Table of Contents

General Considerations SI-2
Characterization SI-2
General Experimental Procedure A
Synthesis of Benzylidene 1,3-Dimethylbarbituric Acids ($\left.\mathbf{6 a}-d_{1}, \mathbf{6 d}-6 \mathbf{l}\right)$ SI-3
General Experimental Procedure B
$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-Catalyzed Transfer 1,4-Hydrostannylation SI-6
Spectral data. SI-14

General Considerations

All reactions were carried out in oven or flame-dried glassware under dry nitrogen atmosphere using standard Schlenk techniques or in a glove box. 1,2-Dichloroethane and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were distilled over CaH_{2} and then degassed via 3 freeze-pump-thaw cycles following distillation. Reactions were monitored by thin-layer chromatography on commercially prepared plates with a particle size of $60 \AA$. Developed plates were visualized under a UV lamp (254 nm), or stained with ceric ammonium molybdate. Flash chromatography was performed using 230-400 mesh silica gel.

Characterization

Unless otherwise noted, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all adduct products were obtained in CDCl_{3} at 300 and 75 MHz , respectively. Chemical shifts are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS) as an external standard. Proton and carbon spectra were calibrated against the solvent residual peak $\left[\mathrm{CHCl}_{3}(7.24 \mathrm{ppm})\right.$ and $\left.\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})\right],\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.32 \mathrm{ppm})\right.$ and $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}(53.8 \mathrm{ppm})\right]$, and in case of 1,2-dichlorethane against known solvent resonance $\left[{ }^{1} \mathrm{H}(3.72 \mathrm{ppm})\right.$ and $\left.{ }^{13} \mathrm{C}(43.6 \mathrm{ppm})\right] .{ }^{11} \mathrm{~B}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra of tricarbastannatranes were recorded on Bruker Avance-300 ($\left.{ }^{11} \mathrm{~B}: 96 \mathrm{MHz},{ }^{119} \mathrm{Sn}: 112 \mathrm{MHz}\right)$ with ${ }^{1} \mathrm{H}$ decoupling in 1,2-dichloroethane calibrated against external $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Me}_{4} \mathrm{Sn}$, respectively. The spectral references (sr) which were obtained from the external standards, were used to calibrate all ${ }^{119} \mathrm{Sn}$ NMR and ${ }^{11}$ B NMR chemical shifts. Spectral reference values of -171.61 Hz and -5.13 Hz were used to calibrate ${ }^{119} \mathrm{Sn}$ and ${ }^{11} \mathrm{~B}$ chemical shifts in 1,2-dichloroethane, respectively. Abbreviations used to define NMR spectral mutiplicities are as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad. High resolution mass spectra (ESI) were run at the University of Waterloo Mass Spectrometry facility. Fragment signals are given in mass per charge number $(\mathrm{m} / \mathrm{z})$.

The following compounds were prepared according to literature procedures: 5-(iso-propyl)-1-aza-5stannabicyclo[3.3.3]undecane, ${ }^{1} \quad$ 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6a), ${ }^{2} \quad$ 5-(4-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6b), ${ }^{3} \quad 5$-(4-chlorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($\mathbf{6 c}$), ${ }^{4} \quad$ 1,3-dimethyl-5-(4-nitrobenzylidene)pyrimidine$2,4,6(1 H, 3 H, 5 H)$-trione $(\mathbf{6 m}),{ }^{5}$ Other reagents were purchased from commercial suppliers and used without further purification.

5-(Propan-2-yl-1,1,1,3,3,3- \boldsymbol{d}_{6})-1-aza-5-stannabicyclo[3.3.3]undecane (2- d_{6})

(Propan-2-yl-1,1,1,3,3,3-d d_{6} magnesium bromide reagent (2.0 M in diethyl ether) (2 equiv.) was synthesized from 2-bromopropane-1,1,1,3,3,3-d $\mathrm{d}_{6}\left(99 \%\right.$ atom D), ${ }^{6}$ and was added
dropwise to a suspension of 5-chloro-1-aza-5-stannabicyclo[3.3.3]undecane ($235 \mathrm{mg}, 0.798 \mathrm{mmol}$) in anhydrous THF at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours, allowed to warm to room temperature, and stirred overnight. The reaction mixture was poured into a separatory funnel containing a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and water. The layers were partitioned, and the organic layer was washed with brine, dried over MgSO_{4}, and filtered. Solvent was removed under reduced pressure to provide the crude product. A yellow oil ($259 \mathrm{mg}, 84 \%$ yield) was isolated and was used without further purification; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.33(\mathrm{t}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.62(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 54.7,23.4,16.8$, $4.4 ;{ }^{2} \mathrm{H}$ NMR ($\left.\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 1.00$ (brd, $J=0.1 \mathrm{~Hz}$). HRMS (+ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19}{ }^{2} \mathrm{H}_{6} \mathrm{NSn}(\mathrm{M})^{+}$: 309.13801. Found: 309.15384.

General Experimental Procedure A - Synthesis of Benzylidene 1,3-Dimethylbarbituric Acids (6a- $d_{l}, \mathbf{6 d}-61$)

To a stirred solution of the 1,3-dimethylbarbituric acid ($1.56 \mathrm{~g}, 10.0 \mathrm{mmol}$) in water (40 ml) was added the corresponding benzaldehyde (10.0 mmol) in one portion at ambient temperature. After refluxing for an hour, the resulting suspension was filtered and the solid was collected and was dried under vacuum. Products 6a-d \boldsymbol{d}_{l}, $\mathbf{6 d} \mathbf{- 6 1}$ were used without further purification unless otherwise noted.

1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1H,3H,5H)-trione (6a- d_{1})

Prepared according to General Procedure A from 1,3-dimethylbarbituric acid (454 mg , $2.90 \mathrm{mmol})$, water (12 ml), and benzaldehyde- $\alpha-d_{1}(312 \mathrm{mg}, 2.90 \mathrm{mmol})$; isolated as a yellow solid ($636 \mathrm{mg}, 89 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.03$ (d, $J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.4,160.3$, 158.6 (t), 151.1, 133.4, 132.9, 132.4, 128.1, 117.3, 29.0, 28.3; ${ }^{2} \mathrm{H}$ NMR ($\left.\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 8.61(\mathrm{brs})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{2} \mathrm{HN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 246.09835$; Found: 246.09835.

