Supporting Information

Highly Efficient Three-Component Coupling Reaction Catalyzed by Atomically Precise Ligand-Protected Au₃₈ Nanoclusters

Qi Li^a, Anindita Das^{a‡}, Shuxin, Wang^a, Yuxiang, Chen^a, Rongchao Jin^{a*}

^aDepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Experimental

Synthesis of $Au_{38}(SC_2H_4Ph)_{24}$ and $Au_{25}(SC_2H_4Ph)_{18}$ Nanoclusters. The syntheses of $Au_{38}(SC_2H_4Ph)_{24}$ and $Au_{25}(SC_2H_4Ph)_{18}$ nanoclusters followed the previously reported methods.^{1,2}

Preparation of the Au(I)-S-C₂H₄Ph catalyst. 1 mL solution of 200 mg HAuCl₄ was mixed with another methanol solution (7 mL) containing PhC₂H₄SH (0.3 mL) under vigorous stirring for 30 min. After centrifugation at ~6500 rpm, the solution was then removed and the precipitate was washed several times with ethanol/water to remove the redundant PhC₂H₄SH. The Au(I)-S-C₂H₄Ph was obtained.

Preparation of the supported $Au_{38}(SR)_{24}$ /oxide catalyst. To prepare the oxide-supported catalyst, 1 mg of $Au_{38}(SR)_{24}$ was dissolved in 5 ml CH₂Cl₂, and 100 mg CeO₂/TiO₂/SiO₂ was added. After stirring for 12 h at r.t., the clusters were adsorbed onto the oxide surfaces. The $Au_{38}(SR)_{24}$ /oxide-support catalysts were collected by centrifugation and dried in vacuum.

Catalytic reaction. Typically, 1 equiv of benzaldehyde (1mmol), 1.2 equiv of piperidine and 1.3 equiv of phenylacetylene were added to a 10 mL round-bottom flask containing \sim 1 mg of the Au₃₈(SC₂H₄Ph)₂₄ cluster (0.1 µmol). 1 ml solvent (e.g., water, toluene) was added into the flask if needed. This reaction mixture was then stirred at 80 °C for 6 h. The products of this catalytic reaction were analyzed by NMR spectroscopy.

[1] H. Qian, Y. Zhu and R. Jin, ACS Nano, 2009, **3**, 3795

[2] Z. Wu, J. Suhan and R. Jin, J. Mater. Chem., 2009, 19, 622.

Supporting Figures

Figure S1. NMR spectra of benzaldehyde, phenylacetylene, piperidine, and the reaction mixture (after 1 h and 5 h, respectively). The NMR peaks of various H's are as indicated in the figure.

Figure S2. UV-Vis spectra of the $Au_{38}(SC_2H_4Ph)_{24}$ catalyst before (black curve) and after the A3-coupling reaction (red curve).

Figure S3. ESI-Mass spectrum of $Au_{38}(SC_2H_4Ph)_{24}$ after the A3-coupling reaction. Cesium acetate (CsOAc) was added to form adducts with the charge neutral clusters. The low-mass, comb-like peaks (m/z <5300) are from [(CsOAc)_nCs]⁺ with spacing of one CsOAc.

Figure S4. Conversion of benzaldehyde, phenylacetylene and piperidine as a function of reaction time over the $Au_{25}(SC_2H_4Ph)_{18}$ catalyst.