Supporting Information

Regioselective and Stereospecific Ring Opening of Aziridines by DMPU-HF

Okoromoba E. Otome,^[a] Zhou Li, ^[a] Nicole Robertson, ^[a] Mark Mashuta, ^[a] Uenifer R. Couto^[b] and Cláudio F. Tormena^[b] Bo Xu,^{[c]*} Gerald B. Hammond, ^{[a],*}

- [a] Department of Chemistry University of Louisville Louisville, KY 40292 USA
- [b]] Institute of Chemistry University of Campinas Campinas, São Paulo 13083-970 - Brazil
- [c] College of Chemistry, Chemical Engineering and Biotechnology Donghua University, 2999 North Renmin Lu Shanghai 201620 China

Table of Contents

1.	General	3
2.	Synthesis and Characterization of Aziridines	4
3.	Hydrofluorination of Aziridines	14
4.	Details of Computational Chemistry	22
6.	Copies of NMR Spectra	29
7.	HPLC Traces	74
ł	IPLC traces for <i>rac-</i> 1a	74
ł	IPLC traces for (S)-1a	75
ł	IPLC Traces for <i>rac-2c</i>	76
ł	IPLC Traces for (<i>rac</i>)-2d	77
ł	IPLC Traces for (S)-2d	78
8.	X-Ray Crystallography Data of 2k (CCDC 1490050)	79
9.	X-Ray Crystallography Data of 2n (CCDC 1490051)	91
10.	X-Ray Crystallography Data of (<i>S</i>)-1a	100
11.	X-Ray Crystallography Data of (S)-1d (CCDC 1490053)	108
12.	X-Ray Crystallography Data of (S)-2d (CCDC 1490052)	117
13.	References	. 126

1. General

NMR spectra were recorded on 400 or 500 MHz Varian spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). Optical rotation was measured on a JASCO P-2000 digital polarimeter with a sample cell of 100 mm length and 8.0 mm aperture at 589 mm (sodium).

Unless otherwise stated, starting materials were purchased from Aldrich and/or Fluka. Solvents were purchased in HPLC quality, degassed by purging thoroughly with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an polymoybdenic acid (PMA), p-anisaldehyde, ninhydrin solutions or an aqueous potassium permanganate solution followed by heating depending on the compounds formed. Chloramine-T trihydrate, phenyltrimethylammonium tribromide and *S*-benzyltosyl aziridine (93% ee) were purchased from Sigma-Aldrich and used without further purification unless otherwise stated.

2. Synthesis and Characterization of Aziridines

2-methyl-1-tosylaziridine (1a)^[1]

2-methylaziridine (790 µL, 10 mmol) was added to a biphasic mixture of EtOAc (15mL) and 1.0 M K_2CO_3 (15 mL) at 0°C. Under vigorous stirring, the solution of 4-methylbenzenesulfonyl chloride (1.91g, 10 mmol) in EtOAc (15mL) was added dropwise. After 1 h the reaction was allowed to reach ambient temperature and stirred for another 12 h. The phases were separated and the organic phase was washed with water, dried over Na₂SO₄ and concentrated. The crude product was subjected of 98% white solid required no further purification other than drying. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.36-7.31 (m, 2H), 2.83 (dqd, *J* = 6.9, 5.6, 4.6 Hz, 1H), 2.61 (d, *J* = 7.0 Hz, 1H), 2.44 (s, 3H), 2.02 (d, *J* = 4.6 Hz, 1H), 1.25 (d, *J* = 5.6 Hz, 3H). Its spectroscopic data agree with literature data.^[1]

Chiral aziridine (S)-2d was also prepared via this procedure.

Synthesis of aziridines 1b - 1o^[1]

$$R + TsNCINa.3H_{2}O + TsNCINa.3H_{2}O + CH_{3}CN (0.2 M) + CH_{3}CN (0.2 M) + CH_{3}CN (0.2 M) + CH_{3}CN (0.5M) + CH_$$