5-(3-Fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6d).

Prepared according to General Procedure A from 4-fluorobenzaldehyde ($1.24 \mathrm{~g}, 10.0$ mmol); reaction was purified by recrystallization from MeOH and isolated as a white solid ($2.12 \mathrm{~g}, 81 \%$ yield); M.p. $143-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.49$ (s, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{td}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.1,162.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.0\right.$
$\mathrm{Hz}), 160.0,157.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 151.0,134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9\right.$ $\mathrm{Hz}), 119.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.7 \mathrm{~Hz}\right)$,) $119.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=50.2 \mathrm{~Hz}\right), 118.6,29.0,28.4$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 263.08320$; Found: 263.08249.

1,3-Dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione (6e).

Prepared according to General Procedure A from 2-naphthaldehyde (1.56 g, 10.0 $\mathrm{mmol})$; isolated as a pale yellow solid ($2.56 \mathrm{~g}, 87 \%$ yield); M.p. 206-207 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.6,160.4,159.2,151.3,136.4,135.3,132.5,130.3,129.6,129.0,128.7,127.7,127.6$, 126.7, 117.2, 29.1, 28.4. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 295.10827$; Found: 295.10764.

4-((1,3-Dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (6f).

Prepared according to General Procedure A from 4-formylbenzonitrile (1.31 g, 10.0 mmol); isolated as a white solid ($2.40 \mathrm{~g}, 89 \%$ yield). M.p. $185-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 161.5,159.8,155.8$, $150.9,137.1,132.0,131.7,120.3,118.1,114.8,29.2,28.5$. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 270.08787; Found: 270.08701.

1,3-Dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (6 g).

Prepared according to General Procedure A from 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde $(2.32 \mathrm{~g}, 10.0 \mathrm{mmol})$; isolated as a white solid $\left(2.36 \mathrm{~g}, 64 \%\right.$ yield); M.p. $189-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.59(\mathrm{~s}$, $1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 162.4,160.3,159.5,151.3,140.5,139.1,135.0,132.2,127.6,117.5,84.1,29.0,28.4,24.9$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}: 371.17783$. Found: 371.17722 .

5-(3-Bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6h).

Prepared according to General Procedure A from 3-bromobenzaldehyde (1.85 g, 10.0 mmol); recrystallized from MeOH and isolated as a white solid ($2.77 \mathrm{~g}, 86 \%$ yield); M.p. $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J$
$=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 162.0,160.0,157.0,151.0,135.2,135.2,134.5,131.4,129.6,122.2,118.8,29.1,28.5$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}: 323.00313$; Found: 323.00320 .

1,3-Dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine$\mathbf{2 , 4 , 6 (1 H , 3 H , 5 H})$-trione (6i).

Prepared according to General Procedure A from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde $(2.32 \mathrm{~g}, 10.0 \mathrm{mmol})$; isolated as a white solid $\left(1.96 \mathrm{~g}, 53 \%\right.$ yield); M.p. $195-197{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.55$ (s, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.3,160.1,159.1,151.2$, $135.1,134.3,131.7,118.2,84.1,29.0,28.4,24.8$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}$: 371.17783. Found: 371.17685.

5-(4-Bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6j).

Prepared according to General Procedure A from 4-bromobenzaldehyde (1.85 g, 10.0 $\mathrm{mmol})$; isolated as a white solid ($2.77 \mathrm{~g}, 86 \%$ yield); M.p. $175-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.2,160.3,157.5,151.1$, 134.8, 131.6, 131.4, 128.0, 117.9, 29.1, 28.4. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}: 323.00313$; Found: 323.00311.

5-(3-Methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6k).

Prepared according to General Procedure A from 3-methoxybenzaldehdye (1.36 $\mathrm{mg}, 10.0 \mathrm{mmol})$; isolated as a yellow solid ($2.47 \mathrm{~g}, 90 \%$ yield); M.p. $139-141{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 162.5,160.3,159.2,159.1,151.2,133.8,129.2,126.6,119.4$, 117.7, 117.6, 55.4, 29.1, 28.5. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 275.10318$; Found: 275.10260.

5-(4-Fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (61).

Prepared according to General Procedure A from 4-fluorobenzaldehyde (1.24 g, 10.0 $\mathrm{mmol})$; isolated as a pale yellow solid ($2.04 \mathrm{~g}, 78 \%$ yield). M.p. $169-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$,
$3.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 165.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=256.0 \mathrm{~Hz}\right), 162.4,160.4,157.7,151.1,136.7(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.3 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 116.9,115.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 29.0,28.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}$: 263.08320; Found: 263.08237.

General Experimental Procedure B-B(C6 $\left.\mathbf{F}_{5}\right)_{3}$-Catalyzed Transfer 1,4-Hydrostannylation

In a J. Young NMR tube, benzylidene 1,3-dimethylbarbituric acid (0.100 mmol) was added to a solution of 5-isopropyl-1-aza-5-stannabicyclo[3.3.3]undecane ($36.2 \mathrm{mg}, 0.120 \mathrm{mmol}$) and tris(pentafluorophenyl)borane ($8.0 \mathrm{mg}, 0.015 \mathrm{mmol}$) in 1 mL of 1,2 -dichloroethane in a glove box and the mixture was put in a preheated oil bath at $95{ }^{\circ} \mathrm{C}$ for 36 h . All volatiles were evaporated under vacuum and the product was purified by flash chromatography (EtOAc:pentane) on silica gel. In these reactions, compounds 8a-l were isolated as byproducts.

5-Benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7a).

Prepared according to General Procedure B from 6a ($24.4 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane ($1: 5$ to $1: 4$) and the product was isolated as a white solid ($22.4 \mathrm{mg}, 91 \%$ yield); M.p. $115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.23-7.21 (m, 3H), 7.03-6.99 (m, 2H), 3.75 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.3,151.0,135.1,128.8,128.6,127.8,50.7,37.9,28.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 247.10827; Found: 247.10773; 1,3-Dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8a): Isolated as a white solid ($2.3 \mathrm{mg}, 8 \%$ yield); M.p. $88-89^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl3, 300 MHz) $\delta 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ $(\mathrm{s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=11.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.5,167.3,150.9,138.0,128.4,128.1,127.6,59.3,52.0,28.6$, 28.0, 27.8, 21.5, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}:$289.15522; Found: 289.15463.

