						
C16B_b-	132.69	2.677	F3	-x+1,	у,	-z+3/2
H16B_b						

 Table S3: Hydrogen bonding parameters for CP2

Figure S3. ORTEP plot of CP3 (30% ellipsoid probability). Few atoms are not marked to maintain the clarity.

D-H	<dha< th=""><th>d(DA)</th><th>А</th><th>Symmetry</th><th>operation</th><th>1</th></dha<>	d(DA)	А	Symmetry	operation	1
N6-H6	165.93	3.117	02	-x+3/2,	-y+3/2,	-z+1
N4-H4	164.67	2.869	03	Х,	-y+1,	z+1/2
C16-H16	158.58	3.468	N1	-x+3/2,	-y+3/2,	-Z
C17-H17	137.51	3.374	O6A_a	x+1/2,	-y+3/2,	z-1/2
C17-H17	147.02	3.259	O5B_b	x+1/2,	-y+3/2,	z-1/2
C24A_a-	151.78	3.048	03	Х,	-y+1,	z+1/2
H24A_a						
C30A_a-	144.07	3.077	O2	-x+3/2,	-y+3/2,	-z+1
H30A_a						
C30B_b-	121.23	3.187	O4	Х,	у,	Z
H30B_b						
C24B_b-	130.61	3.307	O5B_b	x+1/2,	y-1/2,	Z
H24B_b						
C23B_b-	123.37	3.038	04	-x+3/2,	y-1/2,	-z+3/2
H23B_b						
C22B_b-	125.18	3.251	O4	x+1/2,	-y+3/2,	z+1/2

Table S4: Hydrogen bonding parameters for CP3

H22B_b						
C22B_b-	143.06	3.337	N7	x+1/2,	-y+3/2,	z+1/2
H22B_b						
C27B_b-	119.01	3.076	O4	-x+1,	-y+2,	-z+1
H27B_b						
C27B_b-	167.61	3.106	O5B_b	-x+1,	-y+2,	-z+1
H27B_b						
C28A_a-	124.23	3.213	O4	х,	у,	Z
H28A_a						

MOP1

Figure S4. ORTEP plot of MOP1 (30% ellipsoid probability). Few atoms are not marked to maintain the clarity.

D-H	<dha< th=""><th>d(DA)</th><th>А</th><th colspan="3">Symmetry operation</th></dha<>	d(DA)	А	Symmetry operation		
N2-H2	144.85	3.153	O23	Х,	у,	Z
N2-H2	160.71	3.484	O22	х,	у,	Z
N22-H22	159.57	3.534	N25	Х,	у,	Z
N22-H22	142.9	3.086	018	Х,	у,	Z
N22-H22	164.09	3.288	017	х,	у,	Z

 Table S5: Hydrogen bonding parameters for MOP1

N12-H12	167.22	2.929	O21	Х,	у,	Z
N23-H23	167.58	2.997	016	Х,	у,	Z
N5-H5	149.66	2.945	O24	Х,	у,	Z
N5-H5	160.9	3.515	N27	Х,	у,	Z
N5-H5	151.41	3.405	O22	Х,	у,	Z
N8-H8	160.18	2.899	019	Х,	у,	Z
C67-H67B	163.35	3.517	015	-x+2,	-y+2,	-z+1
С79-Н79	115.13	3.157	01	Х,	у,	Z
C41-H41B	129.5	3.357	07	-x+2,	-y+1,	-z+1
С53-Н53	120.15	3.093	01	Х,	у,	Z
C21-H21	173.47	3.408	012	-x+1,	-y+2,	-z+2
C118-H118	116.24	3.316	Cl2	Х,	у,	Z
C20-H20A	118.53	3.086	O2	-x+1,	-y+1,	-z+1
C54-H54	162.91	3.35	014	-x+2,	-y+2,	-z+2
С52-Н52	113.92	3.273	Cl1	Х,	у,	Ζ
C101-H10C	135.79	3.274	05	Х,	y-1,	Z
C18-H18A	127.37	3.195	O21	Х,	у,	Ζ
С80-Н80	110.29	3.121	Cl1	Х,	у,	Ζ
С31-Н31	122.3	3.209	03	Х,	у,	Z
C84-H84	174.78	3.411	017	Х,	у,	Z
C100-H10E	128.93	3.314	015	-x+2,	-y+1,	-z+1
С7-Н7А	113.47	3.116	05	Х,	у,	z+1
С27-Н27	121.13	3.002	011	-x+1,	-y+2,	-z+2
С57-Н57	149.18	3.471	O23	Х,	у,	Ζ
C106-H106	121.5	3.16	Cl3	Х,	у,	Ζ
С32-Н32	121.34	3.292	C13	Х,	у,	Z
С93-Н93	165.54	3.162	016	Х,	у,	Z
С92-Н92	117.84	3.362	Cl2	Х,	у,	Z
С130-Н130	113.08	3.137	N9	Х,	у,	Z
С113-Н113	117	3.253	Cl1	-x+1,	-y+1,	-z+1
С25-Н25	119.57	3.195	Cl1	Х,	у,	Z
С112-Н112	110.42	3.108	01	-x+1,	-y+1,	-z+1
С19-Н19	116.13	3.311	Cl2	-x+1,	-y+1,	-z+1
С91-Н91	112.54	3.091	O2	Х,	у,	Z

MOP2

Figure S5. ORTEP plot of MOP2 (30% ellipsoid probability). Few atoms are not marked to maintain the clarity.

Table S6:	Hydrogen	bonding	parameters for	: MOP2
-----------	----------	---------	----------------	--------

D-H	<dha< th=""><th>d(DA)</th><th>А</th><th colspan="3">Symmetry operation</th></dha<>	d(DA)	А	Symmetry operation		
N21-HD	163.69	3.624	Br8	Х,	у,	Ζ
N23-HH	161.85	3.474	Br8	Х,	у,	Z
C87-HL	152.91	3.516	02	-x+1/2,	y+1/2,	-z+1/2
C8-HM	116.41	3.19	04	-x+1/2,	-y+1/2,	-Z
N17-HP	167.22	3.373	Br7	Х,	у,	Z
C96-H0AA	118.46	3.632	Br8	Х,	у,	Z
C95-H1AA	125.17	3.589	Br1	-x+1,	у,	-z+1/2
C77-H7AA	159.01	3.44	04	Х,	-y+1,	z+1/2
C61-H9AA	127.07	3.505	Br5	Х,	у,	Z
C34-H0BA	116.48	3.659	Br1	Х,	у,	Z
C103-H8BA	139.99	3.117	012	-x+1/2,	-y+1/2,	-z+1
C133-H3CA	123.84	3.658	Br5	Х,	у,	Z
C134-H4CA	132.21	3.716	Br4	Х,	у,	Z
С90-Н7СА	168.99	3.697	Br8	Х,	у,	Z
С129-Н8СА	127.74	3.581	Br1	Х,	у,	Z
C62-H0DA	138.2	3.757	Br4	Х,	у,	Z

C50-H3DA	143.39	3.441	03	-x+1/2,	y+1/2,	-z+1/2
C9-H4DA	120.82	2.958	012	-x+1/2,	y-1/2,	-z+1/2
C89-H8DA	122.52	3.531	Br2	х,	у,	Z
N15-H4EA	138.94	3.724	Br7	Х,	у,	Z
C28-H8EA	117.93	3.506	Br3	х,	у,	Z
C68-H3FA	120.61	3.704	Br2	Х,	у,	Z
C37-H5FA	120.23	3.605	Br1	х,	у,	Z
C49-H5GA	122.05	3.191	O7	-x+1/2,	y+1/2,	-z+1/2
C22-H6GA	127.81	3.525	Br2	Х,	у,	Z
С128-НЗНА	128.72	3.635	Br7	-x+1,	у,	-z-1/2
C126-H4HA	146.62	3.259	O7	х,	-у,	z-1/2
C121-H2JA	118.98	3.472	Br3	х,	у,	Z
С123-НЗЈА	170.88	3.657	Br7	Х,	у,	Z
C122-H4JA	117.13	3.59	Br6	х,	у,	Z
С29-Н7ЈА	120.03	3.531	Br6	Х,	у,	Z
C24-H4KA	150.15	3.17	05	-x+1/2,	y-1/2,	-z-1/2
C101-H5KA	124.1	3.596	Br2	х,	у,	Z

SXRD analysis:

Crystal structure of $[{Cu(L1) \cdot (ClO_4)} \cdot 4DMF]_{\alpha}$ CP1: SXRD data revealed that CP1 belongs to the centrosymmetric monoclinic space group C2/c. The asymmetric unit contained a 1,3,5tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene (L1), one perchlorate anion, one Cu^{II} metal ion located on a glide plane and smeared electron densities that were SQUEEZED out as it could not be modelled. The Cu^{II} metal center displayed an octahedral geometry wherein the equatorial sites were occupied by N atoms of L1 whereas the axial sites were coordinated by O atoms of the anions. Two of the three pyridyl ring of the ligand L1 was rotationally disordered over two positions (Refined Site Occupancy Factor (SOF) - 0.482(7), 0.518(7); 0.446(8), 0.554(8)). The anion was also found to be disordered over two positions (Refined SOF - 0.398(14), 0.602(14)). The structure could be best described as infinite 2D network wherein two pyridyl moieties were coordinated to the metal center and another one remains non-coordinated. The pyridyl arms were directed syn-syn-anti direction with respect to the trimethylbenzene platform. The noncoordinated pyridyl ring of one 2D layer stacked with the trimethylbenzene core of another 2D layer via π ... π stacking that generates an overall 3D network structure. Parallel stacking of such 2D layer along c-direction generates an open channel in which smeared electron densities were located; indicating that they were loosely bound lattice occluded disordered solvent molecules. SQUEEZE calculations revealed that there were 205.5 electrons per asymmetric unit which might be attributed to ~4 DMF molecules. Elemental analysis further supports the analysis.

Crystal structure of [{**Cu**(**L1**)·(**BF**₄)}·4**DMF**]_{α} **CP2:** SXRD data revealed that CP2 belongs to the centrosymmetric monoclinic space group *C*2/c. The asymmetric unit contained a **L1**, one

tetrafluoroborate anion, one Cu^{II} metal ion located on a glide plane and smeared electron densities. The Cu^{II} metal center displayed an octahedral geometry wherein the equatorial sites were occupied by N atoms of **L1** whereas the axial sites were coordinated by F atoms of the anions. Two of the three pyridyl ring of the ligand **L1** was rotationally disordered over two positions (Refined Site Occupancy Factor (SOF) - 0.555(9), 0.445(9)). The crystal structure was found to be isomorphous with CP1, having identical crystal packing. Loosely bound lattice occluded disordered solvent molecules could not be modeled and therefore SQUEEZED out. SQUEEZE calculations revealed that there were 188.5 electrons per asymmetric unit which might be attributed to ~4 DMF molecules. Elemental analysis further supports the analysis.

Crystal structure of [{**Cu**(**L1**)·(**NO**₃)}·4DMF]_{*a*} **CP3:** SXRD data revealed that CP3 belongs to the centrosymmetric monoclinic space group C2/c. The asymmetric unit contained **L1**, one nitrate anion, Cu^{II} metal ion located on a glide plane and smeared electron densities. The Cu^{II} metal center displayed an octahedral geometry wherein the equatorial sites were occupied by N atoms of **L1** whereas the axial sites were coordinated by O atoms of the anions. Two of the three pyridyl ring of the ligand **L1** was rotationally disordered over two positions (Refined Site Occupancy Factor (SOF) - 0.526(13), 0.474(13)). The anion was also found to be disordered over two positions (Refined SOF - 0.36(3), 0.64(3)). The crystal structure was found to be isomorphous with CP1, having identical crystal packing. Loosely bound lattice occluded disordered solvent molecules could not be modeled and therefore SQUEEZED out. SQUEEZE calculations revealed that there were 187.9 electrons per asymmetric unit which might be attributed to ~4 DMF molecules. Elemental analysis further supports the analysis.

Figure S6. a) 2D sheet structure, b) Parallel π ... π stacking of 2D layers, c) Representing unit showing *syn-syn-anti* conformation and d) Available open channel structure in CP2. CP1 and CP3 being isomorphous with CP2 displayed similar kind of structural features.

Crystal structure of $[{Cu_6(L2)_{12} \cdot Cl_6 \cdot 6(H_2O)}] \cdot (NO_3)_6 \cdot 8DMSO \cdot 90(H_2O)]$ MOP1: SXRD data revealed that MOP1 belongs to the centrosymmetric triclinic space group $P\overline{1}$. The asymmetric unit contained four 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene (L2), three Cu^{II} metal ion, three axially coordinated chloride, three axially coordinated water molecules and three nitrate anions - all located on a general position and smeared electron densities that were SQUEEZED out as it could not be modelled. The Cu^{II} metal center displayed an octahedral geometry wherein the equatorial sites were occupied by N atoms of L2 whereas one of the axial sites was coordinated by water directed outside of the cage and other was coordinated by chloride directed inside the cage. Six nitrate anions were threaded within the cage via anion... π interaction (3.604-3.688 Å) with six triethylbenzene core. The structure could be best described as a discrete nanocage of dimension ~ 2.8 nm resembling a truncated octahedron and thus generate a large solvent accessible void within the structure wherein the smeared electron densities were located indicating the presence of loosely bound lattice occluded disordered solvent molecules. SQUEEZE calculations revealed that there were 1255 electrons per asymmetric unit which might be attributed to ~ 8 DMSO and 90 water molecules. Elemental analysis further supports the analysis.

Figure S7. a) Single cage of MOP1, b) Packing of MOP1.

[{ $Cu_6(L2)_{12} \cdot (Br)_6$ } · (Br)₆ · 8DMSO · 90(H₂O)] MOP2: SXRD data revealed that MOP2 belongs to the centrosymmetric monoclinic space group *C*2/c. The asymmetric unit contained four 1,3,5tris(isonicotinamidomethyl)-2,4,6-triethylbenzene (L2), four Cu^{II} metal ion of which two were located on a two-fold symmetry axis, four axially coordinated bromide, four bromide anion and smeared electron densities that were SQUEEZED out as it could not be modelled. The Cu^{II} metal center displayed a square pyramidal geometry wherein the equatorial sites were occupied by N atoms of L2 whereas the axial site was coordinated by bromide directed inside the cage. Two bromide anions were outside the cage and rest was threaded inside via anion...NH interaction (3.372-3.720 Å). The structure could be best described as a discrete nanocage of dimension ~ 2.8 nm resembling a truncated octahedron geometry and thus generate a large solvent accessible void within the structure wherein the smeared electron densities were located indicating the presence of loosely bound lattice occluded disordered solvent molecules. SQUEEZE calculations revealed that there were 1396 electrons per asymmetric unit which might be attributed to ~ 8 DMSO and 90 water molecules. Elemental analysis further supports the analysis.

Figure S8. a) Single cage of MOP2, b) Packing of MOP2.

Calculation of available space within the nanocage in MOP1:

Distance between the centroids of two opposite π surface of the core triethylbenzene ring = 24.073 Å

van der Waals radii of π surface = 3.4 Å

Thus, the radius (r) of the imaginary sphere within the nanocage = [24.073 - 2(3.4)]/2 = 8.64 Å So, the volume of the imaginary sphere = $4/3 \pi r^3 = 2700.28$ Å³ Volume occupied by six chlorine = 134.63 Å³ (van der Waals radius of Cl = 1.75 Å) Volume occupied by six nitrate = 347.94 Å³ (van der Waals radius of N = 1.55, O = 1.55 Å) So, available volume within the cage = (2700.28 - 134.63 - 347.94) = 2217.71 Å³

50, available volume within the eage = (2700.20, 134.03, 547.74) =

Calculation of available pore volume in MOP2:

Distance between the centroids of two opposite π surface of core triethylbenzene ring = 24.28 Å van der Waals radii of π surface = 3.4 Å

So, the radius of the imaginary sphere within the cage = [24.28 - 2(3.4)]/2 = 8.74 Å

So, the volume of the imaginary sphere = 2795.13 Å^3

Volume occupied by ten bromine = 265.08 Å^3 (van der Waals radius of Br = 1.85 Å)

So, available volume within the cage = $(2795.13-265.08) = 2530.05 \text{ Å}^3$

TGA of Coordination Polymers and metal-organic polyhedra (CP1- CP3, MOP1 and MOP2):

CP1

Unit cell contents = $8 \text{ ligand } L1 + 8 \text{ anion } ClO_4^- + 4 \text{ Cu} + 822 \text{ electrons squeezed from unit cell contributed by the solvent molecules.}$

Monoclinic C2/c space group, Z = 4Therefore FW = Unitcell contents/Z

> = 2 ligand L1 + 2 anion ClO₄⁻ + 1 Cu + 205.5 electrons (~ 4 DMF molecules)
> = 2×522.6 + 2×99.45 + 1×63.546 + 282
> = 1045.2+ 198.9+ 63.546 + 282
> = 1589.646

Weight loss for 4 DMF molecules

= 282/1589.646 X 100%

= 17.74 % Experimental Value (18.33 %)

Figure S9: TGA profile of CP1.