General aziridination procedure. To a mixture of chloramine-T trihydrate (1.55 g, 5.5 mmol) and alkene (5.0 mmol) in CH₃CN (25 mL) at ambient temperature was added PhNMe₃Br₃ (188.0 mg, 0.50 mmol). The reaction was stirred vigorously for 15 h and then concentrated in vacuo. The resulting residue was dissolved in CH₂Cl₂ (5-10 mL) and filtered through a short column (silica gel, 3 x 4 cm) eluting with (150 mL of a 1:9 EtOAc/hexane mixture). After evaporation of the solvent, the residue was dissolved in CH₃CN (10 mL). After evaporation of the solvent, the residue was dissolved in CH₃CN (10 mL). After evaporation of the solvent, the residue was dissolved in CH₃CN (10 mL). After evaporation of the solvent, the residue was dissolved in CH₃CN (10 mL). After evaporation of the solvent, the residue was dissolved in CH₃CN (10 mL) and then K₂CO₃ (2.77 g, 20.0 mmol) was added, the mixture was stirred vigorously at 45°C for 2 h. After cooling to ambient temperature, the mixture was diluted with Et₂O (20 mL), filtered through a pad of Celite (washing with Et₂O) and concentrated. The crude product was subjected to silica gel column

chromatography (7:1 hexanes: EtOAc) to give aziridines product.

2-hexyl-1-tosylaziridine (1b)^[2]

Following the general aziridination procedure starting from1-octene (5.0 mmol, 785 μ L), **1b** was isolated by column chromatography on silica gel (hexanes / EtOAc, 7:1) in 76% yield as a colorless gel to white solid. ¹H NMR (CDCl₃, 400 MHz), δ 0.85 (t, 3H, *J* = 6.8 Hz), 1.18-1.37 (m, 9H), 1.51-1.58 (m, 1H), 2.06 (d, 1H, *J* = 4.6 Hz), 2.44 (s, 3H), 2.64(d, 1H, *J* = 7.0 Hz), 2.66-2.71 (m, 1H), 7.33 (d, 2H, *J* = 8.4 Hz), 7.82 (d, 2H, *J* = 8.4 Hz). Its spectroscopic data agree with literature data.^[2]

2-phenyl-1-tosylaziridine (1c)^[2]

Following the general aziridination procedure starting from styrene (5.0 mmol, 573 μ L), **1c** was isolated by column chromatography on silica gel (hexanes / EtOAc, 7:1) in 62% yield as a faint yellow powder. ¹H NMR (CDCl₃, 400 MHz) δ 2.38 (d, *J* = 4.6 Hz, 1H), 2.43 (s, 3H,), 2.98 (d, *J* = 7.3 Hz, 1H), 3.77 (dd, *J* = 7.3, 4.6 Hz, 1H), 7.19-7.36 (m, 7H), 7.86 (d, *J* = 8.2 Hz, 2H,). Its spectroscopic data agree with literature data.^[1]

2-benzyl-1-tosylaziridine (1d)^[1]

Following the general aziridination procedure starting from allylbenzene (5.0 mmol, 591µL), **1d** was isolated by column chromatography on silica gel (Hex/EtOAc, 7:1) in 58% yellow solid. This compound is known. ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.66 (m, 2H), 7.24 –7.19 (m, 2H), 7.18–7.12 (m, 3H),7.07–7.02 (m, 2H), 2.95 (tdd, *J* = 7.0, 5.2, 4.6 Hz, 1H), 2.81 (dd, *J* = 14.5, 5.2 Hz, 1H), 2.71 (d, *J* = 6.9 Hz, 1H), 2.69 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.42 (s, 3H), 2.16 (d, *J* = 4.5 Hz, 1H). Its spectroscopic data

agree with literature data.^[1]

2-(4-fluorobenzyl)-1-tosylaziridine (1e)^[1]

Following the general aziridination procedure starting from 1-allyl-4-fluorobenzene (5.0 mmol, 591 μ L), **1e** was isolated by column chromatography on silica gel (hexanes/EtOAc, 7:1) in 58% yellow solid. This compound is known. ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.61 (m,2H), 7.20 (app d, J= 8.2 Hz,2H), 7.00–6.93(m,2H), 6.82–6.76 (m,2H), 2.92–2.82 (m, 2H), 2.74 (d, J= 6.6 Hz, 1H), 2.56–2.48 (m, 1H), 2.43 (s, 3H), 2.16 (d, J = 4.3 Hz,1H). Its spectroscopic data agree with literature data.^[1]

2-(4-chlorophenyl)-1-tosylaziridine (1f)^[3]

