Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Table of Contents

General Considerations	SI-2
Characterization	SI-2
General Experimental Procedure A	
Synthesis of Benzylidene 1,3-Dimethylbarbituric Acids (6a - <i>d</i> ₁ , 6d - 6l)	SI-3
General Experimental Procedure B	
B(C ₆ F ₅) ₃ -Catalyzed Transfer 1,4-Hydrostannylation	SI-6
Spectral data	.SI-14

General Considerations

All reactions were carried out in oven or flame-dried glassware under dry nitrogen atmosphere using standard Schlenk techniques or in a glove box. 1,2-Dichloroethane and CD_2Cl_2 were distilled over CaH₂ and then degassed via 3 freeze-pump-thaw cycles following distillation. Reactions were monitored by thin-layer chromatography on commercially prepared plates with a particle size of 60 Å. Developed plates were visualized under a UV lamp (254 nm), or stained with ceric ammonium molybdate. Flash chromatography was performed using 230-400 mesh silica gel.

Characterization

Unless otherwise noted, ¹H and ¹³C NMR spectra for all adduct products were obtained in CDCl₃ at 300 and 75 MHz, respectively. Chemical shifts are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS) as an external standard. Proton and carbon spectra were calibrated against the solvent residual peak [CHCl₃ (7.24 ppm) and CDCl₃ (77.0 ppm)], [CH₂Cl₂ (5.32 ppm) and CD₂Cl₂ (53.8 ppm)], and in case of 1,2-dichlorethane against known solvent resonance [¹H (3.72 ppm) and ¹³C (43.6 ppm)]. ¹¹B and ¹¹⁹Sn NMR spectra of tricarbastannatranes were recorded on Bruker Avance-300 (¹¹B: 96 MHz, ¹¹⁹Sn: 112 MHz) with ¹H decoupling in 1,2-dichlorethane calibrated against external BF₃•OEt₂ and Me₄Sn, respectively. The spectral references (sr) which were obtained from the external standards, were used to calibrate all ¹¹⁹Sn NMR and ¹¹B NMR chemical shifts. Spectral reference values of –171.61 Hz and –5.13 Hz were used to calibrate ¹¹⁹Sn and ¹¹⁹Sn and ¹¹B chemical shifts in 1,2-dichloreethane, respectively. Abbreviations used to define NMR spectral mutiplicities are as follows: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad. High resolution mass spectra (ESI) were run at the University of Waterloo Mass Spectrometry facility. Fragment signals are given in mass per charge number (m/z).

The following compounds were prepared according to literature procedures: 5-(iso-propyl)-1-aza-5-stannabicyclo[3.3.3]undecane,¹ 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6a**),² 5-(4-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6b**),³ 5-(4-chlorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6c**),⁴ 1,3-dimethyl-5-(4-nitrobenzylidene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6m**),⁵ Other reagents were purchased from commercial suppliers and used without further purification.

5-(Propan-2-yl-1,1,1,3,3,3-d₆)-1-aza-5-stannabicyclo[3.3.3]undecane (2-d₆)

(Propan-2-yl-1,1,1,3,3,3- d_6)magnesium bromide reagent (2.0 M in diethyl ether) (2 equiv.) was synthesized from 2-bromopropane-1,1,1,3,3,3- d_6 (99% atom D),⁶ and was added

dropwise to a suspension of 5-chloro-1-aza-5-stannabicyclo[3.3.3]undecane (235 mg, 0.798 mmol) in anhydrous THF at -78°C. The resulting mixture was stirred at -78 °C for 3 hours, allowed to warm to room temperature, and stirred overnight. The reaction mixture was poured into a separatory funnel containing a mixture of Et₂O and water. The layers were partitioned, and the organic layer was washed with brine, dried over MgSO₄, and filtered. Solvent was removed under reduced pressure to provide the crude product. A yellow oil (259 mg, 84 % yield) was isolated and was used without further purification; ¹H NMR (CDCl₃,300 MHz) δ 2.33 (t, *J* = 5.4 Hz, 6H), 1.62 (m, 6H), 1.45 (m, 7H); ¹³C NMR (CDCl₃, 75 MHz) δ 54.7, 23.4, 16.8, 4.4; ²H NMR (CHCl₃, 46 MHz) δ 1.00 (brd, *J* = 0.1 Hz). HRMS (+ESI) *m/z* calcd. for C₁₂H₁₉²H₆NSn (M)⁺: 309.13801. Found: 309.15384.

General Experimental Procedure A - Synthesis of Benzylidene 1,3-Dimethylbarbituric Acids (6a-d₁, 6d-6l)

To a stirred solution of the 1,3-dimethylbarbituric acid (1.56 g, 10.0 mmol) in water (40 ml) was added the corresponding benzaldehyde (10.0 mmol) in one portion at ambient temperature. After refluxing for an hour, the resulting suspension was filtered and the solid was collected and was dried under vacuum. Products $6a-d_1$, 6d-6l were used without further purification unless otherwise noted.

1,3-Dimethyl-5-(phenylmethylene-*d*)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6a-*d*₁)

Prepared according to General Procedure A from 1,3-dimethylbarbituric acid (454 mg, 2.90 mmol), water (12 ml), and benzaldehyde- α - d_1 (312 mg, 2.90 mmol); isolated as a yellow solid (636 mg, 89% yield); ¹H NMR (CDCl₃, 300 MHz) δ 8.03 (d, J = 7.1 Hz, 2H), 7.44 (m, 3H), 3.37 (s, 3H), 3.32 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.4, 160.3,

158.6 (t), 151.1, 133.4, 132.9, 132.4, 128.1, 117.3, 29.0, 28.3; ²H NMR (CHCl₃, 46 MHz) δ 8.61(brs). HRMS (ESI) *m/z* calcd for C₁₃H₁₂²HN₂O₃ (M+H)⁺: 246.09835; Found: 246.09835.

5-(3-Fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6d).

Prepared according to General Procedure A from 4-fluorobenzaldehyde (1.24 g, 10.0 mmol); reaction was purified by recrystallization from MeOH and isolated as a white solid (2.12 g, 81% yield); M.p. 143-145 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.49 (s, 1H), 7.89 (d, *J* = 10.2 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.41 (q, *J* = 5.7 Hz, 1H), 7.21

(td, J = 8.3, 2.7 Hz, 1H), 3.41 (s, 3H), 3.36 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.1, 162.0 (d, J_{C-F} = 245.0

Hz), 160.0, 157.1 (d, $J_{C-F} = 2.3$ Hz), 151.0, 134.5 (d, $J_{C-F} = 8.5$ Hz), 129.6 (d, $J_{C-F} = 8.0$ Hz), 129.3 (d, $J_{C-F} = 2.9$ Hz), 119.4 (d, $J_{C-F} = 5.7$ Hz),) 119.3 (d, $J_{C-F} = 50.2$ Hz), 118.6, 29.0, 28.4. HRMS (ESI) *m/z* calcd for $C_{13}H_{12}O_{3}N_{2}F$ (M+H)⁺: 263.08320; Found: 263.08249.