CP2

Unit cell contents = $8 \text{ ligand } L1 + 8 \text{ anion } BF_4^- + 4 \text{ Cu} + 754 \text{ electrons squeezed from unit cell contributed by the solvent molecules.}$

Monoclinic C2/c space group, Z = 4Therefore FW = Unitcell contents/Z = 2 ligand L1 + 2 anion BF₄⁻⁺ + 1 Cu + 188.5 electrons (~ 4 DMF molecules)

$$= 2 \times 522.6 + 2 \times 86.8 + 1 \times 63.546 + 282$$
$$= 1045.2 + 173.6 + 63.546 + 282$$
$$= 1564.346$$

Weight loss for 4 DMF molecules

- = 282/1564.346 X 100%
- = 18.02 % Experimental Value (16.06 %)

Figure S10: TGA profile of CP2.

CP3

Unit cell contents = $8 \text{ ligand } L1 + 8 \text{ anion } NO_3^{-} + 4 \text{ Cu} + 751.8 \text{ electrons squeezed from unit cell contributed by the solvent molecules.}$

Monoclinic C2/c space group, Z = 4Therefore FW = Unitcell contents/Z

 $= 2 \text{ ligand } L1 + 2 \text{ anion } NO_3 + 1 \text{ Cu} + 187.95 \text{ electrons}$ $(\sim 4 \text{ DMF molecules})$ $= 2 \times 522.6 + 2 \times 62.0 + 1 \times 63.546 + 282$ = 1045.2 + 124.0 + 63.546 + 365 = 1514.746Weight loss for 4 DMF molecules

= 282/1514.746 X 100%

= 18.62 % Experimental Value (17.56 %)

Figure S11: TGA profile of CP3.

MOP1

Unit cell contents = 8 ligand L2 + 48 anions Br⁻ + 6 Cu + 1255 electrons squeezed from unit cell contributed by the solvent molecules.

Monoclinic *P*-1 space group, Z = 1

Therefore FW = Unitcell contents/Z

= 8 ligand L1 + 6 anion Cl⁻ + 6 NO₃⁻ + 6 Cu + 6 coordinated water + 1255 electrons (~ 8 DMSO + 90 H₂O molecules) = 8×564.6 + 6×35.5 + 6×62.0 + 6×63.546 + 108.06 + 2244.8

= 4516.8+ 213+ 372 + 381.276 + 108.06 + 2244.8

= 7835.936

Weight loss for 8 DMSO + 96 H_2O molecules

- = 2352.86/7835.936 X 100%
- = 30.02 % Experimental Value (28.80 %)

Figure S12: TGA profile of MOP1.

MOP2

Unit cell contents = 32 ligand L2 + 48 anions Br⁻ + 24 Cu + 5854.6 electrons squeezed from unit cell contributed by the solvent molecules.

Monoclinic C2/c space group, Z = 4

Therefore FW = Unitcell contents/Z

= 8 ligand L1 + 12 anion Br + 6 Cu + 1396 electrons

(~ $8 \text{ DMSO} + 90 \text{ H}_2\text{O}$ molecules)

 $= 8 \times 564.6 + 12 \times 79.9 + 6 \times 63.546 + 2244.8$

= 4516.8+ 958.8+ 381.276 + 2244.8

Weight loss for 8 DMSO + 90 H_2O molecules

- $= 2244.8/8101.676 \times 100\%$
- = 27.70 % Experimental Value (25.35 %)

Figure S13: TGA profile of MOP2.

NMR study:

100 mg of the crystals of CPs and MOPs were soaked in 0.5 ml DMSO-d⁶ or Methanol-d⁴, respectively and then slightly warmed for few minutes.After thet the insoluble CPs and MOPs were filtered off. The filtrates were respectively characterised by NMR spectroscopy.

Figure S14: NMR profiles of a) occluded DMF in CP1, b) occluded DMF in CP2, b) occluded DMF in CP3, d) occluded water in MOP1, b) occluded water in MOP2.

Powder X-ray diffraction: PXRD data were collected using Bruker AXS D8 Advance Powder (Cu K α 1 radiation, $\lambda = 1.5406$ Å) Diffractometer equipped with super speed LYNXEYE detector. The sample was prepared by making a thin film of finely powdered sample (~30 mg) over a glass slide. The experiment was carried out with a scan speed of 0.3 sec/step (step size = 0.02°) for the scan range of 5-35° 20.

PXRD pattern of CP1 - CP3 and MOP1, MOP2. CP1

Figure S15: PXRD plot of simulated and bulk for CP1.

Figure S16: PXRD plot of simulated and bulk for CP2.

22

Figure S18: PXRD plot of simulated and bulk for MOP1.

Figure S19: PXRD plot of simulated and bulk for MOP2.

Preparation of vesicles from MOPs:

1 mg of the each MOP was taken in a separate vial and then DMSO was added (Final concentration 180 μ M). The resulted solution was then subjected for various analyses like DLS, TEM, and AFM. The stability of the aggregates was studied by DLS measurement. Up to 45 μ M concentration, the aggregation was stable and then disintegrated to molecular MOP at 18 μ M as evident from DLS and TEM. Vesicle formed from MOP1 and MOP2 hereafter vesicle 1 and vesicle 2, respectively.

TEM sample preparation: The DMSO solution of the corresponding MOPs (concentration = 180μ M) was drop casted on a carbon-coated Cu (300 mesh) TEM grid. The grid was dried under vacuum at room temperature for one day and used for recording TEM images.

Atomic Force Microscopic (AFM) Study: One drop of the DMSO solution of the vesicles was drop-casted on a separate mica and air dried for 24 hours. Then it was subjected for AFM analysis.

TEM images:

Figure S20: Measurement of wall thickness of a) vesicle 1 and b) vesicle 2.

DLS data:

Figure S21: DLS data of a) 180 μ M solution, b) 90 μ M solution, c) 45 μ M solution, d) 50 times dilution of solution (a) (3.6 μ M) keeping H₂O: DMSO (98:2), e) 0.45 μ M solution, f) 0.18 μ M solution of vesicle 1.

b)

Figure S22: DLS data of a) 180 μ M solution, b) 90 μ M solution, c) 45 μ M solution, d) 50 times dilution of solution (a) (3.6 μ M) keeping H₂O: DMSO (98:2), e) 0.45 μ M solution, f) 0.18 μ M solution of vesicle 2.

Calculation for the number of MOP required for filling the surface of a sphere and a solid sphere:

Surface area of the vesicular architecture may be considered as the surface area of a folded square shaped paper. The surface area of a sphere = $4\pi r^2$ (where r = radius of the sphere). If MOP is considered as a 2D circle of radius r₁, the surface area of MOP becomes πr_1^2 .

So, number of MOP required to fill the square paper = $4\pi r^2/\pi r_1^2$. (Considering closed packed model)

According to DLS study the radius of the vesicular architecture (r) = ~ 150 nm and the radius of the MOP = ~ 2 nm.

So, number of MOP required = 22,640.

Volume of the vesicular architecture $=\frac{4}{2}\pi r^{3}$.

Volume of one MOP = $\frac{4}{3}\pi r_1^3$.

So, the number of MOP required to fill a solid sphere = 4,20,895. (Considering closed packed model)

TEM images of single nanocages:

Figure S23: TEM images of the single nanocages of a) Vesicle 1 and b) vesicle 2 obtained from the solution of each vesicle at 0.18μ M concentration.

Calcein encapsulation within the vesicles: 1 mg of the MOP1/MOP2 and 1.3 mg of calcein were taken in a vial and 100 μ L DMSO was added. This mixture was further diluted with 1900 μ L of water and then subjected to dialysis using SnakeSkin® dialysis tubing with molecular weight cut off 3500 for 72 hours following standard technique. Concentration of Calcein inside the vesicle was estimated from UV-Vis spectra.