1,3-Dimethyl-5-(phenylmethyl- d)pyrimidine-2,4,6(1H,3H,5H)-trione (7a- d_{l}).

In a vial, $6 \mathbf{a}(24.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ was added to a solution of 5 -(propan-2-yl-$1,1,1,3,3,3-d_{6}$)-1-aza-5-stannabicyclo[3.3.3]undecane ($30.0 \mathrm{mg}, 0.0974 \mathrm{mmol}$) and tris(pentafluorophenyl)borane ($52.0 \mathrm{mg}, 0.102 \mathrm{mmol}$) in 1,2-dichloroethane (1 ml). After stirring for 18 hours at room temperature, all volatiles were removed and the reaction was purified eluting with EtOAc:pentane ($1: 5$ to $1: 4$) and the product was isolated as a white solid ($22.0 \mathrm{mg}, 92 \%$ yield, 54% D-incorporation); M.p. $115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.44(\mathrm{~m}, 1.46 \mathrm{H}), 3.10(\mathrm{~s}, 6 \mathrm{H}){ }^{13}{ }^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.3,151.0$, 135.1, 135.0, 128.8, 128.6, 127.8, 50.7, 50.6, 37.6 (t), 28.2. ${ }^{2} \mathrm{H}$ NMR ($\left.\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 3.45$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14}{ }^{2} \mathrm{HO}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 248.11400$; Found: 248.11369 .

1,3-Dimethyl-5-(phenylmethyl- \boldsymbol{d}_{2})pyrimidine-2,4,6(1H,3H,5H)-trione (7a- d_{2}).

In a vial, $\mathbf{6 a}-d_{l}(24.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ was added to a solution of 5 -(propan-2-yl-$1,1,1,3,3,3-d_{6}$)-1-aza-5-stannabicyclo[3.3.3]undecane ($30.0 \mathrm{mg}, 0.0974 \mathrm{mmol}$) and tris(pentafluorophenyl)borane ($52.0 \mathrm{mg}, 0.102 \mathrm{mmol}$) in 1,2-dichloroethane (1 ml). After stirring for 18 hours at room temperature, all volatiles were removed and the reaction was purified eluting with EtOAc:pentane (1:5 to 1:4) and the product was isolated as a white solid ($21.9 \mathrm{mg}, 89 \%$ yield, 55% D-incorporation); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 0.45 \mathrm{H}), 3.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.3,151.0,135.1,135.0,128.8$, 128.6, 127.8, 50.62, 50.60, 37.8-36.9 (m), 28.2. ${ }^{2} \mathrm{H}$ NMR ($\left.\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 3.44$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13}{ }^{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 249.12027$; Found: 249.12036.

5-(4-Methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7b).

Prepared according to General Procedure B from $\mathbf{6 b}$ ($27.4 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($19.9 \mathrm{mg}, 72 \%$ yield); M.p. $88-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 4 \mathrm{H})$, $3.39(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.4,159.1,151.0,130.0,127.0,113.9$, 55.2, 50.9, 37.1, 28.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 277.11883$; Found: 277.11841; 5-(1-(4-Methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (8b): Isolated as a colorless oil ($6.7 \mathrm{mg}, 21 \%$ yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.82(\mathrm{dt}, J=8.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dt}, J=9.0,2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.7,167.4,159.2,150.9,129.9,128.6$, $113.8,58.4,55.2,52.0,28.8,28.0,27.9,21.5,21.4$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 319.16578; Found: 319.16525.

5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7c). ${ }^{7}$

Prepared according to General Procedure B from 6c ($27.9 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($23.3 \mathrm{mg}, 83 \%$ yield); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.8,150.9,134.0,133.7,130.4,128.8,50.4,36.0,28.3 ; 5-(1-(4-$ Chlorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (8c): Isolated as a colorless oil ($4.5 \mathrm{mg}, 14 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.2,167.0,150.7,136.8,133.8,129.0,128.7,58.0,51.6,28.8,28.1,27.9$, 21.4, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}: 323.11625$; Found: 323.11572.

5-((4-Chlorophenyl)methyl-d)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7c- $\left.d_{l}\right)$.

In a vial, $6 \mathbf{c}(27.0 \mathrm{mg}, 0.0969 \mathrm{mmol})$ was added to a solution of 5 -(propan-2-yl-$1,1,1,3,3,3-d_{6}$)-1-aza-5-stannabicyclo[3.3.3]undecane ($30.0 \mathrm{mg}, 0.0974 \mathrm{mmol}$) and $\operatorname{tris}($ pentafluorophenyl)borane $(52.0 \mathrm{mg}, 0.102 \mathrm{mmol})$ in 1,2 -dichloroethane $(1 \mathrm{ml})$. After stirring for 18 hours at room temperature, all volatiles were removed and the reaction was purified eluting with EtOAc:pentane (1:5) and the product was isolated as a clear oil (23.3 mg , 86% yield, 59% D-incorporation); ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 1.41 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(\mathrm{CDCl} 3,75 \mathrm{MHz}) \delta 167.9,150.9$, 134.02, 133.98, 133.7, 130.5, 128.8, 50.4, 50.3, 35.7 (t), 28.3; ${ }^{2} \mathrm{H} \operatorname{NMR}\left(\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 3.44 . \mathrm{HRMS}$ (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13}{ }^{2} \mathrm{HN}_{2} \mathrm{O}_{3} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}$: 282.07502; Found: 282.07504.

5-(3-Fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7d).