1,3-Dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione (6e).

Prepared according to General Procedure A from 2-naphthaldehyde (1.56 g, 10.0 mmol); isolated as a pale yellow solid (2.56 g, 87% yield); M.p. 206-207 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.69 (s, 1H), 8.57 (s, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 8.7 Hz, 2H), 3.41 (s, 3H), 3.38 (s, 3H); ¹³C NMR

 $(CDCl_3, 75 \text{ MHz}) \delta 162.6, 160.4, 159.2, 151.3, 136.4, 135.3, 132.5, 130.3, 129.6, 129.0, 128.7, 127.7, 127.6, 126.7, 117.2, 29.1, 28.4.$ HRMS (ESI) *m/z* calcd for $C_{17}H_{15}N_2O_3 (M+H)^+$: 295.10827; Found: 295.10764.

4-((1,3-Dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (6f).

Prepared according to General Procedure A from 4-formylbenzonitrile (1.31 g, 10.0 mmol); isolated as a white solid (2.40 g, 89% yield). M.p. 185-186 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.50 (s, 1H), 7.91 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 3.41 (s, 3H), 3.33 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 161.5, 159.8, 155.8,

150.9, 137.1, 132.0, 131.7, 120.3, 118.1, 114.8, 29.2, 28.5. HRMS (ESI) *m/z* calcd for C₁₄H₁₁O₃N₃ (M+H)⁺: 270.08787; Found: 270.08701.

1,3-Dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6g).

Prepared according to General Procedure A from 3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)benzaldehyde (2.32 g, 10.0 mmol); isolated as a white solid (2.36 g, 64% yield); M.p. 189-190 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.59 (s, 1H), 8.34 (d, J = 8.1 Hz,1H), 8.19 (s, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 3.39 (s, 3H), 3.34 (s, 3H) ,1.33 (s, 12H); ¹³C NMR (CDCl₃, 75

MHz) δ 162.4, 160.3, 159.5, 151.3, 140.5, 139.1, 135.0, 132.2, 127.6, 117.5, 84.1, 29.0, 28.4, 24.9. HRMS (ESI) *m/z* calcd for C₁₉H₂₄O₅N₂B (M+H)⁺: 371.17783. Found: 371.17722.

5-(3-Bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6h).

Prepared according to General Procedure A from 3-bromobenzaldehyde (1.85 g, 10.0 mmol); recrystallized from MeOH and isolated as a white solid (2.77 g, 86% yield); M.p. 151-153 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.44 (s, 1H), 8.16 (s, 1H), 7.87 (d, *J*

= 7.8 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 3.40 (s, 3H), 3.35 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.0, 160.0, 157.0, 151.0, 135.2, 135.2, 134.5, 131.4, 129.6, 122.2, 118.8, 29.1, 28.5. HRMS (ESI) *m/z* calcd for C₁₃H₁₂O₃N₂Br (M+H)⁺: 323.00313; Found: 323.00320.

1,3-Dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6i).

Prepared according to General Procedure A from 4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)benzaldehyde (2.32 g, 10.0 mmol); isolated as a white solid (1.96 g, 53% yield); M.p. 195-197 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.55 (s, 1H), 7.92 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 7.8 Hz, 2H), 3.40 (s, 3H), 3.34 (s, 3H), 1.33 (s, 12H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.3, 160.1, 159.1, 151.2,

135.1, 134.3, 131.7, 118.2, 84.1, 29.0, 28.4, 24.8. HRMS (ESI) m/z calcd for $C_{19}H_{24}O_5N_2B$ (M+H)⁺: 371.17783. Found: 371.17685.

5-(4-Bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6j).

Prepared according to General Procedure A from 4-bromobenzaldehyde (1.85 g, 10.0 mmol); isolated as a white solid (2.77 g, 86% yield); M.p. 175-176 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.43 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 3.38 (s, 3H), 3.34 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.2, 160.3, 157.5, 151.1,

134.8, 131.6, 131.4, 128.0, 117.9, 29.1, 28.4. HRMS (ESI) m/z calcd for $C_{13}H_{12}O_3N_2Br (M+H)^+$: 323.00313; Found: 323.00311.

5-(3-Methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6k).

Prepared according to General Procedure A from 3-methoxybenzaldehdye (1.36 mg, 10.0 mmol); isolated as a yellow solid (2.47 g, 90% yield); M.p. 139-141 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.52 (s, 1H), 7.76 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.06 (dd, *J* = 8.3, 2.7 Hz, 1H), 3.84 (s, 3H), 3.40 (s, 3H),

3.35 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.5, 160.3, 159.2, 159.1, 151.2, 133.8, 129.2, 126.6, 119.4, 117.7, 117.6, 55.4, 29.1, 28.5. HRMS (ESI) *m/z* calcd for C₁₄H₁₅O₄N₂ (M+H)⁺: 275.10318; Found: 275.10260.

5-(4-Fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (6l).

Prepared according to General Procedure A from 4-fluorobenzaldehyde (1.24 g, 10.0 mmol); isolated as a pale yellow solid (2.04 g, 78% yield). M.p. 169-171°C; ¹H NMR (CDCl₃, 300 MHz) δ 8.50 (s, 1H), 8.20-8.15 (m, 2H), 7.16-7.09 (m, 2H), 3.40 (s, 3H),

3.36 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 165.3 (d, ¹*J*_{C-F} = 256.0 Hz), 162.4, 160.4, 157.7, 151.1, 136.7 (d, ³*J*_{C-F} = 9.3 Hz), 128.8 (d, ⁴*J*_{C-F} = 3.1 Hz), 116.9, 115.5 (d, ²*J*_{C-F} = 21.6 Hz), 29.0, 28.3. HRMS (ESI) *m/z* calcd for C₁₃H₁₂O₃N₂F (M+H)⁺: 263.08320; Found: 263.08237.