Calculation of calcein encapsulation within vesicle 1

From UV-VIS spectroscopy, absorbance of the same concentrated free calcein is (A) 0.01373. Extinction coefficient (ϵ) is 77,000 for calcein. Path length (l) is 1 cm. From Lambert-beer's law, A = ϵ .c.l

So,
$$c = A/\epsilon.1$$

= 0.01373/77000×1
= 1.783X10⁻⁷ (M).

Encapsulation efficiency = 1.783×10^{-7} (M)/ $2.5X10^{-6}$ (M)×100% = 7.13 % Calculation of calcein encapsulation within vesicle 2

From UV-VIS spectroscopy, absorbance of the same concentrated free calcein is (A) 0.01335. Extinction coefficient (ϵ) is 77,000 for calcein. Path length (1) is 1 cm. From Lambert-beer's law, A = ϵ .c.1 So, c = A/ ϵ .1 = 0.01335/77000×1 = 1.73X10⁻⁷ (M). Encapsulation efficiency= 1.73×10⁻⁷ (M)/2.5X10⁻⁶ (M)×100% = 6.92 %

Sample preparation for fluorescence microscopy: The DMSO solution of the dye/drug encapsulated vesicles was drop casted on a glass slide. The slide was then dried under vacuum at room temperature for one day and used for recording fluorescence images.

Figure S24: a) UV-Vis and b) Photoluminiscence plot of encapsulated and free calcein in vesicle 2, c) Fluorescence microscopic image after calcein encapsulation within the vesicle 1.

Calcein encapsulation by vesicle 2:

Figure S25: a) UV-Vis and b) Photoluminiscence plot of encapsulated and free calcein in vesicle 2, c) Fluorescence microscopic image after calcein encapsulation within the vesicle 2.

Doxorubicin encapsulation within the vesicle 1:

1 mg of the MOP1/MOP2 and 0.1 mg of doxorubicin.HCl (DOX) were taken in a vial and 100 μ L DMSO was added. This mixture was further diluted with 1900 μ L of water and then subjected to dialysis using SnakeSkin® dialysis tubing with molecular weight cut off 3500 for 72 hours following standard technique. Concentration of DOX inside the vesicle was estimated from UV-Vis spectra.

Calculation of DOX encapsulation within vesicle 1

From the calibration curve, molar extinction coefficient = 9.84271Initial concentration of doxorubicin used = 0.05 mg/mlFinal concentration of doxorubicin in vesicle $1 = 9.9769 \times 10^{-4} \text{ mg/ml}$ So, loading efficiency = 1.99%.

Biological studies.

Physiological stability and MTT assay: RAW 264.7 macrophage cells were purchased from American Type Culture Collection (ATCC) and maintained following their guidelines. The cells were cultured in Dulbecco's modified eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin and kept in a humidified incubator at 37° C and 5% CO₂.

The cytotoxicity of the vesicle 1 and DOX encapsulated vesicle 1 were evaluated in RAW 264.7 cells by using a standard MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In a 96-well plates, the cells were seeded keeping density approximately 1×10^4 cells per well. After 24 h of seeding, the cells were treated with various concentrations (0.50, 0.60, 0.70 and 1.0 μ M) of the vesicle 1/DOX@vesicle 1 or DMEM alone for 72 h in a humidified incubator at 37° C and 5% CO₂. The culture medium was then replaced with 100 mg of MTT per well and kept at 37° C and 5% CO₂ for 4 h. The formazan produced by mitochondrial reductase from live cells was dissolved by adding DMSO (100 mL per well) and incubated for 30 min at 37° C. The absorbance of formazan was recorded at 570 nm by using a multiplate ELISA reader (Varioskan Flash Elisa Reader, Thermo Fisher). The percentages of survival of cells in vesicle 1/DOX@vesicle 1 treated samples were calculated by considering the DMEM-treated sample to be 100%.

Figure S26: DLS data of a) 180 μ M solution of vesicle 1 in PBS buffer (DMSO:PBS = 2:98), b) 180 μ M solution of vesicle 2 in PBS buffer (DMSO:PBS = 2:98).

Figure S27: MTT assay a) Vesicle 1, b) DOX encapsulated vesicle 1.

Cell imaging: For cell imaging, RAW 264.7 cells were cultured by using DMEM supplemented with 10% FBS and 1% penicillin–streptomycin on ethanol etched cover slips kept in a 35 mm tissue culture dishes. The dishes were then kept in a humidified incubator at 37° C overnight. Then the cells were washed with PBS and incubated in serum-free media (SFM) for half an hour. DMSO solution of DOX encapsulated vesicle 1 at IC₅₀ concentration was made by mixing it in serum-containing medium keeping Serum-containing medium: DMSO = 98:2 (v/v). These

solutions were incubated for 30 min. After incubation, SFM was discarded followed by addition of the media containing the DOX@vesicle 1. The cells were fixed by using 4% paraformaldehyde for 10 min at room temperature. Then the cells were washed with PBS and mounted on glass slides for microscopy.

Figure S28: Fluorescent microscopic images of the RAW 264.7 cells displaying a) bright field, b) overlay and c) fluorescence of the images when incubated with the DOX encapsulated vesicle 1 for 4 hours.

Figure S29: RAW 264.7 cells incubated without DOX displaying no auto-fluorescence. Fluorescence microscopic images of a) bright field, b) fluorescence.

DOX release study:

DMSO stock solution of vesicle 1 was taken in three different vials. 1(N) HCl was then added to convert the pH of the solution to 6, 5 and 4, respectively. The final pH of the solution was checked by litmus paper. These solutions were kept for 30 minutes and then subjected to DLS measurements.

In a separate experiment, five sets of DOX loaded vesicle solution with pH 7, 6, 5, 4, 1 were prepared by following similar procedure as stated above. These solutions were kept for 30 minutes and then subjected to photoluminescence analysis.

Figure S30: a) DLS data of vesicle 1 at different pH, b) Emission spectra of DOX encapsulated vesicle 1 at different pH.

Chymotrypsin inhibition study:

Solution 1 (S1). $1.0x10^{-6}$ M solution of Bovine pancreatic α -chymotrypsin (Cht). Solution 2 (S2). $1.0x10^{-6}$ M solution of all vesicles keeping H₂O: DMSO = 98: 2. Solution 3 (S3). $4.0x10^{-3}$ M solution of N-succinyl-l-phenylalanine-para-nitroanilide (SPNA) keeping H₂O: DMSO = 98: 2.

Solution 4 (S4). 2.0×10^{-6} M solution of NaBr keeping H₂O: DMSO = 98: 2 (Amount of NaBr was taken keeping the no. of moles of Br⁻ same as that of the vesicle of MOP 2).

10 ml of the α -chymotrypsin solution (S1) was added to 10 ml of each vesicle solutions (S2) and NaBr solution (S4). For the reaction an aliquot (2.00 ml) of these solutions was added to a UV cell. 50µl of S3 was then added (final concentrations were 1.0×10^{-4} M in SPNA, 5×10^{-7} M in vesicles and 5×10^{-7} M in α -chymotrypsin). Also for control reaction 10 ml of S1 was mixed with 10 ml of water and 50µl of the S3 was added. After thorough mixing, solutions were kept undisturbed for 10 minutes. Hydrolysis was followed by monitoring product formation at 410 nm

every 20 seconds (for a total of 1.5 hours) using UV/Vis spectrometry. Form the absorbance value, the concentration of 4-nitro aniline was estimated considering its extinction coefficient 8800 M⁻¹cm⁻¹ and plotted against time. The rate of formation of 4-nitro aniline was calculated by calculating the slope of each straight line. The activity of the enzyme was calculated from the ratio of the slope obtained from each experiment with control experiment and multiplying by 100 % (assuming the activity of cht was 100 % in absence of vesicles or NaBr). Inhibition was calculated by subtracting the activity from 100 %. To probe the fact that the enzyme was not denatured during the experiment emission (λ_{ex} = 295 nm) and CD spectra were recorded for a freshly prepared solutions after a mere incubation of 24 h. For thermal denaturation the Cht solution was heated at 90 ° C for 0.5 h and the spectra were recorded. No change in spectral features and spectral features were different from that of the denatured one, indicated the lack of denaturation during the experiment.

Figure S31: a) Fluorescence spectra ($\lambda_{ex} = 295 \text{ nm}$) and b) CD spectra of Cht in various experimental conditions and that of thermally denatured Cht showing that no denaturation occurred in the experimental conditions.