Following the general aziridination procedure starting from 1-chloro-4-vinylbenzene (5.0 mmol, 637 μ L), **1f** was isolated by column chromatography on silica gel (hexanes/EtOAc, 7:1) in 58% yellow solid. This compound is known. ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (d, 2H, *J* = 8.3 Hz), 7.34 (2H, *J* = 8.0 Hz), 7.26 (d, 2H, *J* = 8.2), 7.14 (d, 2H, *J* = 7.8), 3.73 (m, 1H), 2.98 (m, 1H, *J* = 7.2), 2.44 (s, 3H, Ar-CH₃), 2.35 (s, *J* = 4.3 Hz). Its spectroscopic data agree with literature data.^[3]

2-(4-methoxybenzyl)-1-tosylaziridine (1g)^[1]

The general procedure failed for synthesis of **1g**, **1g** was synthesized using the following alternate procedure.

Synthesis of **1g-1**. A solution of 1-allyl-4-methoxybenzene (50.0 mmol, 7.410 g) in CH₂Cl₂ (75 mL) in a 250 mL round bottom flask was cooled to 0oC with an ice bath, *m*-chloroperbenzoic acid (12.1g, 50 mmol) was added portion wise over 10 minutes. The mixture was allowed to warm to ambient temperature and then stirred until TLC indicated complete consumption of the starting material (ca 4 h). If complete conversion is not obtained within 2 h, an additional portion of *m*-CPBA (ca 3g) may be added and the mixture stirred an additional 2 h. After completion, saturated aqueous NaHCO₃ (75mL) was slowly added and the mixture was stirred vigorously until gas evolution had ceased, after which the mixture was poured into a separatory funnel. The organic layer was separated and washed with 1M aq. Sodium sulfite, once with brine and then dried over Na₂SO₄. After removal of the solvent by rotary evaporation, the crude product was purified by chromatography on silica gel (hexanes/EtOAc 7:1) to afford the desired product **1g-1** in 92% as a colorless liquid.

Synthesis of **1g-2**. An oven-dried round bottom flask equipped with a magnetic stir bar was charged with epoxide **1g-1** (24.4 mmol, 4.00 g), 4-methylbenzenesulfonamide (48.8 mmol, 8.36 g), K_2CO_3 (2.4 mmol, 0.337 g), BnNEt₃Cl (2.4 mmol, 0.556 g), and anhydrous dioxane (5.0mL). The flask was fitted with a reflux condenser and the mixture was heated to 90°C. When complete consumption of the starting material was indicated by TLC after approximately 5 h, the mixture was cooled to ambient temperature, diluted with CH₂Cl₂ (30 mL) and then filtered through a 2 cm pad of Celite, which was thoroughly washed with CH₂Cl₂ (100 mL). Purification by flash chromatography on silica gel (hexanes /EtOAc, gradient, 100 to 4:1) yielded the product as a white solid quantitatively (the product contains small amount of the TsNH₂).

Synthesis of **1g**. To a dry 250 mL round bottom flask containing a magnetic stir bar was added (25 mmol, 2.0 g) and PPh₃ (29.5 mmol, 7.74 g). The flask was fitted with a rubber septum, purged with argon and then THF (50.0mL) was added. The flask was cooled to 0°C with an ice bath and diethyl azodicarboxylate (DEAD) (29.5 mmol, 5.137 g, 4.65 mL) was added drop-wise over a period of 10 minutes, after which the ice bath was removed and the mixture was allowed to stir at ambient temperature for 16 h. The reaction mixture was evaporated under reduced pressure. Et₂O (200mL) was added and the reaction was stirred for 20 minutes. The solids were removed by filtration through a 3cm pad of Celite, washing with Et₂O, and the filtrate was concentrated by rotary evaporation. This crude oil so obtained was chromatographed on silica gel (hexanes / EtOAc, gradient 20:80 to 45:55), which yielded the desired aziridine as a white solid 57%. If necessary, recrystallization from hexanes/ethanol can also be carried out. ¹H NMR (400 MHz, CDCl₃) δ 7.70 –7.66 (m, 2H), 7.25–7.19 (m, 2H), 6.98–6.92 (m, 2H), 6.71–6.65 (m, 2H), 3.77 (s, 3H), 2.91 (tt, J = 7.1, 4.8 Hz, 1H), 2.77 (dd, *J* = 14.5, 5.1 Hz, 1H), 2.70 (d, *J* = 6.9 Hz, 1H), 2.61 (dd, *J* = 14.5, 7.2 Hz, 1H), 2.43 (s, 3H), 2.14 (d, *J* = 4.6 Hz, 1H). Its spectroscopic data agree with literature data.^[1]