Prepared according to General Procedure B from 6d ($26.2 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane $(1: 4)$ and the product was isolated as a white solid (21.4 mg, 81\% yield); M.p. 100-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.17$ (q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.8,162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.4 \mathrm{~Hz}\right), 150.9$, $137.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=20.8 \mathrm{~Hz}$), 50.3, 36.5, 36.4, 28.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 265.09885$; Found: 265.09818; 5-(1-(3-Fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (8d): Isolated as a white solid ($5.2 \mathrm{mg}, 17 \%$ yield); M.p. $68-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.19$ (q, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.64(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.10-2.99(\mathrm{~m}, 4 \mathrm{H})$, $2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.1(\mathrm{~d}$,
$\left.J_{\mathrm{C}-\mathrm{F}}=163.6 \mathrm{~Hz}\right), 162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.9 \mathrm{~Hz}\right), 150.8,140.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\mathrm{F}=2.7 \mathrm{~Hz}), 115.1,114.9,114.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 58.5,51.6,28.7,28.1,27.9,21.4,21.2 . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 307.14580$; Found: 307.14545 .

1,3-Dimethyl-5-(naphthalen-2-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7e).

Prepared according to General Procedure B from 6e ($29.4 \mathrm{~g}, 0.100 \mathrm{mmol}$); reaction was purified by flash chromatography on silica gel with EtOAc:pentane (1:5) and the product was isolated as a yellow solid ($25.5 \mathrm{mg}, 86 \%$ yield); M.p. $126-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.78-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 168.2$, $150.5,133.3,132.7,132.6,128.3,127.9,127.7,127.5,126.7,126.4,126.1,50.7,37.6,28.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 279.12392$; Found: 279.12296; 1,3-Dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8e): Isolated as a yellow oil ($3.7 \mathrm{mg}, 11 \%$ yield); ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.77-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.5,167.3,150.7,135.5,133.2,132.8,128.2$, $127.7,127.5,127.1,126.5,126.2,124.8,59.2,52.0,28.7,28.0,27.9,21.6,21.4$. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 339.17087$; Found: 339.17111.

4-((1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl)benzonitrile (7f). ${ }^{8}$

Prepared according to General Procedure B from $6 \mathbf{f}(26.9 \mathrm{mg}, 0.100 \mathrm{mmol})$; reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a colorless oil ($22.8 \mathrm{mg}, 84 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.3,150.8,141.6,132.3,130.1,118.4,111.6,50.1,35.3,28.5$. HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 272.10297; Found: 272.10278; 4-(1-(1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-2-methylpropyl)benzonitrile (8f): Isolated as a colorless oil (4.4 mg, 14\% yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.6,166.6,150.5,144.2,132.3,128.7,118.2,112.1,58.0,51.3,28.7,28.2,28.0$, 21.4, 21.1. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}: 314.15047$; Found: 314.15012.

1,3-Dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-

 trione (7 g).

Prepared according to General Procedure B from $\mathbf{6 g}(37.0 \mathrm{mg}, 0.100 \mathrm{mmol})$; reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($31.6 \mathrm{mg}, 85 \%$ yield); M.p. $142-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.4,150.9,134.8,134.2,131.7,127.9,83.9$, 50.8, 38.5, 28.5, 24.8. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}: 373.19348$. Found: 373.19266; 1,3-Dimethyl-5-(2-methyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)pyrimidine$2,4,6(1 H, 3 H, 5 H)$-trione (8g): Isolated as a white solid ($5.4 \mathrm{mg}, 13 \%$ yield); M.p. $161-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=19.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.41(\mathrm{~m}, 1 \mathrm{H})$, $1.33-1.30(\mathrm{~m}, 15 \mathrm{H}), 0.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.6,167.3,150.8,137.1,134.5$, 133.5, 130.9, 127.7, 83.9, 59.5, 52.1, 28.5, 27.9, 27.8, 24.9, 24.8, 21.7, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}: 415.24043$. Found: 415.24023 .

5-(3-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1 H,3H,5H)-trione (7h).

Prepared according to General Procedure B from $\mathbf{6 h}(32.3 \mathrm{mg}, 0.100 \mathrm{mmol})$; reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($25.7 \mathrm{mg}, 79 \%$ yield); M.p. $84-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.8$, $150.9,137.7,132.0,130.9,127.6,122.6,50.4,36.6,28.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}$: 325.01878; Found: $\quad 325.01837$; \quad 5-(1-(3-Bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine$2,4,6(1 H, 3 H, 5 H)$-trione ($\mathbf{8 h}$): Isolated as a white solid ($7.3 \mathrm{mg}, 20 \%$ yield); M.p. $121-124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.2,167.0,150.8,140.6,131.2,130.7,130.0,126.4,122.7,58.6,51.7,28.6,28.1$, 27.9, 21.5, 21.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}: 367.06573$; Found: 367.06549.

1,3-Dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)trione (7i).

Prepared according to General Procedure B from 6i ($37.0 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane ($1: 6$ to $1: 4$) and the product was isolated as a white solid ($30.5 \mathrm{mg}, 82 \%$ yield); M.p. $131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.2,150.9,138.3,135.1,128.3,83.9,50.5,37.7,28.2,24.9$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}: 373.19348$. Found: 373.19247; 1,3-Dimethyl-5-(2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl) pyrimidine-2,4,6(1H,3H,5H)-trione (8i): Isolated as a colorless oil (5.8 $\mathrm{mg}, 14 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.96(\mathrm{~m}, 7 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.29(\mathrm{~m}, 15 \mathrm{H}), 0.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.4,167.3,150.8,141.3,135.0,127.1,83.9,59.1,51.7,28.7,28.1,27.9,24.9,21.5$, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~B}(\mathrm{M}+\mathrm{H})^{+}: 415.24043$. Found: 415.23969 .

5-(4-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7j).

Prepared according to General Procedure B from $\mathbf{6 j}$ ($32.3 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($24.1 \mathrm{mg}, 74 \%$ yield); M.p. $85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.8,150.9,134.6,131.8,130.8,121.8,50.3,36.0$, 28.4. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}$: 325.01878. Found: 325.01831; 5-(1-(4-Bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (8j): Isolated as a colorless oil ($8.4 \mathrm{mg}, 23 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.1,167.0,150.7,137.4,131.7,129.4,121.9,58.0,51.5,28.8$, 28.1, 27.9, 21.4, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}: 367.06573$. Found: 367.06542.

5-(3-Methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7k).