Calculation for chymotrypsin inhibition study:

Slope determined for control experiment $(K_0) = 0.10783$ Slope determined for inhibition experiment with NaBr $(K_1) = 0.09134$ Slope determined for inhibition experiment with vesicle 1 $(K_2) = 0.07653$ Slope determined for inhibition experiment with vesicle 2 $(K_3) = 0.05194$

Activity of Cht for control experiment = 100 % Activity of Cht for inhibition experiment with NaBr = $K_I / K_0 \ge 100 \% = 84.7 \%$ Activity of Cht for inhibition experiment with vesicle 1 = 0.07653 = $K_2 / K_0 \ge 100 \% = 70.9 \%$ Activity of Cht for inhibition experiment with vesicle 2 = 0.07653 = $K_3 / K_0 \ge 100 \% = 53.6 \%$ Therefore, inhibition of activity caused by NaBr = (100- 84.7) % = 15.3 % Inhibition of activity caused by vesicle 1 = (100- 70.9) % = 29.1 % Inhibition of activity caused by vesicle 1 = (100- 53.6) % = 46.4 %

Checkcif reports: CP1

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: CP-1

Bond precision:	C-C = 0.0056 A	Wavelength=0.71073
Cell: Temperature:	a=36.068(8) b=14.096 alpha=90 beta=109 100 K	(3) c=16.023(4) .397(7) gamma=90
Volume Space group Hall group Moiety formula	Calculated 7684(3) C 2/c -C 2yc C60 H60 Cl2 Cu N12 Ol4	Reported 7684(3) C 2/c -C 2yc 0.5(C120 H120 Cu2 N24
Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	C60 H60 C12 Cu N12 O11 C60 H60 C12 Cu N12 O14 1307.65 1.130 4 0.414 2716.0 2719.61 48,18,21 9539 0.862,0.921 0.862	012), 2(C1 04) C60 H60 C12 Cu N12 014 1307.64 1.130 4 0.414 2716.0 47,18,21 9360 0.548,0.746
Correction metho AbsCorr = MULTI-	od= # Reported T Limits: -SCAN	Tmin=0.548 Tmax=0.746
Data completenes	ss= 0.981 Theta(max)= 28.274
R(reflections)=	0.0873(5067) wR2(re	flections) = 0.2843(9360)
S = 1.018	Npar= 487	

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

🎈 Alert level B

PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s)

3 Report

Author Response: Some atom couldn't be refined anisotropically as anisotropic \ refinement doesnot improve the model statistics.

Alert level C

RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25
Weighted R factor given 0.284

Author Response: This is due to poor data quality. Multiple collection of the data \ couldn't improve the data quality.

PLAT084_ALERT_3_C	High wR2 Value (i.e. > 0.25) 0.28	Report
PLAT220_ALERT_2_C	Non-Solvent Resd 1 0 Ueq(max)/Ueq(min) Range 4.1	Ratio
PLAT241_ALERT_2_C	High 'MainMol' Ueg as Compared to Neighbors of C16	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of 04	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueg as Compared to Neighbors of N5	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of C20	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueg as Compared to Neighbors of C26	Check
PLAT413_ALERT_2_C	Short Inter XH3 XHn H9C H23B 2.13	Ang.
PLAT420_ALERT_2_C	D-H Without Acceptor N2 H2 Please	Check
PLAT004_ALERT_5_G	Polymeric Structure Found with Maximum Dimension 2 Number of Unrefined Donor-H Atoms	Info Report
PLAT007 ALERT 5 G	Number of Unrefined Donor-H Atoms	Report
PLAT042_ALERT_1_G	Calc. and Reported MoietyFormula Strings Differ Please	Check
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large 0.18	Report
PLAT230_ALERT_2_G	Hirshfeld Test Diff for Cl1A 04 15.2	s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for Cl1B 04 8.3	s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X) Cul 04 7.7	s.u.
PLAT301_ALERT_3_G	Main Residue Disorder Percentage = 27	Note
PLAT606_ALERT_4_G	VERY LARGE Solvent Accessible VOID(S) in Structure !	Info
PLAT811_ALERT_5_G	No ADDSYM Analysis: Too Many Excluded Atoms !	Info
PLAT869_ALERT_4_G	ALERTS Related to the use of SQUEEZE Suppressed !	Info

0 ALERT level A = Most likely a serious problem - resolve or explain

1 **ALERT level B** = A potentially serious problem, consider carefully

10 ALERT level C = Check. Ensure it is not caused by an omission or oversight

11 ALERT level ${\bf G}$ = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 30/03/2016; check.def file version of 30/03/2016

Datablock CP-1 - ellipsoid plot

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: CP-2

Bond precision:	C-C = 0.0078	A I	Wavelength=0.71073			
Cell: Temperature:	a=35.729(3) alpha=90 100 K	b=13.9528(1 beta=109.21	1) c=15.8889(13) 1(2) gamma=90			
Volume Space group Hall group Moiety formula	Calculated 7479.8(11) C 2/c -C 2yc C60 H60 B2 Cu	F8 N12 O6	Reported 7479.9(11) C 2/c -C 2yc 0.5(C120 H120 Cu2 N24			
Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	C60 H60 B2 Cu 1282.37 1.139 4 0.362 2652.0 2654.62 37,14,16 4429 0.891,0.937 0.891	F8 N12 O6	O12), 2(B F4) C60 H60 B2 Cu F8 N12 O6 1282.36 1.139 4 0.362 2652.0 37,14,16 4430 0.668,0.745			
Correction metho AbsCorr = MULTI-	od= # Reported -SCAN	T Limits: Tr	min=0.668 Tmax=0.745			
Data completenes	ss= 1.000	Theta(m	ax)= 21.726			
R(reflections)=	0.0819(2714)	wR2(ref	lections)= 0.2587(4430)			
S = 1.041	Npa	ar= 468				

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

🖣 Alert level A

Author Response: The crystal is poorly diffracting. Multiple collection of data with \ more X-ray exposure doesn't improve data quality.

Alert level B PLAT213_ALERT_2_B Atom C4

has ADP max/min Ratio 4.4

4.4 prolat

Author Response: We are chemically sure about the element. This alert is due to poor \ data quality.

Alert level C

REFNR01_ALERT_3_C Ratio of reflections to	parameters is < 10 for a		
centrosymmetric structure			
sine(theta)/lambda	0.5208		
Proportion of unique data used	1.0000		
Ratio reflections to parameters	9.4658		
RFACR01_ALERT_3_C The value of the weighte	ed R factor is > 0.25		
Weighted R factor given 0.259			
PLAT018_ALERT_1_C _diffrn_measured_fraction	_theta_max .NE. *_full	!	Check
PLAT031_ALERT_4_C Refined Extinction Parame	ter within Range	3.250	Sigma
PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.	25)	0.26	Report
PLAT088_ALERT_3_C Poor Data / Parameter Rat	io	9.46	Note
PLAT213_ALERT_2_C Atom F3 has	ADP max/min Ratio	3.4	prolat

Author Response: We are chemically sure about the element. This alert is due to poor \ data quality.

PLAT213_ALERT_2_C	Atom C3	has ADP max/min Ratio	3.2 prolat
	Author Respons due to poor \ dat	e: We are chemically sure about the eleme a quality.	ent. This alert is
PLAT213_ALERT_2_C	Atom C15B	has ADP max/min Ratio	3.4 prolat
	Author Respons due to poor \ dat	e: We are chemically sure about the eleme a quality.	ent. This alert is

PLAT213_ALERT_2_C Atom C18B

has ADP max/min Ratio 3.4 prolat

Author Response: We are chemically sure about the element. This alert is due to poor \ data quality.