2-Ethyl-3-methyl-1-tosylaziridine (1h)^[4]

1h

Following the general aziridination procedure starting from cyclohexene (5.0 mmol, 507µL), **1b** was isolated by column chromatography on silica gel (hexanes/EtOAc, 7:1) in 84% yield as a white solid. This compound is known. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (t, *J* = 7.7 Hz, 2H), 7.28 (dd, *J* = 17.2, 9.1 Hz, 1H), 2.98 – 2.81 (m, 2H), 2.81 – 2.52 (m, 1H), 2.41 (d, *J* = 3.3 Hz, 1H), 1.18 (d, *J* = 5.9 Hz, 3H), 0.83 (t, *J* = 7.4 Hz, 3H). Its spectroscopic data agree with literature data.^[4]

2-Methyl-2-phenyl-1-tosylaziridine (1i) ^[5]

Following the general aziridination procedure starting with alpha-methylstyrene (5 mmol, 655 µL), the

corresponding aziridine was isolated in 77% yield as a white solid. This compound is known (Unstable, decomposes over the bench after 24 h. ¹H NMR (400 MHz, CDCl₃) δ = 9.29 – 8.98 (m, 2H), 7.86 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.33 – 7.26 (m, 3H), 2.95 (s, 1H), 2.51 (s, 1H), 2.42 (s, 3H), 2.04 (s, 3H). Its spectroscopic data agree with literature data.^[5]

7-Tosyl-7-azabicyclo[4.1.0]heptane (1j)^[2]

Following the general aziridination procedure starting from cyclohexene (5.0 mmol, 507 μ L), **1b** was isolated by column chromatography on silica gel (hexanes/EtOAc, 7:1) in 84% yield as a white solid. This compound is known. ¹H NMR (CDCl₃, 400 MHz) δ 1.14-1.21 (m, 2H), 1.25-1.47 (m, 2H), 1.79 (dt, 4H, *J* = 1.4, 5.8 Hz), 2.44 (s, 3H), 2.97 (t, 2H, *J* = 1.4 Hz), 7.32 (d, 2H, *J* = 8.1 Hz), 7.81(d, 2H, *J* = 8.1 Hz). Its spectroscopic data agree with literature data.

Syn-7-tosyl-7-azabicyclo[4.1.0]heptan-2-ol (1k)^[5]

Following the general aziridination procedure starting from cyclohex-2-enol (5.0 mmol, 491 μ L), **1k** was isolated by column chromatography on silica gel (hexanes/EtOAc, 7:1) in 31% yield colorless oil. This compound is known. ¹H NMR (CDCl₃, 400MHz) δ 7.82 (d, J = 8.4Hz, 2H), 7.33 (d, J = 8.1Hz, 2H), 3.93 (brs, 1H), 3.18 (m, 2H), 2.43 (s, 3H) 1.80-1.15 (m, 7H). Its spectroscopic data agree with literature data.

3-(Bromomethyl)-2,2-dimethyl-1-tosylaziridine (11)

Following the general aziridination procedure starting from 1-bromo-3-mthyl-2-butene (5.0 mmol, 578 μ L), **11** was isolated by column chromatography on silica gel (Hex/EtOAc, 7:1) in 76% yield as a colorless oil. ¹H NMR (400 MHz, cdcl₃) δ = 7.81 (d, *J*=8.2, 2H), 7.32 (d, *J*=8.0, 2H), 3.09 (dd, *J*=7.0, 4.5, 1H), 2.67 (d, *J* = 6.9 Hz, 3H), 2.41 (d, *J* = 7.0 Hz, 1H), 2.35 (d, *J* = 4.4 Hz, 1H), 1.59 – 1.49 (m, 6H). ¹³C NMR (100 MHz, cdcl₃) δ = 144.89, 134.37, 129.77, 129.69, 128.37, 128.29, 59.75, 48.50, 31.76, 31.56, 28.85, 21.67. EI MS: m/z= 318.22 ([M] ⁺); ESI HRMS: calcd. for C₁₈H₂₂NO₃S⁺ ([M+H]⁺) 318.0158; found 318.0157.