Prepared according to General Procedure B from 6k ($27.4 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a pale yellow solid ($26.0 \mathrm{mg}, 94 \%$ yield); M.p. $64-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.56$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.2,159.7$, 151.0, 136.6, 129.6, 121.1, 114.4, 113.3, 55.1, 50.6, 37.7, 28.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{2}$ SI-11
$(\mathrm{M}+\mathrm{H})^{+}$: 277.11883. Found: 277.11789; 5-(1-(3-Methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine$2,4,6(1 H, 3 H, 5 H)$-trione (8k): Isolated as a white solid ($1.6 \mathrm{mg}, 5 \%$ yield); M.p. $100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.47(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.95(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.5,167.3,159.8,139.6,129.4,119.8,113.7,113.0,59.1,55.2,51.9$, 28.6, 28.0, 27.9, 21.5, 21.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 319.16578$. Found: 319.16437.

5-(4-Fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (71).

Prepared according to General Procedure B from $61(26.2 \mathrm{mg}, 0.100 \mathrm{mmol})$; reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid ($23.3 \mathrm{mg}, 88 \%$ yield); M.p. $59-61{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.03-6.87$ $(\mathrm{m}, 4 \mathrm{H}), 3.73(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.0,162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.3 \mathrm{~Hz}\right), 150.9,131.1,130.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 21.2 Hz), 50.6, 36.3, 28.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 265.09885$. Found: 265.09769; 5-(1-(4-Fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (81): Isolated as a colorless oil ($3.1 \mathrm{mg}, 10 \%$ yield); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.95-6.86(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.3,167.1,162.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.0 \mathrm{~Hz}\right), 150.8,133.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 129.2(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.1 \mathrm{~Hz}\right), 58.1,51.8,28.9,28.1,27.9,21.4,21.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 307.14580$. Found: 307.14517.

1,3-Dimethyl-5-(4-nitrobenzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7m). ${ }^{9}$

Prepared according to General Procedure B from 6m ($28.9 \mathrm{mg}, 0.100 \mathrm{mmol}$); reaction was purified eluting with EtOAc:pentane (1:4) and the product was isolated as a white solid $(7.0 \mathrm{mg}, 24 \%$ yield $){ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.10$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.2,150.5,147.4,143.9,130.3,123.7,50.0,34.7$, 28.5. 1,3-Dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8m): Isolated as a pale yellow oil ($24.3 \mathrm{mg}, 76 \%$ yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}$, $3 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.5$, $166.6,150.5,147.5,146.4,128.9,123.7,57.6,51.2,28.9,28.3,28.1,21.4,21.2$ HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}: 334.13975$. Found: 334.13864.

$\left[\mathbf{N}\left(\mathrm{CH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right](\mathbf{9})$.

To a solution of 5-(propan-2-yl-1,1,1,3,3,3- d_{6})-1-aza-5-stannabicyclo[3.3.3]undecane ($30.1 \mathrm{mg}, \quad 0.100 \mathrm{mmol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ in a vial, was added tris(pentafluorophenyl)borane ($51.1 \mathrm{mg}, 0.100 \mathrm{mmol}$). After stirring for 2 min , the solution was transferred to a J. Young NMR tube; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta$ $2.66(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH} 2), 2.04(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} 2), 1.45(\mathrm{t}, J=6.6,6 \mathrm{H}, \mathrm{SnCH} 2) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right) \delta 56.5$ (NCH2), $25.2(\mathrm{CH} 2), 15.4(\mathrm{SnCH} 2) ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 112 \mathrm{MHz}\right) \delta 151.4 ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 96 \mathrm{MHz}\right) \delta-$ 18.1; ${ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}, 46 \mathrm{MHz}\right) \delta 5.05(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 4.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 1.68(\mathrm{brd}, J=0.1 \mathrm{~Hz})$. HRMS $(-$ ESI) m / z calcd. for $\mathrm{C}_{18}{ }^{2} \mathrm{HBF}_{15}\left(\mathrm{M}^{-}\right)$: 512.99891 . Found: 512.99935 ; (+ESI) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NSn}\left(\mathrm{M}^{+}\right)$: 260.04557. Found: 260.04538.

$\left[\mathbf{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{1 3})$.

To a solution of 5-methyl-1-aza-5-stannabicyclo[3.3.3]undecane ($27.5 \mathrm{mg}, 0.100$ $\mathrm{mmol})$ in 1,2-dichloroethane $(1 \mathrm{ml})$ in a vial, was added trityl tetrakis(pentafluorophenyl)borate ($92.2 \mathrm{mg}, 0.100 \mathrm{mmol}$). After stirring for 2 min , the solution was transferred to a J. Young NMR tube; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 300 \mathrm{MHz}\right) \delta 2.70(\mathrm{t}, 6 \mathrm{H}, \mathrm{NCH} 2), 2.10$ (m, 6H, CH2), 1.71 (t, 6H, SnCH2); ${ }^{119} \mathrm{Sn} \operatorname{NMR}\left(\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}, 112 \mathrm{MHz}\right) \delta 251.1$.
${ }^{1}$ Li, L.; Wang, C. Y.; Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5, 607-612.
${ }^{2}$ Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453-6456.
${ }^{3}$ Pałasz, A. Synthesis 2010, 4021-4032.
${ }^{4}$ Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453-6456
${ }^{5}$ Mohammed Khan, K.; Khan, M.; Ali, M.; Taha, M.; Hameed, A. Ali, S. Perveen, S. Choudhary, M. I. Med. Chem. 2011, 7, 231-236.
${ }^{6}$ McNallyla, J. P.; Cooper, N. J. Organometallics 1988, 7, 1704-1715.
${ }^{7}$ Löfberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharana, V.; Kilnera, C. Chem. Commun. 2006, 5000-5002.
${ }^{8}$ Rehse, K.; Kapp, W-D. Arch. Pharm. 1982, 4, 346-353.
${ }^{9}$ Tanaka, K.; Chen, X.; Kimura, T.; Yoneda, F. Chem. Pharm. Bull. 1988, 36, 60-69.
${ }^{1} \mathrm{H}$ NMR Spectra of 5-(propan-2-yl-1,1,1,3,3,3- d_{6})-1-aza-5-stannabicyclo[3.3.3]undecane (2-d d_{6})