PLAT220_ALERT_2_C	Non-	-Solvent	Resd	1	C	Ueq(max)	/Ue	eq(min)	Range	3.6	Ratio
PLAT220_ALERT_2_C	Non-	-Solvent	Resd	1	F	Ueq(max)	/Ue	eq(min)	Range	3.4	Ratio
PLAT242_ALERT_2_C	Low	'Main	nMol'	Ueq	as	Compared	to	Neighbo	rs of	F1	Check
PLAT242_ALERT_2_C	Low	'Main	nMol'	Ueq	as	Compared	to	Neighbo	rs of	N3	Check
PLAT242_ALERT_2_C	Low	'Main	nMol'	Ueq	as	Compared	to	Neighbo	rs of	C14	Check
PLAT341_ALERT_3_C	Low	Bond Pre	ecisio	on or	1 (C-C Bonds	92 2032			0.00779	Ang.
PLAT420_ALERT_2_C	D-H	Without	Accer	otor		NG		H6		Please	Check

Alert level G

PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension	2	Info
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	3	Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large	0.17	Report
PLAT128_ALERT_4_G Alternate Setting for Input Space Group C2/c	I2/a	Note
PLAT242_ALERT_2_G Low 'MainMol' Ueq as Compared to Neighbors of	B5	Check
PLAT301_ALERT_3_G Main Residue Disorder Percentage =	18	Note
PLAT432_ALERT_2_G Short Inter XY Contact F3 C16B	2.68	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact F3 C15B	2.91	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact F3 C23A	2.95	Ang.
PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure	1	Info
PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed	1	Info

1 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
17 ALERT level C = Check. Ensure it is not caused by an omission or oversight
12 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
16 ALERT type 2 Indicator that the structure model may be wrong or deficient
7 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 08/07/2016; check.def file version of 05/07/2016

Datablock CP-2 - ellipsoid plot

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: CP-3

Bond precision:	C-C = 0.0118 A	Wave	Wavelength=0.71073			
Cell: Temperature:	a=35.509(10) b alpha=90 b 100 K	=14.304(4) eta=108.369	c=15.395(4) (19) gamma=90			
Volume Space group Hall group	Calculated 7421(4) C 2/c -C 2yc	Re 74 C -C 0.	ported 21(4) 2/c 2yc 5(C120 H120 Cu2 N24			
Molety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	C60 H60 Cu N14 012 C60 H60 Cu N14 012 1232.77 1.103 4 0.354 2572.0 2574.34 38,15,16 5064 0.880,0.932 0.880	01 C6 12 1. 4 0. 25 38 48 0.	2), 2(N 03) 0 H60 Cu N14 012 32.76 103 354 72.0 ,15,16 93 450,0.745			
Correction metho AbsCorr = MULTI-	od= # Reported T L: -SCAN	imits: Tmin=	=0.450 Tmax=0.745			
Data completenes	ss= 0.966	Theta (max)	= 22.835			
R(reflections)= S = 0.985	0.0844(2306) Npar= 4	wR2(reflec	tions)= 0.2962(4893)			
	T.L. OFT					

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

🚨 Alert level A

THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5460

Author Response: The crystal is poorly diffracting. Multiple collection of data with \ more X-ray exposure doesn't improve data quality.

2 Report

🎈 Alert level B

PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s)

Author Response: Some atom couldn't be refined anisotropically as anisotropic \ refinement doesnot improve the model statistics.

Alert level C

RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25
Weighted R factor given 0.296

Author Response: This is due to poor data quality. Multiple collection of the data \ couldn't improve the data quality.

RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.139 PLAT018_ALERT_1_C _diffrn_measured_fraction_theta_max .NE. *_full ! Check PLAT020_ALERT_3_C The value of Rint is greater than 0.12 0.139 Report PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 47 % PLATOZO_ALERT_3_C High wR2 Value (i.e. > 0.25) PLATO84_ALERT_3_C High wR2 Value (i.e. > 0.25) PLAT220_ALERT_2_C Non-Solvent Resd 1 0 Ueq(max)/Ueq(min) Range 0.30 Report 3.2 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for 04 -- N7 6.5 s.u. . . PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cul -- 04 7.7 s.u. • • PLAT234_ALERT_4_C Large Hirshfeld Difference N3 -- C22B 0.19 Ang. . . PLAT234_ALERT_4_C Large Hirshfeld Difference N5 -- C27B 0.19 Ang. . . PLAT234_ALERT_4_C Large Hirshfeld Difference C1 -- C11 0.16 Ang. . . PLAT234_ALERT_4_C Large Hirshfeld Difference C15 -- C16 0.16 Ang. 12102 PLAT234_ALERT_4_C Large Hirshfeld Difference C26 -- C28B 0.22 Ang. 12012 PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of 04 Check 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low N3 Check 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low N7 Check PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C14 Check PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C20 Check PLAT242_ALERT_2_C Low 'MainMol' Ueg as Compared to Neighbors of C26 Check PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds 0.01184 Ang. C(sp2)-C(sp2) Bond C19 - C20 .. Inter H...H Contact H16 .. H16 .. PLAT369_ALERT_2_C Long 1.53 Ang. PLAT411_ALERT_2_C Short Inter H...H Contact H16 2.13 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N2 Please Check -- H2 . . .