General Experimental Procedure B - B(C₆F₅)₃-Catalyzed Transfer 1,4-Hydrostannylation

In a J. Young NMR tube, benzylidene 1,3-dimethylbarbituric acid (0.100 mmol) was added to a solution of 5-isopropyl-1-aza-5-stannabicyclo[3.3.3]undecane (36.2 mg, 0.120 mmol) and tris(pentafluorophenyl)borane (8.0 mg, 0.015 mmol) in 1 mL of 1,2-dichloroethane in a glove box and the mixture was put in a preheated oil bath at 95 °C for 36 h. All volatiles were evaporated under vacuum and the product was purified by flash chromatography (EtOAc:pentane) on silica gel. In these reactions, compounds **8a-1** were isolated as byproducts.

5-Benzylidene-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7a).

Prepared according to General Procedure B from **6a** (24.4 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:5 to 1:4) and the product was isolated as a white solid (22.4 mg, 91% yield); M.p. 115-116 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.23-7.21 (m, 3H), 7.03-6.99 (m, 2H), 3.75 (t, *J* = 4.8 Hz, 1H), 3.45 (d, *J* = 4.5 Hz, 2H),

3.10 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.3, 151.0, 135.1, 128.8, 128.6, 127.8, 50.7, 37.9, 28.2. HRMS (ESI) *m/z* calcd for C₁₃H₁₅O₃N₂ (M+H)⁺: 247.10827; Found: 247.10773; 1,3-Dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **(8a)**: Isolated as a white solid (2.3 mg, 8% yield); M.p. 88-89 °C; ¹H NMR (CDCl3, 300 MHz) δ 7.22-7.19 (m, 3H), 6.91-6.88 (m, 2H), 3.91 (d, *J* = 3.6 Hz, 1H), 3.06 (s, 3H), 3.00 (dd, *J* = 11.3, 3.6 Hz, 2H), 2.94 (s, 3H), 2.53-2.41 (m, 1H), 1.31 (d, *J* = 6.6 Hz, 3H), 0.72 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.5, 167.3, 150.9, 138.0, 128.4, 128.1, 127.6, 59.3, 52.0, 28.6, 28.0, 27.8, 21.5, 21.3. HRMS (ESI) *m/z* calcd for C₁₆H₂₁O₃N₂ (M+H)⁺: 289.15522; Found: 289.15463.

1,3-Dimethyl-5-(phenylmethyl-*d*)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7a-*d*₁).

In a vial, **6a** (24.4 mg, 0.100 mmol) was added to a solution of 5-(propan-2-yl-1,1,1,3,3,3- d_6)-1-aza-5-stannabicyclo[3.3.3]undecane (30.0 mg, 0.0974 mmol) and tris(pentafluorophenyl)borane (52.0 mg, 0.102 mmol) in 1,2-dichloroethane (1 ml). After stirring for 18 hours at room temperature, all volatiles were removed and the reaction was

purified eluting with EtOAc:pentane (1:5 to 1:4) and the product was isolated as a white solid (22.0 mg, 92% yield, 54% D-incorporation); M.p. 115-116 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.23-7.20 (m, 3H), 7.02-6.99 (m, 2H), 3.76-3.74 (m, 1H), 3.45-3.44 (m, 1.46 H), 3.10 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.3, 151.0, 135.1, 135.0, 128.8, 128.6, 127.8, 50.7, 50.6, 37.6 (t), 28.2. ²H NMR (CHCl₃, 46 MHz) δ 3.45. HRMS (ESI) *m/z* calcd for C₁₃H₁₄²HO₃N₂ (M+H)⁺: 248.11400; Found: 248.11369.

1,3-Dimethyl-5-(phenylmethyl-d₂)pyrimidine-2,4,6(1H,3H,5H)-trione (7a-d₂).

In a vial, $6a-d_1$ (24.5 mg, 0.100 mmol) was added to a solution of 5-(propan-2-yl-1,1,1,3,3,3- d_6)-1-aza-5-stannabicyclo[3.3.3]undecane (30.0 mg, 0.0974 mmol) and tris(pentafluorophenyl)borane (52.0 mg, 0.102 mmol) in 1,2-dichloroethane (1 ml). After stirring for 18 hours at room temperature, all volatiles were removed and the reaction was

purified eluting with EtOAc:pentane (1:5 to 1:4) and the product was isolated as a white solid (21.9 mg, 89% yield, 55% D-incorporation); ¹H NMR (CDCl₃, 300 MHz) δ 7.24-7.21 (m, 3H), 7.03-7.00 (m, 2H), 3.76-3.75 (m, 1H), 3.44-3.41 (m, 0.45 H), 3.11 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.3, 151.0, 135.1, 135.0, 128.8, 128.6, 127.8, 50.62, 50.60, 37.8-36.9 (m), 28.2. ²H NMR (CHCl₃, 46 MHz) δ 3.44. HRMS (ESI) *m/z* calcd for C₁₃H₁₃²H₂N₂O₃ (M+H)⁺: 249.12027; Found: 249.12036.

5-(4-Methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7b).

Prepared according to General Procedure B from **6b** (27.4 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (19.9 mg, 72% yield); M.p. 88-89 °C; ¹H NMR (CDCl₃, 300 MHz) δ 6.93 (d, J= 8.7 Hz, 2H), 6.73 (d, J= 8.7 Hz, 2H), 3.74-3.70 (m, 4H),

3.39 (d, J= 4.5 Hz, 2H), 3.12 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.4, 159.1, 151.0, 130.0, 127.0, 113.9, 55.2, 50.9, 37.1, 28.2. HRMS (ESI) *m/z* calcd for C₁₄H₁₇O₄N₂ (M+H)⁺: 277.11883; Found: 277.11841; 5-(1-(4-Methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8b**): Isolated as a colorless oil (6.7 mg, 21% yield); ¹H NMR (CDCl₃, 300 MHz) δ 6.82 (dt, J= 8.7, 2.7 Hz, 2H), 6.73 (dt, J= 9.0, 2.7 Hz, 2H), 3.88 (d, J = 3.6 Hz, 2H), 3.74 (s, 3H), 3.07 (s, 3H), 2.99-2.94 (m, 4H), 2.48-2.35 (m, 1H), 1.29 (d, J = 6.3 Hz, 3H), 0.70 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.7, 167.4, 159.2, 150.9, 129.9, 128.6, 113.8, 58.4, 55.2, 52.0, 28.8, 28.0, 27.9, 21.5, 21.4. HRMS (ESI) *m/z* calcd for C₁₇H₂₃O₄N₂ (M+H)⁺: 319.16578; Found: 319.16525.