2-Methyl-2-(2-phenoxyethyl)-1-tosylaziridine (1m)

Synthesis of **1m-1**. To a stirred solution of 3-methyl-3-buten-1-ol (5.8mmol) in tetrahydrofuran (15 mL) were added sequentially phenol (0.66 g), triphenylphosphine (1.92 g) and diisopropyl azodicarboxylate (1.45 g). The mixture was heated at 70° C. overnight and then was concentrated in vacuum. The residue was purified by column chromatography (SiO₂; gradient: hexane/EtOAc 100:0->70:30) to give (3-methyl-but-3-enyloxy)-benzene in 53% which agrees well with literature. ¹H NMR (CDCl₃, 400MHz) δ ¹H NMR (400 MHz, cdcl₃) δ = 7.40 – 7.16 (m, 2H), 7.03 – 6.83 (m, 3H), 4.83 (dd, *J* = 16.0 Hz, 0.7, 2H), 4.20 – 3.97 (m, 2H), 2.51 (t, *J* = 6.9 Hz, 2H), 1.81 (d, *J* = 0.4 Hz, 3H).

Synthesis of **1m**. Following the general aziridination procedure starting from alkene (**1m-1**), **1m** was isolated in 85% yield as a colorless liquid. ¹H NMR (CDCl₃, 400MHz) ¹H NMR (400 MHz, cdcl₃) $\delta = 7.81$ (t, J = 16.3 Hz, 2H), 7.36 - 7.14 (m, 4H), 7.00 - 6.90 (m, 1H), 6.90 - 6.79 (m, 1H), 4.13 - 3.97 (m, 2H), 2.65 (d, J = 13.5 Hz, 1H), 2.45 (s, 1H), 2.41 (s, 3H), 2.29 - 2.17 (m, 1H), 2.06 (dt, J = 14.3 Hz, 5.8, 1H), 1.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 158.48$, 143.92, 137.75, 129.52, 129.46, 127.35, 120.84, 114.43, 77.43, 77.11, 76.79, 64.48, 48.74, 41.38, 37.03, 21.59, 21.57, 19.12. EI: m/z= 332.1315 ([M]⁺). HRMS (ESI+): calcd. for C₁₈H₂₂NO₃S⁺ ([M+H]⁺) 280.1338; found 332.1312.

1-methyl-7-tosyl-7-azabicyclo[4.1.0]heptane (1n)⁶

Following the general aziridination procedure starting with methylcyclohexene (5 mmol, 600 μ L), the corresponding aziridine was isolated in 65% yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (2H, d, J = 8.0Hz), 7.29 (2H, d, J = 8.0Hz), 3.04 (1H, d, J = 5.6Hz), 2.41(3H, s), 2.01 – 2.07(1H, m), 1.77 – 1.86 (1H, m), 1.70(3H, s), 1.48 – 1.59(2H, m), 1.29 – 1.44 (3H, m), 1.12 – 1.27(1H, m). Its spectroscopic data agree with literature data. ⁵

Benzyl 2-methylaziridine-1-carboxylate (10)^[7]

2-Methyl aziridine is dissolved in CH₂Cl₂ and triethylamine under argon at 0° C. Benzylchloroformate is added and the contents of the flask are at room temperature overnight. The mixture is poured into 10% citric acid and is extracted with CHCl₃. The organic layer is washed with dilute aqueous NaHCO₃ and dried over Na₂SO₄. The solution is evaporated to yield N-Cbz-2-methyl aziridine (71% colorless oil). ¹H NMR (400 MHz, cdcl₃) δ 7.49 – 7.27 (m, 5H), 5.12 (s, 2H), 2.59 – 2.46 (m, 1H), 2.33 (d, *J* = 5.8 Hz, 1H), 1.99 - 1.92 (m, 1H), 1.27 (d, J = 5.5 Hz, 3H). Its spectroscopic data agree with literature data.^[7]

(9H-fluoren-9-yl) methyl 2-methylaziridine-1-carboxylate (1p)