Alert level G

```
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ...
                                                                          3 Report
PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension
                                                                          2 Info
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .....
                                                                          3 Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ
                                                                     Please Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large
                                                                       0.17 Report
PLAT128_ALERT_4_G Alternate Setting for Input Space Group
                                                           C2/c
                                                                       I2/a Note
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records
                                                                          2 Report
PLAT301_ALERT_3_G Main Residue Disorder ..... Percentage =
                                                                         23 Note
PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure
                                                                          ! Info
PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed
                                                                          ! Info
```

```
1 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
24 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
15 ALERT type 2 Indicator that the structure model may be wrong or deficient
8 ALERT type 3 Indicator that the structure quality may be low
9 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 30/03/2016; check.def file version of 30/03/2016

Datablock CP-3 - ellipsoid plot

MOP1

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: MOP-TO-1

Bond precision:	C-C = 0.0152 A	Wavelend	gth=0.71073
Cell: a	a=24.331(3) alpha=118.745(2)	b=24.388(3) beta=91.861(2)	c=24.415(3) gamma=118.748(2)
Temperature: 1	120 K		Control control to the second second second
	Calculated	Report	ed
Volume	10460(2)	10461(2)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C264 H288 Cl6 Cu6 6(N O3)	5 N48 O30, C264 H2 6(N O3	288 Cl6 Cu6 N48 O24,), 6(H2O)
Sum formula	C264 H288 Cl6 Cu6	5 N54 O48 C264 H	300 Cl6 Cu6 N54 O48
Mr	5579.50	5591.5	9
Dx,g cm-3	0.886	0.886	
Z	1	1	
Mu (mm-1)	0.392	0.392	
F000	2910.0	2910.0	
F000'	2913.91		
h,k,lmax	27,27,27	27,26,	27
Nref	31111	17221	
Tmin,Tmax	0.852,0.917	0.478,	0.745
Tmin'	0.822		
Correction meth AbsCorr = MULTI	od= # Reported T I -SCAN	Limits: Tmin=0.47	78 Tmax=0.745
Data completene	ess= 0.554	Theta(max) = 23	.542
R(reflections)=	0.0823(9236)	wR2(reflection	s)= 0.2475(17221)
S = 0.977	Npar=	1714	

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

🔍 Alert level B

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5620

Author Response: The crystal is poorly diffracting. Multiple collection of data with \ more X-ray exposure doesn't improve data quality.

PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds 0.01522 Ang.

Author Response: This alert is due to poor data quality.

PLAT410_ALERT_2_B	Short	Intra	НН	Contact	H8A	•	H12Q	 1.83	Ang.
PLAT410_ALERT_2_B	Short	Intra	НН	Contact	H40A		H45B	 1.86	Ang.
PLAT410_ALERT_2_B	Short	Intra	НН	Contact	H67A	• •	H74B	 1.89	Ang.

Alert level C

PLAT018_ALERT_1_C	_diff:	n_meas	ured	_fra	ctic	on_t	heta_	max	.NE. *_f	ull	!	Check
PLAT220_ALERT_2_C	Non-Sc	lvent	Resd	1	С	Ue	eq (max) /Ue	eq(min) F	lange	3.9	Ratio
PLAT222_ALERT_3_C	Non-Sc	lvent	Resd	1	ΗU	Jisc	(max)	/Uis	so(min) F	lange	4.4	Ratio
PLAT232_ALERT_2_C	Hirshf	feld Te	st D	iff	(M-)	()	Cu3		N21_a	()•)•	5.5	s.u.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	04		- C76		0.16	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	011		- C16		0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	N7		- C26	• •	0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	N8		- C22		0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld i	Diff	erer	nce	N19		- C80		0.16	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld !	Diff	erer	nce	C10		- C11		0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	C38		- C39		0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld 1	Diff	erer	nce	C86		- C87		0.16	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld i	Diff	erer	nce	C107		- C108	• •	0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirshf	eld !	Diff	erer	nce	C123		C124		0.16	Ang.
PLAT241_ALERT_2_C	High	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	N8	Check
PLAT241_ALERT_2_C	High	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	C33	Check
PLAT241_ALERT_2_C	High	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	C91	Check
PLAT242_ALERT_2_C	Low	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	Cul	Check
PLAT242_ALERT_2_C	Low	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	Cu2	Check
PLAT242_ALERT_2_C	Low	'Main	Mol'	Ueq	as	Con	npared	to	Neighbor	s of	Cu3	Check
PLAT244_ALERT_4_C	Low	'Solv	rent'	Ueq	as	Con	npared	to	Neighbor	s of	N25	Check
PLAT244_ALERT_4_C	Low	'Solv	rent'	Ueq	as	Con	npared	to	Neighbor	s of	N2 6	Check
PLAT244_ALERT_4_C	Low	'Solv	rent'	Ueq	as	Con	npared	to	Neighbor	s of	N27	Check
PLAT360_ALERT_2_C	Short	C(sp3) -C (sp3)	Bor	nd	C123	7	- C124		1.43	Ang.
PLAT369_ALERT_2_C	Long	C(sp	2)-C	(sp2) Bo	ond	C28	2	- C29		1.55	Ang.
PLAT369_ALERT_2_C	Long	C(sp	2)-C	(sp2) Bo	ond	C88	-	- C89	• •	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp	2)-C	(sp2) Bo	ond	C109	-	- C110		1.56	Ang.
PLAT410_ALERT_2_C	Short	Intra	Н	H Co	ntad	ct	H7A		H12P		1.96	Ang.
PLAT410_ALERT_2_C	Short	Intra	Н	H Co	ntad	ct	H7B	-03-	H14A		1.91	Ang.
PLAT410_ALERT_2_C	Short	Intra	Н!	H Co	ntad	ct	H10A	•33	H12A		1.90	Ang.
PLAT410_ALERT_2_C	Short	Intra	Н	H Co	ntad	ct	H10C		H12D		1.95	Ang.
PLAT410_ALERT_2_C	Short	Intra	н	H Co	ntad	ct	H10E		H12I		1.93	Ang.
PLAT410_ALERT_2_C	Short	Intra	н	H Co	ntad	ct	H10F		H12C		1.90	Ang.
PLAT410_ALERT_2_C	Short	Intra	н	H Co	ntad	ct	H42A	- 10	H43B		1.98	Ang.
PLAT410_ALERT_2_C	Short	Intra	Н	H Co	ntad	ct	H69A	•::•	H72A	••	1.93	Ang.
PLAT414_ALERT_2_C	Short	Intra	D-H.	.H-X			H23		H93		1.99	Ang.

PLAT420_ALERT_2_C D-H	Without	Acceptor	N3	1.000	HЗ		Please	Check
PLAT420_ALERT_2_C D-H	Without	Acceptor	N10		H10		Please	Check
PLAT420_ALERT_2_C D-H	Without	Acceptor	N14		H14		Please	Check
PLAT420_ALERT_2_C D-H	Without	Acceptor	N16		H16		Please	Check
PLAT420_ALERT_2_C D-H	Without	Acceptor	N18		H18		Please	Check
PLAT420_ALERT_2_C D-H	Without	Acceptor	N20		H20	•••	Please	Check

Alert level G

С	264.00	264.00	0.00
H	300.00	288.00	12.00
Cl	6.00	6.00	0.00
Cu	6.00	6.00	0.00
N	54.00	54.00	0.00
0	48.00	48.00	0.00

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	2	Note
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	12	Report
PLAT041_ALERT_1_G Calc. and Reported SumFormula Strings Differ	Please	Check
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large	0.14	Report
PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal (Note)	0.002	Degree
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	1	Report
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cul Cll	12.2	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cu2 Cl2	18.2	s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cu3 Cl3	22.3	s.u.
PLAT432_ALERT_2_G Short Inter XY Contact 011 C27	3.00	Ang.
PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure	!	Info
PLAT794_ALERT_5_G Tentative Bond Valency for Cul (II)	2.51	Note
PLAT794_ALERT_5_G Tentative Bond Valency for Cu2 (II)	2.25	Note
PLAT794_ALERT_5_G Tentative Bond Valency for Cu3 (II)	2.24	Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints	1	Note
PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed	!	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 5 ALERT level B = A potentially serious problem, consider carefully 42 ALERT level C = Check. Ensure it is not caused by an omission or oversight 20 ALERT level G = General information/check it is not something unexpected 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 37 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 16 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 30/03/2016; check.def file version of 30/03/2016

Datablock MOP-TO-1 - ellipsoid plot

MOP2

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: MOP-TO-2

Bond precision:	C-C = 0.0201 A	И	lavelength=	0.71073
Cell:	a=34.915(3) alpha=90	b=33.412(beta=90.3	3) 52(4)	c=34.291(3) gamma=90
Temperature:	120 K			
	Calculated		Reported	
Volume	40002(6)		40002(5)	
Space group	C 2/c		C 2/c	
Hall group	-C 2yc		-C 2yc	
Moiety formula	C264 H286 Br6 Cu6 6(Br)	5 N48 O24,	C264 H290 3 6(Br)	Br6 Cu6 N48 O24,
Sum formula	C264 H286 Br12 Cu	16 N48 O24	C264 H290	Br12 Cu6 N48 O24
Mr	5855.53		5859.58	
Dx,g cm-3	0.972		0.972	
Z	4		4	
Mu (mm-1)	1.560		1.560	
F000	11968.0		11968.0	
F000'	11965.73			
h,k,lmax	30,29,30		30,29,30	
Nref	14588		14367	
Tmin, Tmax	0.576,0.709		0.575,0.74	4
Tmin'	0.491			
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	Limits: Tm	in=0.575 Tr	max=0.744
Data completenes	ss= 0.985	Theta (ma	ax)= 18.352	
R(reflections)=	0.0842(12005)	wR2(ref]	lections) =	0.2350(14367)
S = 1.032	Npar=	1569		

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

🚨 Alert level A

 $\label{eq:theta_max} THETM01_ALERT_3_A \ The value of sine(theta_max)/wavelength is less than 0.550 \\ Calculated sin(theta_max)/wavelength = 0.4430 \\ \end{array}$

Author Response: The crystal is poorly diffracting. Multiple collection of data with \ more X-ray exposure doesn't improve data quality.

12 C			192					
Alert level PLAT201_ALERT_2_B	B Isotropic non-H At	oms in Main Residue(s)	8 Report					
Author Response: Some atom couldn't be refined anisotropically as anisotropic \ refinement doesnot improve the model statistics.								
PLAT213_ALERT_2_B	Atom N17	has ADP max/min Ratio	4.2 prolat					
Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.								
PLAT213_ALERT_2_B	Atom Cl	has ADP max/min Ratio	4.3 prolat					