${ }^{13} \mathrm{C}$ NMR Spectra of 5 -(propan-2-yl-1,1,1,3,3,3- d_{6})-1-aza-5-stannabicyclo[3.3.3]undecane (2-d \boldsymbol{d}_{6})

\qquad

$98 \varepsilon \cdot \varepsilon$ 乙—

FLS.9L
$866^{\circ} 9 L$
LZ
$\angle L$

${ }^{2}$ H NMR Spectra of 5-(propan-2-yl-1,1,1,3,3,3- d_{6})-1-aza-5-stannabicyclo[3.3.3]undecane (2-d d_{6})

${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(3-d_{1}\right)$

$\begin{aligned} & \mathrm{s} 99^{\circ} z \\ & \mathrm{~s} 99^{\circ} \text { Z } \\ & \varepsilon \angle 9^{\circ} z \end{aligned}$

ST8.S

${ }^{13} \mathrm{C}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(3-d_{1}\right)$

${ }^{2} \mathrm{H}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(3-d_{1}\right)$

ع 20 .s
180 ${ }^{\circ} \mathrm{G}$
6 tह. G
AK-2-244-D-in-CH2CL2-3drops-CD2C12

${ }^{119} \mathrm{Sn}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(3-d_{1}\right)$

${ }^{11} \mathrm{~B}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(3-d_{1}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of 1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1H,3H,5H)-trione (6a-d \mathbf{d}_{1})

$\begin{aligned} & \square 乙 \varepsilon \cdot \varepsilon \\ & \angle 9 \varepsilon \cdot \varepsilon\end{aligned}>$

${ }^{13} \mathrm{C}$ NMR Spectra of 1，3－Dimethyl－5－（phenylmethylene－d）pyrimidine－2，4，6（1H，3H，5H）－trione（ $\mathbf{6 a -} d_{1}$ ）

乙\＆と＊ LTT
 たもあ・てとし
とん8＊てとT

KN－257－C

${ }^{2} \mathrm{H}$ NMR Spectra of 1,3-Dimethyl-5-(phenylmethylene-d)pyrimidine-2,4,6(1H,3H,5H)-trione (6a- d_{1})

${ }^{1} \mathrm{H}$ NMR Spectra of 5-(3-fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6d)

${ }^{13} \mathrm{C}$ NMR Spectra of 5-(3-fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6d)

${ }^{1}$ H NMR Spectra of 1,3-dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione (6e)

正

E 등
${ }^{13} \mathrm{C}$ NMR Spectra of 1,3-dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione (6e)

${ }^{1} \mathrm{H}$ NMR spectra of 4-((1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (6f)

${ }^{13} \mathrm{C}$ NMR spectra of 4-((1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (6f)

267.82
697.62
${ }^{1} \mathrm{H} \quad$ NMR Spectra of 1，3－dimethyl－5－（3－（4，4，5，5－tetramethyl－1，3，2－dioxaborolan－2－ yl）benzylidene）pyrimidine－2，4，6（1H，3H，5H）－trione（6g）

โ $\varepsilon \cdot \tau \ldots$
$\varepsilon ซ \varepsilon \cdot \varepsilon$
$06 \varepsilon \cdot \varepsilon$
AK－3－163－cr
proton， 16 scans AVANCE－300B

$\square 06^{\circ} \mathrm{L}$
$\square 06^{\circ} \mathrm{L}$
$826^{\circ} \mathrm{L}=$
$826^{\circ} \mathrm{L}=$
06T•8
06T•8
$\angle 乙 \varepsilon \cdot 8=$
$\square 乌 \varepsilon \cdot 8$
$\angle 乙 \varepsilon \cdot 8=$
$\square 乌 \varepsilon \cdot 8$
$98 \mathrm{G} \cdot 8$
$98 \mathrm{G} \cdot 8$
${ }^{13} \mathrm{C} \quad$ NMR Spectra of 1，3－dimethyl－5－（3－（4，4，5，5－tetramethyl－1，3，2－dioxaborolan－2－ yl）benzylidene）pyrimidine－2，4，6（1H，3H，5H）－trione（6g）

$$
\begin{aligned}
& \angle 6 \varepsilon \cdot 8 z \\
& \tau \varepsilon 0 \cdot 6 z
\end{aligned}
$$

GLG．9L

$$
\begin{aligned}
& 666 \cdot 9 L \\
& Z Z \nabla \cdot L L
\end{aligned}
$$

0とざも8－

$$
958^{\circ} \boxed{ }
$$

${ }^{1} H$ NMR Spectra of 5-(3-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione

居
${ }^{13}$ C NMR Spectra of 5－（3－bromobenzylidene）－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－trione（6h）

$887 \cdot 82$
$6 \tau \tau \cdot 62$ $0 \angle G^{\circ} 9 L$
$866^{\circ} 9 L$ したも゙しく」

$$
\left.\begin{array}{l}
\text { AK-3-143-C } \\
\text { C-13 with Decoupling } \\
\\
\\
\\
\\
\\
\\
\\
\\
\hline 000 \\
\hline
\end{array}\right)
$$

${ }^{1} \mathrm{H} \quad$ NMR spectra of 1，3－dimethyl－5－（4－（4，4，5，5－tetramethyl－1，3，2－dioxaborolan－2－ yl）benzylidene）pyrimidine－2，4，6（1H，3H，5H）－trione（6i）

$9 \varepsilon \varepsilon \cdot \varepsilon$
$\varsigma 6 \varepsilon \cdot \varepsilon>$
AK-3-162-recryst
proton, 16 scans AVANCE-300B
$0 も て ゙ し —$
ても $8^{\circ}\llcorner$
$898^{\circ} \mathrm{L}$

| $806^{\circ} \mathrm{L}$ |
| :--- | :--- |
| ロと |

\#SG•8
${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (6i)

${ }^{1} \mathrm{H}$ NMR spectra of 5-(4-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6j)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(4-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($\mathbf{6 j}$)

${ }^{1} \mathrm{H}$ NMR spectra of 5-(3-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($\mathbf{6 k}$)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(3-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6k)

AK-3-144-C
C-13 with Decoupling
${ }^{1} \mathrm{H}$ NMR spectra of 5-(4-fluorobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6I)

${ }^{1}$ H NMR spectra of 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7a)

${ }^{13} \mathrm{C}$ NMR spectra of 5－benzylidene－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－trione（7a）

I69.0S——
2LS.9L
$966.9 L$
$6 I D$.