5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7c).⁷

Prepared according to General Procedure B from **6c** (27.9 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (23.3 mg, 83% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 3.74 (t, *J* = 4.8 Hz, 1H), 3.44 (d, *J* = 4.8 Hz, 2H), 3.15

(s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 150.9, 134.0, 133.7, 130.4, 128.8, 50.4, 36.0, 28.3; 5-(1-(4-Chlorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (8c): Isolated as a colorless oil (4.5 mg, 14% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 3.89 (d, *J* = 3.6 Hz, 1H), 3.08-2.99 (m, 4H), 2.51-2.38 (m, 1H), 1.28 (d, *J* = 6.3 Hz, 3H), 0.69 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.2, 167.0, 150.7, 136.8, 133.8, 129.0, 128.7, 58.0, 51.6, 28.8, 28.1, 27.9, 21.4, 21.3. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₃N₂Cl (M+H)⁺: 323.11625; Found: 323.11572.

5-((4-Chlorophenyl)methyl-*d*)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7c-*d*₁).

In a vial, **6c** (27.0 mg, 0.0969 mmol) was added to a solution of 5-(propan-2-yl-1,1,1,3,3,3- d_6)-1-aza-5-stannabicyclo[3.3.3]undecane (30.0 mg, 0.0974 mmol) and tris(pentafluorophenyl)borane (52.0 mg, 0.102 mmol) in 1,2-dichloroethane (1 ml). After stirring for 18 hours at room temperature, all volatiles were removed and the

reaction was purified eluting with EtOAc:pentane (1:5) and the product was isolated as a clear oil (23.3 mg, 86% yield, 59% D-incorporation);); ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 3.76-3.73 (m, 1H), 3.45-3.43 (m, 1.41H), 3.16 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.9, 150.9, 134.02, 133.98, 133.7, 130.5, 128.8, 50.4, 50.3, 35.7 (t), 28.3; ²H NMR (CHCl₃, 46 MHz) δ 3.44. HRMS (ESI) *m/z* calcd for C₁₃H₁₃²HN₂O₃Cl (M+H)⁺: 282.07502; Found: 282.07504.

5-(3-Fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7d).

Prepared according to General Procedure B from **6d** (26.2 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (21.4 mg, 81% yield); M.p. 100-102 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.17 (q, J = 6.6 Hz, 1H), 6.89 (t, J = 8.4 Hz, 1H), 6.82-6.74 (m, 2H), 3.74 (t, J = 4.5 Hz, 1H),

3.43 (d, J = 4.8 Hz, 2H), 3.13 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 162.6 (d, $J_{C-F} = 245.4$ Hz), 150.9, 137.9 (d, $J_{C-F} = 7.4$ Hz), 130.1 (d, $J_{C-F} = 8.3$ Hz), 124.6 (d, $J_{C-F} = 2.9$ Hz), 115.9 (d, $J_{C-F} = 21.5$ Hz), 114.6 (d, $J_{C-F} = 20.8$ Hz), 50.3, 36.5, 36.4, 28.2. HRMS (ESI) *m/z* calcd for C₁₃H₁₄O₃N₂F (M+H)⁺: 265.09885; Found: 265.09818; 5-(1-(3-Fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **(8d)**: Isolated as a white solid (5.2 mg, 17% yield); M.p. 68-70 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (q, J = 6.0 Hz, 1H), 6.92 (td, J = 8.4, 2.4 Hz, 1H), 6.72-6.64 (m, 2H), 3.89 (d, J = 3.6 Hz, 3H), 3.10-2.99 (m, 4H), 2.51-2.38 (m, 1H), 1.30 (d, J = 6.3 Hz, 3H), 0.73 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.1(d,

 $J_{C-F} = 163.6 \text{ Hz}$), 162.8 (d, $J_{C-F} = 245.9 \text{ Hz}$), 150.8, 140.9 (d, $J_{C-F} = 6.8 \text{ Hz}$), 130.0 (d, $J_{C-F} = 8.3 \text{ Hz}$), 123.4 (d, $J_{C-F} = 2.7 \text{ Hz}$), 115.1, 114.9, 114.5 (d, $J_{C-F} = 21.5 \text{ Hz}$), 58.5, 51.6, 28.7, 28.1, 27.9, 21.4, 21.2. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₃N₂F (M+H)⁺: 307.14580; Found: 307.14545.

1,3-Dimethyl-5-(naphthalen-2-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7e).

Prepared according to General Procedure B from **6e** (29.4 g, 0.100 mmol); reaction was purified by flash chromatography on silica gel with EtOAc:pentane (1:5) and the product was isolated as a yellow solid (25.5 mg, 86% yield); M.p. 126-128 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.78-7.69 (m, 3H), 7.52 (s, 1H), 7.45-7.42 (m, 2H), 7.13

(d, J = 8.4 Hz, 1H), 3.83 (t, J = 4.8 Hz, 1H), 3.62 (d, J = 4.8 Hz, 1H), 3.08 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.2, 150.5, 133.3, 132.7, 132.6, 128.3, 127.9, 127.7, 127.5, 126.7, 126.4, 126.1, 50.7, 37.6, 28.2. HRMS (ESI) *m/z* calcd for C₁₇H₁₇O₃N₂ (M+H)⁺: 279.12392; Found: 279.12296; 1,3-Dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8e**): Isolated as a yellow oil (3.7 mg, 11% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.77-7.69 (m, 3H), 7.45-7.40 (m, 3H), 7.02 (d, J = 8.4 Hz, 1H), 3.98 (d, J = 3.6 Hz, 1H), 3.20 (dd, J = 11.1, 3.6 Hz, 1H), 3.05 (s, 3H), 2.85 (s, 3H), 2.67-2.55 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.5, 167.3, 150.7, 135.5, 133.2, 132.8, 128.2, 127.7, 127.5, 127.1, 126.5, 126.2, 124.8, 59.2, 52.0, 28.7, 28.0, 27.9, 21.6, 21.4. HRMS (ESI) *m/z* calcd for C₂₀H₂₃O₃N₂ (M+H)⁺: 339.17087; Found: 339.17111.

4-((1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl)benzonitrile (7f).⁸

Prepared according to General Procedure B from **6f** (26.9 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a colorless oil (22.8 mg, 84% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 3.79 (t, *J* = 4.8 Hz, 1H), 3.52 (d, *J* = 4.8 Hz, 2H),

3.18 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.3, 150.8, 141.6, 132.3, 130.1, 118.4, 111.6, 50.1, 35.3, 28.5. HRMS (ESI) *m/z* calcd for C₁₄H₁₄O₃N₃ (M+H)⁺: 272.10297; Found: 272.10278; 4-(1-(1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-2-methylpropyl)benzonitrile (**8f**): Isolated as a colorless oil (4.4 mg, 14% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 3.92 (d, *J* = 3.6 Hz, 1H), 3.17-3.10 (m, 4H), 3.00 (s, 3H), 2.59-2.45 (m, 1H), 1.29 (d, *J* = 6.6 Hz, 2H), 0.69 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.6, 166.6, 150.5, 144.2, 132.3, 128.7, 118.2, 112.1, 58.0, 51.3, 28.7, 28.2, 28.0, 21.4, 21.1. HRMS (ESI) *m/z* calcd for C₁₇H₂₀O₃N₃ (M+H)⁺: 314.15047; Found: 314.15012.