	Author Response: W due to poor \ diffract	e are chemically sure about the element. ion from the crystal.	This alert is					
PLAT213_ALERT_2_B	Atom C5	has ADP max/min Ratio	4.4 prolat					
	Author Response: W due to poor \ diffract	e are chemically sure about the element. ion from the crystal.	This alert is					
PLAT213_ALERT_2_B	Atom C48	has ADP max/min Ratio	4.1 prolat					
	Author Response: W due to poor \ diffract	'e are chemically sure about the element. ion from the crystal.	This alert is					
PLAT213_ALERT_2_B	Atom C57	has ADP max/min Ratio	4.3 prolat					
Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.								
PLAT213_ALERT_2_B	Atom C72	has ADP max/min Ratio	4.4 oblate					
	Author Response: W due to poor \ diffract	e are chemically sure about the element. tion from the crystal.	This alert is					

PLAT220_ALERT_2_B Non-Solvent Resd PLAT341_ALERT_3_B Low Bond Precisio	1 C Ueq(max)/Ueq(min) Range n on C-C Bonds	7.4 Ratio 0.02011 Ang.					
Author Response: This alert is du	e to poor data quality.						
PLAT410_ALERT_2_B Short Intra HH PLAT410_ALERT_2_B Short Intra HH	Contact Hj Hx Contact HOEA H6EA	1.88 Ang. 1.86 Ang.					
Alert level C REFNR01_ALERT_3_C Ratio of reflect centrosymmetric structu sine (theta)/lambda Proportion of unique da Ratio reflections to pa PLAT018_ALERT_1_C _diffrn_measured_ PLAT088_ALERT_3_C Poor Data / Param PLAT213_ALERT_2_C Atom Cu3	ions to parameters is < 10 for a re 0.4430 ta used 1.0000 rameters 9.1568 fraction_theta_max .NE. *_full eter Ratio has ADP max/min Ratio	! Check 9.30 Note 3.4 prolat					
Author Response: V due to poor \ diffrac	Ve are chemically sure about the elemer tion from the crystal.	ıt. This alert is					
PLAT213_ALERT_2_C Atom N13	has ADP max/min Ratio	3.6 prolat					
Author Response: V due to poor \ diffrac	Ve are chemically sure about the elemer tion from the crystal.	ıt. This alert is					
PLAT213_ALERT_2_C Atom N23	has ADP max/min Ratio	3.1 prolat					
Author Response: V due to poor \ diffrac	Ve are chemically sure about the elemer tion from the crystal.	ıt. This alert is					
PLAT213_ALERT_2_C Atom C3	has ADP max/min Ratio	3.7 prolat					
Author Response: V due to poor \ diffrac	Ve are chemically sure about the elemer tion from the crystal.	ıt. This alert is					
PLAT213_ALERT_2_C Atom C43	has ADP max/min Ratio	3.3 prolat					
Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.							
PLAT213_ALERT_2_C Atom C45	has ADP max/min Ratio	3.4 prolat					
Author Response: V due to poor \ diffrac	Ve are chemically sure about the elemen ction from the crystal.	ıt. This alert is					
PLAT213_ALERT_2_C Atom C74	has ADP max/min Ratio	3.7 prolat					

Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.

PLAT213_ALERT_2_C Atom C109	has ADP max/min Ratio	3.3 oblate
-----------------------------	-----------------------	------------

Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.

PLAT213_ALERT_2_C Atom C132	has ADP max/min Ratio	3.3 oblate
-----------------------------	-----------------------	------------

Author Response: We are chemically sure about the element. This alert is due to poor \ diffraction from the crystal.

PLAT220_ALERT_2_C	Non-Sc	lvent	Resc	1 1	N	U	eq(max)/Ue	eq(min)	Ran	ge	3.2	Ratic
PLAT220_ALERT_2_C	Non-Sc	lvent	Reso	1 1	0	U	eq(max)/Ue	eq(min)	Ran	ge	3.6	Ratic
PLAT222_ALERT_3_C	Non-Sc	lvent	Resc	d 1	Н	Uis	o(max)	/Uis	so(min)	Ran	ge	6.0	Ratic
PLAT230_ALERT_2_C	Hirshf	eld T	est I	Diff	for	1	C59		- C63			5.3	s.u.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	01	-	- C31			0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	04		- C42			0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	05		- C58			0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	08		- C102			0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N1		- C134			0.19	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N2		- C61			0.19	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N7		- C35			0.21	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N12	0.772.0	- C23			0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N17		- C105			0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N18		- C97			0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	N23		- C78			0.16	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	C1		- C9			0.17	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C3		- C18			0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirsh	feld	Dif	fere	ence	C4		- C5			0.17	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C14		- C15			0.19	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C23		- C24			0.21	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C40		- C41			0.18	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C45		- C46		- 2360 1970 - 19	0.24	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C47		- C48			0.19	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C47		- C50			0.17	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C52	-	- C53		202	0.19	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C58		- C59			0.23	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C62		- C63			0.24	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C65		- C69			0.19	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ence	C70	_	- C71			0.20	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	nce	C72	_	- C73			0.16	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	ince	C73		- C78			0.17	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	nce	C 99		- C102			0.21	Ang
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	nce	C106		- C111		- 23.5	0.18	Ang.
DIAT23/ AIFRT / C	Largo	Hirch	fold	Dif	ford	nce	C108	_	- C109		•	0.19	Ang.
PLAT234 ALERT 4 C	Large	Hirsh	feld	Dif	fere	nce	C110		- C111		•••	0.18	Ang.
DIAT23/ ALERT / C	Largo	Hirch	fold	Dif	ford	nce	C116		- C117		•••	0.18	Ang.
PLAT234 ALERT 4 C	Large	Hirch	feld	Dif	fere	nce	C126		- C127			0.10	Ang.
DIAT234_ALERT_4_C	Large	Hirch	fold	Dif	fore	nce	C128		- C129		• •	0.24	Ang.
DIAT234 AIEDT 4 C	Large	Hirch	fold	Dif	fore	nce	C130	1220	C131		•	0.22	Ang.
PLAT204_ALERT_4_C	Ligh	/Mai	nMol/	UIC	Tere	Co	marad	+ 0	Noighbo	nre	•••	N17	Chock
PLAT241_ALERT_2_C	nigh Ui sh	Mai .		00	iy as		inpared	10	Neighbo	JIS		INI /	Check
DIAT241_ALERI_Z_C	High	/ Mai	nMol /	Ue	y de		mpared	to	Neighbo	TS	of	035	Check
DIAT241_ALERI_Z_C	High	/Mai	nMol.	0e	ig as		mpared	10	Neighbe	TR	of	C100	Check
PLAIZ41_ALERI_Z_C	птдп	· Mal	nMol'	Ue II-	ig as		mpared	LO	Neighb)LS	of	CIUU	Check
PLAIZ4Z_ALERI_Z_C	LOW	Mal	TOMUT,	Ue	y as	s CO	upared	LO	werdupc	JIS	UL	054	Cneck

PLAT242_ALERT_2_C	Low 'Mair	Mol' Ueq as Con	mpared to	Neighbors	of	C99	Check
PLAT309_ALERT_2_C	Single Bonde	ed Oxygen (C-O :	> 1.3 Ang)			06	Check
PLAT309_ALERT_2_C	Single Bonde	ed Oxygen (C-O	> 1.3 Ang)			09	Check
PLAT369_ALERT_2_C	Long C(sp	2)-C(sp2) Bond	C31 -	- C32	200	1.53	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	Hn .	H5AA		1.95	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	Hy .	H4DA		1.99	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H7AA .	H1BA		1.93	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H2BA .	H1CA		1.92	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H3BA .	H1EA		1.99	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H7BA .	H3DA		1.99	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H9BA .	H5EA		1.96	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H2DA .	H7FA		1.98	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	H9DA .	H9EA		1.99	Ang.
PLAT410_ALERT_2_C	Short Intra	HH Contact	HOIA .	H6JA		1.96	Ang.
PLAT420_ALERT_2_C	D-H Without	Acceptor	N9	- H		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N10	- Ha		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N4	- Hb		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N22	- Hc		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N3	- He		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N16	- Hf		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N11	- Hg		Please	Check
PLAT420_ALERT_2_C	D-H Without	Acceptor	N15	- H4EA		Please	Check

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C264 H290 Br12 Cu6 N48 O24 Atom count from the _atom_site data: C264 H286 Br12 Cu6 N48 O24 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C264 H290 Br12 Cu6 N48 O24 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff С 1056.00 1056.00 0.00 Н 1160.00 1144.00 16.00 48.00 Br 48.00 0.00 Cu 24.00 24.00 0.00 192.00 192.00 0.00 N 96.00 96.00 0 0.00 PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 11 Report PLAT041_ALERT_1_G Calc. and Reported SumFormula Strings Differ Please Check PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.11 Report PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 1200.35 Why ? PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br1 -- Cu4 .. 7.3 s.u. -- Cu3 PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br6 18.8 s.u. PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.50) in Resd. # 2 Check 0.50) in Resd. # PLAT304_ALERT_4_G Non-Integer Number of Atoms (3 Check .. C9 .. PLAT432_ALERT_2_G Short Inter X...Y Contact 012 2.96 Ang. PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure ! Info PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 142 Note PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 Note Br PLAT794_ALERT_5_G Tentative Bond Valency for Cul 2.02 Note (II) PLAT794_ALERT_5_G Tentative Bond Valency for Cu3 2.01 Note (II) PLAT794_ALERT_5_G Tentative Bond Valency for Cu4 (II) 2.08 Note PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed ! Info

```
1 ALERT level A = Most likely a serious problem - resolve or explain
11 ALERT level B = A potentially serious problem, consider carefully
78 ALERT level C = Check. Ensure it is not caused by an omission or oversight
20 ALERT level G = General information/check it is not something unexpected
5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
55 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
41 ALERT type 4 Improvement, methodology, query or suggestion
4 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 30/03/2016; check.def file version of 30/03/2016

Datablock MOP-TO-2 - ellipsoid plot