08 O -8で 7
80t•乌をT
S96.0GT_
AK-3-155-F-C
C-13 with Dec
8 B •89T
${ }^{1} \mathrm{H}$ NMR spectra of 1,3-dimethyl-5-(phenylmethyl-d)pyrimidine--2,4,6(1H,3H,5H)-trione $\left(7 a-d_{1}\right)$

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(phenylmethyl-d)pyrimidine--2,4,6(1H,3H,5H)-trione $\left(\mathbf{7 a}-d_{1}\right)$

696° OST
$892 \cdot 89 \tau$ ——

${ }^{2} \mathrm{H}$ NMR spectra of 1,3-dimethyl-5-(phenylmethyl-d)pyrimidine--2,4,6(1H,3H,5H)-trione $\left(7 a-d_{1}\right)$

${ }^{1} \mathrm{H}$ NMR spectra of 1,3 －Dimethyl－5－（phenylmethyl－d_{2} ）pyrimidine－2，4，6（1H，3H，5H）－trione（7a－d \mathbf{d}_{2} ）

，
$6 \boxed{0 \cdot 0}$
乙と8•0

$$
6 \varepsilon 乙 \cdot \tau
$$

$$
\tau Z S \cdot \tau
$$

ぁて0・て—

$$
\begin{aligned}
& 698 \cdot 2 \\
& 60 \tau \cdot \varepsilon \\
& \sigma \sigma \varepsilon \cdot \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { } \sigma \varepsilon \cdot \varepsilon \\
& 29 \varepsilon \cdot \varepsilon \\
& 607 \cdot \varepsilon
\end{aligned}
$$

$+\sqrt{00 \%}$

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-Dimethyl-5-(phenylmethyl- d_{2})pyrimidine-2,4,6(1H,3H,5H)-trione $\left(7 \mathrm{a}-\mathrm{d}_{2}\right)$

LL6.OGT

${ }^{2} \mathrm{H}$ NMR spectra of 1,3 －Dimethyl－5－（phenylmethyl－d_{2} ）pyrimidine－2，4，6（1H，3H，5H）－trione（7a－d \boldsymbol{d}_{2} ）

LED• $\varepsilon-$
$0 も て^{*} ん —$
$\mathrm{KN}-1-259-\mathrm{D}$
Deuterium
Deuterium

${ }^{1} \mathrm{H}$ NMR spectra of 5-(4-methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7b)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(4-methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7b)
 $\varepsilon 8 \tau \cdot 8 Z —$
$\varepsilon \varepsilon \tau \cdot\llcorner\varepsilon —$
$878 \cdot 05$
$95 T . G S$

OLS:9L

$\begin{aligned} & \varepsilon 66^{\circ} \cdot 9 L \\ & \text { LTも } \\ & \text { LL }\end{aligned}>$

AVANCE-300B
عL6.9ZI_
896.6てT-

AK-3-173-F-C
C-13 with Dec

${ }^{1} \mathrm{H}$ NMR spectra of 5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7c)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(4-Chlorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7c)

${ }^{1}$ H NMR spectra of 5 -((4-Chlorophenyl)methyl-d d-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7cd_{1})

${ }^{13} \mathrm{C}$ NMR spectra of 5-((4-Chlorophenyl)methyl-d)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7cd_{1})

0T6.0GT
298° L9T
${ }^{2} \mathrm{H}$ NMR spectra of $5-((4-C h l o r o p h e n y l)$ methyl-d)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7cd_{1})

${ }^{1}$ H NMR spectra of 5-(3-fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7d)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(3-fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7d)

${ }^{1} \mathrm{H}$ NMR spectra of 1,3-Dimethyl-5-(naphthalen-2-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7e)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-Dimethyl-5-(naphthalen-2-ylmethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7e)

${ }^{1} \mathrm{H}$ NMR spectra of 4-((1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl)benzonitrile (7f)

${ }^{13} \mathrm{C}$ NMR spectra of 4－（（1，3－Dimethyl－2，4，6－trioxohexahydropyrimidin－5－yl）methyl）benzonitrile（7f）

LZT•0\&T
6とを'スをI
sて9「切——
ELL.OST-
${ }^{1} \mathrm{H}$ NMR spectra of 1,3 -dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7g)

$66 Z^{\circ} \cdot \tau$

$$
\begin{aligned}
& \text { AK-3-167-F-H } \\
& \text { proton, } 16 \mathrm{sca}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7g)

ஏ88.
$590^{\circ} 8$ Z
$06 \sigma^{\circ} 8 \varepsilon$
$9 L L^{\circ} O G$
${ }^{1} \mathrm{H}$ NMR spectra of 5-(3-bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7h)

(

LZL• ε
$\left.\begin{array}{l}\varepsilon \nabla L \cdot \varepsilon \\ 6 G L \cdot \varepsilon\end{array}\right\rangle$

${ }^{13} \mathrm{C}$ NMR spectra of 5-(3-bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7h)

${ }^{1} \mathrm{H}$ NMR spectra of 1,3 -dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7i)

$9 \tau \varepsilon \cdot \tau-$

AK $-3-168-\mathrm{F}-\mathrm{H}$
proton, 16 scans
${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (7i)

$\varepsilon 69^{\circ} L \varepsilon-$
$\angle 97^{\circ} 0 \mathrm{~S}$

${ }^{1} \mathrm{H} \quad$ NMR spectra of 5 -(4-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione

AK-3-165-F
proton, 16 scans
${ }^{13} \mathrm{C}$ NMR spectra of 5 -(4-Bromobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione

${ }^{1} \mathrm{H}$ NMR spectra of 5-(3-methoxybenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7k)

proton, 16 scans
${ }^{13}$ C NMR spectra of 5－（3－methoxybenzyl）－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－trione（7k）