1,3-Dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7g).

Prepared according to General Procedure B from **6g** (37.0 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (31.6 mg, 85% yield); M.p. 142-144 °C; ¹H NMR (CDCl₃, 300 MHz) 7.65 (d, J = 7.2 Hz, 1H), 7.43 (s, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 3.75 (t, J = 4.5 Hz, 1H), 3.43 (d, J = 4.5 Hz,

1H), 3.08 (s, 6H), 1.30 (s, 12H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.4, 150.9, 134.8, 134.2, 131.7, 127.9, 83.9, 50.8, 38.5, 28.5, 24.8. HRMS (ESI) *m/z* calcd for C₁₉H₂₆O₅N₂B (M+H)⁺: 373.19348. Found: 373.19266; 1,3-Dimethyl-5-(2-methyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)pyrimidine-

2,4,6(1*H*,3*H*,5*H*)-trione **(8g)**: Isolated as a white solid (5.4 mg, 13% yield); M.p. 161-163 °C; ¹H NMR (CDCl₃, 300 MHz) 7.64 (d, J = 7.5 Hz, 1H), 7.32 (s, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 3.6 Hz, 1H), 3.06 (s, 3H), 3.01 (dd, J = 19.1, 3.9 Hz, 1H), 2.89 (s, 3H), 2.54-2.41 (m, 1H), 1.33-1.30 (m, 15H), 0.72 (d, J = 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.6, 167.3, 150.8, 137.1, 134.5, 133.5, 130.9, 127.7, 83.9, 59.5, 52.1, 28.5, 27.9, 27.8, 24.9, 24.8, 21.7, 21.3. HRMS (ESI) *m/z* calcd for C₂₂H₃₂O₅N₂B (M+H)⁺: 415.24043. Found: 415.24023.

5-(3-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7h).

Prepared according to General Procedure B from **6h** (32.3 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (25.7 mg, 79% yield); M.p. 84-86 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.36 (d, J = 7.8 Hz, 1H), 7.22 (s, 1H), 7.09 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.8 Hz,

1H), 3.74 (t, J = 4.8 Hz, 1H), 3.41 (d, J = 4.8 Hz, 2H), 3.15 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 150.9, 137.7, 132.0, 130.9, 127.6, 122.6, 50.4, 36.6, 28.3. HRMS (ESI) *m/z* calcd for C₁₃H₁₄O₃N₂Br (M+H)⁺: 325.01878; Found: 325.01837; 5-(1-(3-Bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8h**): Isolated as a white solid (7.3 mg, 20% yield); M.p. 121-124 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.36 (d, J = 8.7 Hz, 1H), 7.12-7.07 (m, 2H), 6.85 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 3.9 Hz, 1H), 3.11 (s, 3H), 3.01-2.96 (m, 4H), 2.50-2.38 (m, 1H), 1.30 (d, J = 6.3 Hz, 3H), 0.73 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.2, 167.0, 150.8, 140.6, 131.2, 130.7, 130.0, 126.4, 122.7, 58.6, 51.7, 28.6, 28.1, 27.9, 21.5, 21.2. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₃N₂Br (M+H)⁺: 367.06573; Found: 367.06549.

1,3-Dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7i).

Prepared according to General Procedure B from **6i** (37.0 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:6 to 1:4) and the product was isolated as a white solid (30.5 mg, 82% yield); M.p. 131-133 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.64 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 3.76 (t, J = 4.8 Hz, 1H), 3.46 (d, J = 4.8 Hz, 2H), 3.12 (s, 6H), 1.32 (s, 12H); ¹³C NMR

(CDCl₃, 75 MHz) δ 168.2, 150.9, 138.3, 135.1, 128.3, 83.9, 50.5, 37.7, 28.2, 24.9. HRMS (ESI) *m/z* calcd for C₁₉H₂₆O₅N₂B (M+H)⁺: 373.19348. Found: 373.19247; 1,3-Dimethyl-5-(2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl) pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8i**): Isolated as a colorless oil (5.8 mg, 14% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.63 (d, *J* = 7.8 Hz, 2H), 6.91 (d, *J* = 7.5 Hz, 2H), 3.91 (d, *J* = 3.6 Hz, 1H), 3.08-2.96 (m, 7H), 2.55-2.43 (m, 1H), 1.32-1.29 (m, 15H), 0.67 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.4, 167.3, 150.8, 141.3, 135.0, 127.1, 83.9, 59.1, 51.7, 28.7, 28.1, 27.9, 24.9, 21.5, 21.3. HRMS (ESI) *m/z* calcd for C₂₂H₃₂O₅N₂B (M+H)⁺: 415.24043. Found: 415.23969.

5-(4-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7j).

Prepared according to General Procedure B from **6j** (32.3 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (24.1 mg, 74% yield); M.p. 85-87 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.35 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.1 Hz, 2H), 3.74 (t, J = 4.8 Hz, 1H), 3.42 (d, J

= 4.5 Hz, 2H), 3.16 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 150.9, 134.6, 131.8, 130.8, 121.8, 50.3, 36.0, 28.4. HRMS (ESI) *m/z* calcd for C₁₃H₁₄O₃N₂Br (M+H)⁺: 325.01878. Found: 325.01831; 5-(1-(4-Bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8j**): Isolated as a colorless oil (8.4 mg, 23% yield); ¹H NMR (CDCl₃, 300 MHz) δ 7.34 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.1 Hz, 2H), 3.89 (d, J = 3.6 Hz, 2H), 3.09 (s, 3H), 3.04-3.00 (m, 4H), 2.51-2.39 (m, 1H), 1.28 (d, J = 6.3 Hz, 3H), 0.69 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.1, 167.0, 150.7, 137.4, 131.7, 129.4, 121.9, 58.0, 51.5, 28.8, 28.1, 27.9, 21.4, 21.3. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₃N₂Br (M+H)⁺: 367.06573. Found: 367.06542.

5-(3-Methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7k).