2-Methylaziridine (353 µL, 5 mmol) was added to a biphasic mixture of EtOAc (10 mL) and 4 equivalent of K₂CO₃ (2.764 g) in water (10 mL). Under vigorous stirring, the solution of fluorenylmethyloxycarbonyl chloride (1.293 g, 5 mmol) in EtOAc (10 mL) was added dropwise. The reaction was stirred for 18 h after which the phases were separated and the organic phase was washed with water and dried over Na₂SO₄, filtered and concentrated. The product a yellow oil (94%) needed no further purification. ¹H NMR (400 MHz, cdcl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 4.42 (d, *J* = 7.0 Hz, 2H), 4.24 (t, *J* = 6.7 Hz, 1H), 2.45 (s, 1H), 2.28 (d, *J* = 5.7 Hz, 1H), 1.95 (s, 1H), 1.57 (s, 1H), 1.27 (d, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.64, 141.32, 137.33, 127.76, 127.06, 125.08, 119.96, 67.97, 60.37, 46.99, 33.84, 32.59, 21.04, 17.37, 14.18. EI MS m/z= 279.13 ([M] ⁺). ESI HRMS: calcd. for C₁₈H₁₈NO₂H⁺ ([M+H]⁺) 280.1338; found 280.1336.

(2-Methylaziridin-1-yl)(phenyl)methanone (1q)^[8]

2-Methyl aziridine (10 mmol) is dissolved in CH₂Cl₂ and trimethylamine (2 equiv.) under argon at 0° C. Benzoylchloride (10.5 mmol) is added and the contents of the flask are at room temperature overnight. The mixture is poured into 10% citric acid and is extracted with CHCl₃. The organic layer is washed with dilute aqueous NaHCO₃ and dried over Na₂SO₄. The solution is evaporated to yield N-Benzoyl-2-methyl aziridine. (59 % colorless oil). ¹H NMR (CDCl₃, 400MHz): δ 8.03 (m, 2H), 7.55 (m, 1H), 7.46 (m, 2H), 2.58 (m, 1H), 2.55 (d, *J* = 5.6 Hz, 1H), 2.15 (d, *J* = 3.6 Hz, 1H), 1.40 (d, *J* = 5.6 Hz, 3H). Its spectroscopic data agree with literature data. ^[8]

1-Benzyl-2-methylaziridine (1r)^[9]

2-Methyl aziridine (10 mmol) is dissolved in CH₂Cl₂ and trimethylamine (2 equiv) under argon at 0° C. Benzylchloride (10.5 mmol) is added and the contents of the flask are at room temperature overnight. The mixture is poured into 10% citric acid and is extracted with CHCl₃. The organic layer is washed with dilute aqueous NaHCO₃ and dried over Na₂SO₄. The solution is evaporated to yield **1r** (41%, yellow oil). ¹H NMR (CDCl₃) δ 1.20 (d, *J* = 5.4 Hz, 3H), 1.37 (d, *J* = 6.3 Hz, 1H), 1.49-.54 (m, 1H), 1.57 (d, *J* = 3.6 Hz, 1H), 3.39 (d, *J* = 13.8 Hz, 1H), 3.46 (d, *J* = 13.5 Hz, 1H), 7.24-7.36 (m, 5H). Its spectroscopic data agree with literature data. ^[9]

Chiral aziridines (R)-1a and (S)-1c were prepared by following a reported procedure.¹

¹ Hsueh, N.; Clarkson, G. J.; Shipman, M. Org. Lett. 2015, 17 (14), 3632–3635.

3. Hydrofluorination of Aziridines

General Procedure for the Hydrofluorination of Aziridines (General Hydrofluorination Procedure). In a 20 mL polyethylene vial charged with a magnetic stirrer is dissolved 0.5 mmol of the aziridine 1 in 1.5 mL of dichloroethane. DMPU-HF (65%) (3.6 mmol HF, 98 μ L) of was then pipetted into the mixture and the reaction was heated at 55°C for 18 h. The reaction was quenched with NaHCO₃ and the mixture was extracted with DCM, the organic layer was washed with brine and then was dried over Na₂SO₄, concentrated under reduced pressure and chromatographed with silica gel using a mixture of hexane:EtOAc (7:1) to afford the corresponding fluorinated product.