28T•82

ぁてL・レع－

تLS．OS
ともT•GG——

2LS．9L
966.92 6Tも．LL

```
ZLZ•&IT
```

$08 \varepsilon \cdot \neq \tau T>$
680° โZT ——
0LS*6ZT-
6T9.98T

T00TSI－ AK－3－153－F－C
C－13 with Decoupling $90 L .6 \mathrm{SI}-$ โ\＆て・89โ
${ }^{1} \mathrm{H}$ NMR spectra of 5-(4-fluorobenzyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (7I)
 $\{$
${ }^{13} \mathrm{C}$ NMR spectra of 5－（4－fluorobenzyl）－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－trione（7I）

$8 乌 て \cdot 8$＿
$9 \tau \varepsilon \cdot 9 \varepsilon-$
$98 G^{\circ} 0 \mathrm{~s}$
$\left.\begin{array}{l}\varepsilon L G \cdot 9 L \\ 966 \cdot 9 L \\ 00 Z \cdot L L \\ 0 Z \sigma^{\circ} L L\end{array}\right]$
$\begin{aligned} & 88 \varepsilon^{\circ} \mathrm{SIT} \\ & \text { TL9．} \mathrm{SIT}\end{aligned}>$
AVANCE－300B
99G．0とโ
てL9＊0\＆T

668° OGT－

عโ9•09T
688° ह9 I－
AK－3－159－F－C
C－13 with De
900．89I——
${ }^{1} \mathrm{H}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8a)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-phenylpropyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8a)

666° TS_
ZSZ.6S——
$0 \angle G^{\circ} 9 L$
$\varepsilon 66^{\circ} 9 L$
$9 \tau \sigma^{\circ} \angle L$

mider
${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(4-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8b)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(1-(4-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8b)

${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(4-chlorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8 c)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(1-(4-chlorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8c)

$G G \cdot \tau Z$
$0 Z \sigma \cdot \tau Z$
$\sigma Z 6 \cdot \angle Z$
$\varepsilon \tau \tau \cdot 8 Z$
$\tau 08 \cdot 8 Z$

${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(3-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8d)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(1-(3-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8d)

${ }^{1}$ H NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1H,3H,5H)trione ($\mathbf{8 e}$)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(naphthalen-2-yl)propyl)pyrimidine-2,4,6(1H,3H,5H)trione (8e)

${ }^{1} \mathrm{H}$ NMR spectra of 4-(1-(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-2methylpropyl)benzonitrile (8f)

T9G. ${ }^{\circ}$
$89 \sigma^{\circ}$ Z
686° Z
LTS ${ }^{\circ}$ Z
โ६s' z,
$6 \mathrm{~b} \mathrm{~s}^{\circ} \mathrm{Z}$
TLS' 2 -
26G* ${ }^{\circ}$
$500^{\circ} \varepsilon$

૬\&โ• ε
T9 [• ε 」
$\varepsilon L T \cdot \varepsilon$
пT6• ${ }^{976}$.

${ }^{13} \mathrm{C}$ NMR spectra of 4-(1-(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-2methylpropyl)benzonitrile (8f)

ZSZ. TS—_
$\angle 86^{\circ} \angle S —$
L86 L
$9 \angle S \cdot 9 L$
$000 \cdot \mathrm{LL}$

${ }^{1} \mathrm{H}$ NMR spectra of 1,3 -dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8g)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8g)

${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(3-bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8 h)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(1-(3-bromophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8h)

LOZ. โZ
$\mathrm{ZTS} \cdot \tau Z$
$\angle 06 \cdot \mathrm{LZ}$
$060 \cdot 8 Z$
$\tau 8 \mathrm{~S} \cdot 8 \mathrm{ZZ}$
$L \varepsilon L \cdot$ TS
I $18 \cdot 8 \mathrm{~S}$

${ }^{1} \mathrm{H}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8i)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)pyrimidine-2,4,6(1H,3H,5H)-trione (8i)

r ?
${ }^{1} \mathrm{H}$ NMR spectra of 5－（1－（4－bromophenyl）－2－methylpropyl）－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－ trione（8j）

AK－3－165－F2－H
proton， 16 scans
AVANCE－300B
$\begin{aligned} & 064.9 \\ & 8[8 \cdot 9\end{aligned}>$
$\begin{aligned} & 064.9 \\ & 8[8 \cdot 9\end{aligned}>$
$\begin{aligned} & 064.9 \\ & 8[8 \cdot 9\end{aligned}>$
0 もでし
0 もでし
0 もでし
$8 乙 \varepsilon \cdot L$
$8 乙 \varepsilon \cdot L$
$8 乙 \varepsilon \cdot L$
$9 \mathrm{~S} \cdot\llcorner$
$9 \mathrm{~S} \cdot\llcorner$
$9 \mathrm{~S} \cdot\llcorner$
${ }^{13} \mathrm{C}$ NMR spectra of 5－（1－（4－bromophenyl）－2－methylpropyl）－1，3－dimethylpyrimidine－2，4，6（1H，3H，5H）－ trione（8j）

E97．TG——
Z70．8S——

$2 L G \cdot 9 L$ $966.9 L$
 6切しく」

${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(3-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione ($\mathbf{8 k}$)

${ }^{13}$ C NMR spectra of 5-(1-(3-methoxyphenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione ($\mathbf{8 k}$)

${ }^{1} \mathrm{H}$ NMR spectra of 5-(1-(4-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (8I)

${ }^{13} \mathrm{C}$ NMR spectra of 5-(1-(4-fluorophenyl)-2-methylpropyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (81)

${ }^{1} \mathrm{H}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1H,3H,5H)trione (8 m)

${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dimethyl-5-(2-methyl-1-(4-nitrophenyl)propyl)pyrimidine-2,4,6(1H,3H,5H)trione (8m)

$\angle S T \cdot \tau Z$
LEF
LZ
$20 \tau \cdot 82$
$\boxed{28} \cdot 82$
โع6.8て
$06 \tau \cdot T S$
$69 \mathrm{G}^{\circ} \mathrm{LG}$

SI-101
${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (13)

${ }^{119} \mathrm{Sn}$ NMR spectra of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (13)