Prepared according to General Procedure B from **6k** (27.4 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a pale yellow solid (26.0 mg, 94% yield); M.p. 64-66 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.13 (t, J = 7.8 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.60-6.56

(m, 2H), 3.76-3.72 (m, 4H), 3.42 (d, J= 4.8 Hz, 2H), 3.12 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.2, 159.7, 151.0, 136.6, 129.6, 121.1, 114.4, 113.3, 55.1, 50.6, 37.7, 28.2. HRMS (ESI) m/z calcd for C₁₄H₁₇O₄N₂

 $(M+H)^+$: 277.11883. Found: 277.11789; 5-(1-(3-Methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8k**): Isolated as a white solid (1.6 mg, 5% yield); M.p. 100-102 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.12 (t, J = 7.8 Hz, 1H), 6.74 (dd, J = 8.4, 2.4 Hz, 1H), 6.50-6.47 (m, 2H), 3.89 (d, J = 3.6 Hz, 2H), 3.72 (s, 3H), 3.08 (s, 3H), 3.00-3.95 (m, 4H), 2.50-2.38 (m, 1H), 1.30 (d, J = 6.3 Hz, 3H), 0.74 (d, J = 6.6Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.5, 167.3, 159.8, 139.6, 129.4, 119.8, 113.7, 113.0, 59.1, 55.2, 51.9, 28.6, 28.0, 27.9, 21.5, 21.3. HRMS (ESI) *m/z* calcd for C₁₇H₂₃O₄N₂ (M+H)⁺: 319.16578. Found: 319.16437.

5-(4-Fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7l).

Prepared according to General Procedure B from **61** (26.2 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (23.3 mg, 88% yield); M.p. 59-61 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.03-6.87 (m, 4H), 3.73 (t, J = 4.8 Hz, 1H), 3.43 (d, J = 4.8 Hz, 2H), 3.13 (s, 6H); ¹³C NMR

(CDCl₃, 75 MHz) δ 168.0, 162.6 (d, $J_{C-F} = 245.3$ Hz), 150.9, 131.1, 130.6 (d, $J_{C-F} = 8.0$ Hz), 115.5 (d, $J_{C-F} = 21.2$ Hz), 50.6, 36.3, 28.3. HRMS (ESI) *m/z* calcd for C₁₃H₁₄O₃N₂F (M+H)⁺: 265.09885. Found: 265.09769; 5-(1-(4-Fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **(81**): Isolated as a colorless oil (3.1 mg, 10% yield); ¹H NMR (CDCl₃, 300 MHz) δ 6.95-6.86 (m, 4H), 3.90 (d, J = 3.6 Hz, 1H), 3.09 (s, 3H), 3.05-2.99 (m, 4H), 2.50-2.38 (m, 1H), 1.30 (d, J = 6.3 Hz, 3H), 0.70 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.3, 167.1, 162.2 (d, ¹ $J_{C-F} = 246.0$ Hz), 150.8, 133.9 (d, ⁴ $J_{C-F} = 3.8$ Hz), 129.2 (d, ³ $J_{C-F} = 7.8$ Hz), 115.5 (d, ² $J_{C-F} = 21.1$ Hz), 58.1, 51.8, 28.9, 28.1, 27.9, 21.4, 21.3. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₃N₂F (M+H)⁺: 307.14580. Found: 307.14517.

1,3-Dimethyl-5-(4-nitrobenzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (7m).⁹

Prepared according to General Procedure B from **6m** (28.9 mg, 0.100 mmol); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid (7.0 mg, 24% yield); ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (d, *J* = 8.7 Hz, 2H), 7.31 (d, *J* = 8.7 Hz, 2H), 3.82 (t, *J* = 4.8 Hz, 1H), 3.58 (d, *J* =

5.1 Hz, 2H), 3.20 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.2, 150.5, 147.4, 143.9, 130.3, 123.7, 50.0, 34.7, 28.5. 1,3-Dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **(8m)**: Isolated as a pale yellow oil (24.3 mg, 76% yield); ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 3.94 (d, J = 3.3 Hz, 1H), 3.25 (d, J = 3.3 Hz, 1H), 3.21 (d, J = 3.3 Hz, 1H), 3.12 (s, 3H), 3.02 (s, 3H), 2.51 (m, 1H), 1.30 (d, J = 6.3 Hz, 3H), 0.70 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.5, 166.6, 150.5, 147.5, 146.4, 128.9, 123.7, 57.6, 51.2, 28.9, 28.3, 28.1, 21.4, 21.2. HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₅N₃ (M+H)⁺: 334.13975. Found: 334.13864.

$[N(CH_2CH_2CH_2)_3Sn][DB(C_6F_5)_3]$ (9).

To a solution of 5-(propan-2-yl-1,1,1,3,3,3- d_6)-1-aza-5-stannabicyclo[3.3.3]undecane (30.1 mg, 0.100 mmol) in CD₂Cl₂ (1 ml) in a vial, was added tris(pentafluorophenyl)borane (51.1 mg, 0.100 mmol). After stirring for 2 min, the solution was transferred to a J. Young NMR tube; ¹H NMR (CD₂Cl₂, 300 MHz) δ

2.66 (m, 6H, NC*H*2), 2.04 (m, 6H, C*H*2), 1.45 (t, J = 6.6, 6H, SnC*H*2); ¹³C NMR (CD₂Cl₂, 75 MHz) δ 56.5 (NCH2), 25.2 (CH2), 15.4 (SnCH2); ¹¹⁹Sn NMR (CD₂Cl₂, 112 MHz) δ 151.4; ¹¹B NMR (CDCl₃, 96 MHz) δ – 18.1; ²H NMR (CHCl₃, 46 MHz) δ 5.05 (d, J = 2.3 Hz), 4.95 (d, J = 1.5 Hz), 1.68 (brd, J = 0.1 Hz). HRMS (– ESI) m/z calcd. for C₁₈²HBF₁₅ (M⁻): 512.99891. Found: 512.99935; (+ESI) m/z calcd. for C₉H₁₈NSn (M⁺): 260.04557. Found: 260.04538.

$[N(CH_2CH_2CH_2)_3Sn][B(C_6F_5)_4]$ (13).

To a solution of 5-methyl-1-aza-5-stannabicyclo[3.3.3]undecane (27.5 mg, 0.100 mmol) in 1,2-dichloroethane (1 ml) in a vial, was added trityl tetrakis(pentafluorophenyl)borate (92.2 mg, 0.100 mmol). After stirring for 2 min, the

solution was transferred to a J. Young NMR tube; ¹H NMR ((CH₂Cl)₂, 300 MHz) δ 2.70 (t, 6H, NCH2), 2.10 (m, 6H, CH2), 1.71 (t, 6H, SnCH2); ¹¹⁹Sn NMR (Cl(CH₂)₂Cl, 112 MHz) δ 251.1.