N-(2-fluoropropyl)-4-methylbenzenesulfonamide (2a)

TsHN F 2a

The product was prepared from 2-methyl-1-tosylaziridine **1a** according to the general hydrofluorination procedure in 81% yield as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (m, 2H), 7.30 (m, 2H), 4.97 (t, *J* = 6.5 Hz, 1H), 4.83 – 4.54 (m, 1H), 3.24 – 3.11 (m, 1H), 3.08 – 2.88 (m, 1H), 2.41 (s, 3H), 1.27 (dd, *J* = 23.9, 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.63 , 136.81 , 129.78 , 127.02 , 89.23 (d, *J* = 167.2 Hz), 48.11 (d, *J* = 21.5 Hz), 21.47 , 18.08 (d, *J* = 21.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -179.90 – -180.34 (m). MS: m/z = 231.1 ([M] ⁺). HRMS (ESI+): calcd. For C₁₀H₁₅FNO₂SH⁺[M+H] ⁺ 232.0808; found 232.0806.

(S)-N-(2-fluoropropyl)-4-methylbenzenesulfonamide (2a)

The product was prepared from (*R*)-1a. $\left[\alpha\right]_{D}^{25} = +77.7^{\circ}$ (0.10 w/v% in CH₂Cl₂)

N-(2-fluorooctyl)-4-methylbenzenesulfonamide (2b)^[10]

The major product was prepared from the 1-octene-tosylaziridine according to the general hydrofluorination procedure to afford the title compound in a 65:1 ratio as determined by ¹⁹F NMR) (87%, white solid). Major isomer: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.67 (m, 2H), 7.35 – 7.28 (m, 2H), 4.77 (s, 1H), 4.65 – 4.30 (m, 1H), 3.31 – 3.12 (m, 1H), 3.12 – 2.85 (m, 1H), 2.43 (s, 3H), 1.74 – 1.14 (m, 10H), 0.87 (t, *J* = 6.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.62 , 136.80 , 129.78 , 127.01 , 92.67 (d, *J* = 169.9 Hz), 46.90 (d, *J* = 21.4 Hz), 32.17 (d, *J* = 19.9 Hz), 31.53 , 28.88 , 24.58 (d, *J* = 4.7 Hz), 22.48 , 21.51 , 13.99 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -186.13 – -186.51 (m, 1H). ^[10]

N-(2-fluoro-2-phenylethyl)-4-methylbenzenesulfonamide (2c)^[11]

The product was prepared from 2-phenyl-1-tosylaziridine according to the general procedure to afford the title compound in 79% yield, as yellow oil and the only product. ¹H NMR (400MHz, CDCl₃) δ 7.79 – 7.66 (m, 2H), 7.39 – 7.19 (m, 7H), 5.87 (dd, *J* = 7.7, 4.8 Hz, 1H), 5.47 (ddd, *J* = 48.1, 8.3, 3.0 Hz, 1H), 3.32–3.17 (m, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -183.06 (ddd, *J* = 47.3, 29.7, 16.3 Hz). Its spectroscopic data agree with literature data.^[11]

N-(2-fluoro-3-phenylpropyl)-4-methylbenzenesulfonamide (2d)^[10]

The product was prepared from 2-benzyl-1-tosylaziridine according to the general hydrofluorination procedure to afford the title compound in 79% yield, as a light yellow solid. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.78 – 7.62 (m, 2H), 7.27 (dd, J = 13.9, 7.8 Hz, 5H), 7.13 (d, J = 7.1 Hz, 2H), 4.91 – 4.52 (m, 2H), 3.22 (m, 1H), 3.13 – 3.01 (m, 1H), 3.01 – 2.78 (m, 2H), 2.42 (s, 3H).¹⁹F NMR (376 MHz, Chloroform-*d*) δ -184.41 – -184.77 (m, 1F). Its spectroscopic data agree with literature data.