- ¹ Li, L.; Wang, C. Y.; Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5, 607–612.
- ² Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453–6456.
- ³ Pałasz, A. Synthesis **2010**, 4021–4032.
- ⁴ Deb, M. L.; Bhuyan, P. J. *Tetrahedron Lett.* **2005**, *46*, 6453–6456
- ⁵ Mohammed Khan, K.; Khan, M.; Ali, M.; Taha, M.; Hameed, A. Ali, S. Perveen, S. Choudhary, M. I. *Med. Chem.* **2011**, *7*, 231–236.
- ⁶ McNallyla, J. P.; Cooper, N. J. Organometallics 1988, 7, 1704–1715.
- ⁷ Löfberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharana, V.; Kilnera, C. Chem. Commun. 2006, 5000–5002.
- ⁸ Rehse, K.; Kapp, W-D. Arch. Pharm. 1982, 4, 346–353.
- ⁹ Tanaka, K.; Chen, X.; Kimura, T.; Yoneda, F. Chem. Pharm. Bull. 1988, 36, 60-69.

¹H NMR Spectra of 5-(propan-2-yl-1,1,1,3,3,3-*d*₆)-1-aza-5-stannabicyclo[3.3.3]undecane (**2-***d*₆)

¹³C NMR Spectra of 5-(propan-2-yl-1,1,1,3,3,3-*d*₆)-1-aza-5-stannabicyclo[3.3.3]undecane (**2-***d*₆)

²H NMR Spectra of 5-(propan-2-yl-1,1,1,3,3,3- d_6)-1-aza-5-stannabicyclo[3.3.3]undecane (**2-** d_6)

¹H NMR spectra of [N(CH₂CH₂CH₂)₃Sn][DB(C₆F₅)₃] (**3**- d_1)

¹³C NMR spectra of [N(CH₂CH₂CH₂)₃Sn][DB(C₆F₅)₃] (**3-** d_1)

²H NMR spectra of [N(CH₂CH₂CH₂)₃Sn][DB(C₆F₅)₃] (**3**- d_1)

¹¹⁹Sn NMR spectra of [N(CH₂CH₂CH₂)₃Sn][DB(C₆F₅)₃] (**3-** d_1)

¹¹B NMR spectra of [N(CH₂CH₂CH₂)₃Sn][DB(C₆F₅)₃] (**3**- d_1)

¹H NMR Spectra of 1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6a**-*d*₁)

¹³C NMR Spectra of 1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6a**-*d*₁)

²H NMR Spectra of 1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1H,3H,5H)-trione (**6a-***d*₁)

KN-1-257-D Deuterium

909.8-

¹³C NMR Spectra of 5-(3-fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6d**)

¹³C NMR Spectra of 1,3-dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6e**)

¹H NMR spectra of 4-((1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (**6f**)

¹³C NMR spectra of 4-((1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (**6f**)

 $\label{eq:hardenergy} {}^{1}\text{H} \qquad \text{NMR} \qquad \text{Spectra} \qquad \text{of} \qquad 1,3-\text{dimethyl-5-}(3-(4,4,5,5-\text{tetramethyl-1},3,2-\text{dioxaborolan-2-yl}) benzylidene) pyrimidine-2,4,6(1H,3H,5H)-\text{trione} (\textbf{6g})$

 ^{13}C NMR Spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (**6g**)

¹H NMR Spectra of 5-(3-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6h**)

 1 H NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6**i)

 ^{13}C NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (**6**i)

¹H NMR spectra of 5-(4-fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**6**I)

¹³C NMR spectra of 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7a**)

¹H NMR spectra of 1,3-dimethyl-5-(phenylmethyl-*d*)pyrimidine--2,4,6(1*H*,3*H*,5*H*)-trione (**7a-***d*₁)

mdd

¹³C NMR spectra of 1,3-dimethyl-5-(phenylmethyl-*d*)pyrimidine--2,4,6(1*H*,3*H*,5*H*)-trione (**7a-***d*₁)

¹H NMR spectra of 1,3-Dimethyl-5-(phenylmethyl-*d*₂)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7a**-*d*₂)

¹³C NMR spectra of 1,3-Dimethyl-5-(phenylmethyl- d_2)pyrimidine-2,4,6(1H,3H,5H)-trione (**7a-** d_2)

mdd

우

3

8

\$

20

<u>na da na sera da na se</u>

Ē

8

20

8

8

ē

물

12

<u>8</u>

5

150

90

12

율

<u>1</u>

C-13 with Decoupling - 168.261

KN-1-266-C

²H NMR spectra of 1,3-Dimethyl-5-(phenylmethyl- d_2)pyrimidine-2,4,6(1H,3H,5H)-trione (**7a-** d_2)

KN-1-259-D

Deuterium

¹H NMR spectra of 5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7c**)

¹³C NMR spectra of 5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7c**)

¹H NMR spectra of 5-((4-Chlorophenyl)methyl-*d*)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7**c-*d*₁)

¹³C NMR spectra of 5-((4-Chlorophenyl)methyl-*d*)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7**c-*d*₁)

²H NMR spectra of 5-((4-Chlorophenyl)methyl-*d*)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7**c-*d*₁)

¹H NMR spectra of 5-(3-fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7d**) mdd 0 F 0 Ν 0[~] Ν Ò 2 З -3.129 **L0.**9 ~3.420 964.6-2.08 τ*zL*•ε¬ 73.752 73.757 4 S ₽*L*Γ.∂ 2₽7.∂ 9 AVANCE-300B 861.9 6.823 τ98'9-2.05 688.9-1.03 LI6.9-~ 00.1 961.7τ9τ.7-£81'L AK-3-154-F-H proton, 16 scans 60Z.7-7.240 œ 6

^o C NMR spectra	a of 5-(3-fluorod	penzyi)-1,3-dim	etnyipyrimia	Ine-2,4,6(1 <i>H</i> ,3	3H,5H)-trione	(/a)	
F O	N						mqq 0
~ 0 [,] N	0						9
							20
	242.82						30
	30.431 36.452						9
	662.02						- 20
							60
	695.94						2
	£66'9L ∠T⊅'LL						80
							6
							100
	585.PIL						110
00B	Z6L·STI 8L0·9TI						50
CE-3(519 · ₽21 ₽59 · ₽21 ₽10 · 021						. 8
AVAN	-130.124						1
	₽S0°781~					ļ	4
pling	T88.021						150
econ]	₽00°T9T						160
54-F- ith D	608°/9T——						170
-3-15 13 w1							180
AK C-							6
							-

n .

¹H NMR spectra of 4-((1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl)benzonitrile (7f)

¹³C NMR spectra of 4-((1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl)benzonitrile (7f)

¹H NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7g**)

¹³C NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7g**)

¹H NMR spectra of 5-(3-bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7h**) mdd E 0 Br∙ 0 Ν 0[~] Ν O 2 e -3.148 ______ -3.418 2.02 227.57 - 3.743 - 3.759 1.02 4 S 9 AVANCE-300B 096.9 986.9-990**.**7 1.04 1.15 1.04 260.T ~ -7.118 298.77 7.336 7.340 AK-3-158-F-H proton, 16 scans œ б

¹³C NMR spectra of 5-(3-bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7h**) mdd 0 Br∙ 0 O² Ν С 9 20 8 885.95----6 50 965.02----09 20 015.91-266°92 LIP.TT-80 6 10 110 120 AVANCE-300B L122.617 985.721-130 -130.084 -130'8e0 732.037 140 \$69'LET-150 AK-3-158-F-C C-13 with Decoupling 698'09T----160 678.761-170 180 190

¹H NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7**i)

¹³C NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**7**i)

SI-71

C INIVIR Spectra of	5-(5-methox	ybenzyi)- i, s-uimei	.nyipynmiaine-	2,4,0(10,30	i,ວ <i>⊓</i>)-ແກບກ	e (/ĸ)
MeO	N						0 ppm
✓ 0 ² N ¹	`0						9
							20
	281 . 82 —						8
	₽Z7.7E—						- 6
	₽८S.OZ		-				20
	55.143 —		-				- 09
							- 22
	966·9L						- 8
					a kite a		- 06
							- 8
					and the second		10
0	85.411		_				-
б ш	80°TZT —						12(
0 300	72.91.57				1		130
VANCE	T9 ' 98T ——			_	Add to 1		140
₽ T	00°TST —						150
oling v	04°69T			-			160
J Course	52.831 —				1 F 401 - F		170
53-F- ith D							80
К-3-1 -13 м							90
AI C-							-

¹³C NMR spectra of 5-(3-methoxybenzyl)-1 3-dimethylpyrimidine-2 4 6(1H 3H 5H)-trione (**7k**)

¹H NMR spectra of 1,3-dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8a**)

¹³C NMR spectra of 1,3-dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (8a)

¹H NMR spectra of 5-(1-(4-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8b**)

mdd ------مسطارة ألمانه فتقاوله بالطرادية 0 0 Ν MeO Ó Ò N 9 F -51.363 20 984.12-> 74.8477--28.028 30 F -28.803 40 50 --- 52.005 6SI'SS -----₽₽₽.82 ----60 70 015.91-₽66'9L-عناريا والمستليب 80 LTĐ. LL -6 100 110 713.747 120 AVANCE-300B 130 140 150 AK-3-173-F2-C C-13 with Decoupling LI6.021 -----160 ₽SI.eSI ---τιε. τότ ----170 999.691 -----180 190

¹H NMR spectra of 5-(1-(4-chlorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (**8c**)

bpm 0 Ĩ 0 Ν CI Ó Ν Ò 2 ~21.254 20 \sum -21.420 -27.924 EII.82-33 T08.82-6 50 055'TS----60 2 915.91~ 000.77-8 E24.77-8 <mark>1</mark>0 110 120 AVANCE-300B 128.691 130 SZ0.621 140 150 AK-3-133-F2-C C-13 with Decoupling ₽₽L'OST -----160 ₽Z0.767 170 SLT . 691 ----180 190

¹H NMR spectra of 5-(1-(3-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8d**)

¹³C NMR spectra of 5-(1-(3-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8d**)

F

¹H NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8e**)

¹³C NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8e**)

¹H NMR spectra methylpropyl)benzonitrile (**8f**)

of

0 ppm

¹³C NMR spectra methylpropyl)benzonitrile (**8f**)

of

629	•99	τ
<i>L</i> Τ9	•89	τ

AK-3-164-F2-C C-13 with Decoupling

¹H NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8g**)

¹³C NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8g**)

¹H NMR spectra of 5-(1-(3-bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8h**)

mdd 0 Ĩ Br∙ 0 O Ν \cap Ē 9 -21.201 Ē 20 - 51.512 $\overline{}$ L06.72--28.090 30 Ē 185.82-E 40 50 Ē LEL'IS----τε9.85----Ē 60 70 74° 214 L66 .9L -66T'*LL* Ē 80 024.*TT* 6 100 110 120 AVANCE-300B ~122.744 ~ 126.350 £729.974 130 E69'0ET-68T.IEI-140 ₽SS.0₽1 — وتلقي قليرا فأريثك ولغتم مركبت بالترابيل 150 AK-3-158-F2-C C-13 with Decoupling L91.0SI -----160 فللتويغ كاطمت فمتعمد وأرمانكم لرنا 986°99T — 170 τ6τ.69τ----180 190

¹H NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8**i)

0 ppm 0 N[^] Br 0 °0 Ν • 0 -3.05 669.0> L92.1~ 3.04 882.I~ T/S'T--2.385 704.2-2 824.2 -2.445 994.2-10. F 884.2--2.509 <u>4.07</u> 566.2e -3.025 -3.025 060.67 $<_{3}^{3}\cdot_{885}$ 1.02) 4 S 9 AVANCE-300B 061.9~ 2.04 818.9~ 2 0₽2.7~ -1.328 2.00 958.7 AK-3-165-F2-H proton, 16 scans ω 6

¹H NMR spectra of 5-(1-(4-bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8j**)

¹³C NMR spectra of 5-(1-(4-bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8j**)

¹H NMR spectra of 5-(1-(3-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8k**)

¹³C NMR spectra of 5-(1-(3-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8**k)

¹H NMR spectra of 5-(1-(4-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8**I)

¹³C NMR spectra of 5-(1-(4-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8**I)

F

mdd 0 0 'N´ $O_2 N^2$ 0^ °0 N 069.0 3.05 217.0-~J.286 20.5 LOE .I > 5.513 2.5236 5.526 2 2.576 - 5.595 - 2.616 1.02 -2.637 3.04 810.5c = 3.05 911.6-90. r -3.206 -3°571 13.243 -3.949 -3.949 00.1 - 4 S AVANCE-300B 9 ZSI.7-~ 08T.7-2.03 -7.240 AK-3-157-F-H proton, 16 scans ~ 8.082 ω īīī·8> 2.00 6

¹H NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)trione (**8m**)

¹³C NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (**8m**)

¹H NMR spectra of [N(CH₂CH₂CH₂)₃Sn][B(C₆F₅)₄] (**13**)

N-Sn

 $[B(C_6F_5)_4]$