(S)-2d, 91% ee

The product was prepared from (S)-1d. $\left[\alpha\right]_{D}^{25} = +55.1^{\circ} (0.17 \text{ w/v\% in CH}_{2}\text{Cl}_{2})$

N-(2-fluoro-3-(4-fluorophenyl)propyl)-4-methylbenzenesulfonamide (2e)

The product was prepared from 2-(4-fluorobenzyl)-1-tosylaziridine **1e** according to the general hydrofluorination procedure to afford the title compound in 74% yield, as a yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.58 (m, 2H), 7.35 – 7.28 (m, 2H), 7.15 – 7.07 (m, 2H), 7.02 – 6.94 (m, 2H), 4.88 – 4.48 (m, 2H), 3.30 – 3.13 (m, 1H), 3.13 – 2.99 (m, 1H), 2.99 – 2.75 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.98 (d, *J* = 60.5 Hz), 143.78 , 136.59 , 131.27 , 130.76 (d, *J* = 8.0 Hz), 129.84 , 127.01 , 115.49 (d, *J* = 21.4 Hz), 92.58 (d, *J* = 174.1 Hz), 46.02 (d, *J* = 21.3 Hz), 37.64 (d, *J* = 21.0 Hz), 21.53 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.80 (m, 1F), -182.75 – -188.23 (m, 1F). MS: m/z = 325.09 [M] ⁺. HRMS: calcd. for C₁₆H₁₇F₂NSO₂Na⁺ [M + Na]⁺ 348.0840; found 348.0840, cald. for C₁₆H₁₈FNSO₂⁺ [M + H]⁺ 326.1021; found 326.1021.

The product was prepared from 2-(4-chlorophenyl)-1-tosylaziridine according to the general

hydrofluorination procedure to afford the title compound in 82% yield, as a light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.66 (m, 2H), 7.36 – 7.27 (m, 4H), 7.20 – 7.13 (m, 2H), 5.48 (ddd, *J* = 47.5, 8.1, 3.4 Hz, 1H), 4.83 (s, 1H), 3.55 – 3.13 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.82, 136.75, 129.83, 128.91, 128.05, 126.98, 126.89, 126.82, 92.06 (d, *J* = 174.5 Hz), 48.42 (d, *J* = 25.1 Hz), 21.53. ¹⁹F NMR (376 MHz, CDCl₃) δ -183.32 – -183.56 (m, 1F).

N-(2-fluoro-3-(4-methoxyphenyl)propyl)-4-methylbenzenesulfonamide (2g)

The product was prepared from 2-(4-methoxybenzyl)-1-tosylaziridine according to the general hydrofluorination procedure to afford the title compound in 82% yield, as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.64 (m, 2H), 7.34 – 7.27 (m, 2H), 7.10 – 7.00 (m, 2H), 6.87 – 6.78 (m, 2H), 4.91 – 4.41 (m, 2H), 3.79 (s, 3H), 3.36 – 3.13 (m, 1H), 3.13 – 2.99 (m, 1H), 2.99 – 2.67 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.82, 143.70, 130.26, 129.82, 129.69, 127.02, 126.91, 114.06, 92.82 (d, *J* = 173.3 Hz), 55.24 , 46.06 (d, *J* = 21.0 Hz), 37.64 (d, *J* = 21.0 Hz), 21.53 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -184.44 – -184.80 (m, 1F). HRMS: calcd. for C₁₇H₂₀FNSO₃Na⁺ [M+Na]⁺ 360.1040; found 360.1040, cald. For C₁₇H₂₁FNSO₃⁺ [M+H]⁺ 338.1221; found 337.1220.

N-(2-fluoropentan-3-yl)-4-methylbenzenesulfonamide (2h)

The product was prepared from 2-ethyl-3-methyl-1-tosylaziridine according to the general procedure to afford regio isomers mixtures of the title compound in 94% yield, as a yellow oil. The product constitutes of four inseparable compounds (one diastereomeric pair and a regioisomeric pair), hence clear assignment of proton and ¹³C NMR spectra is not practical. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 186.12 - -186.39 (m), -187.67 - -188.05 (m), -195.90 - -195.21 (m), -197.46 - -197.74 (m). HRMS: calcd. For C₁₂H₁₈FNSO₂Na⁺ [M+Na]⁺ 282.0934; found 282.093, cald. for C₁₇H₁₉FNSO₂⁺ [M+H]⁺

```
260.1115; found 260.1111.
```

N-(2-fluorocyclohexyl)-4-methylbenzenesulfonamide (2j)

This compound is known. The product was prepared from the cyclohexyl-tosylaziridine according to the general hydrofluorination procedure to afford the title compound, 95% yield, white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (m, 2H), 7.29 (m, 2H), 4.98 – 4.52 (m, 1H), 4.19 (double multiplets, J_{C-H} = 48.7, 1H), 3.22 – 3.09 (m, 1H), 2.42 (s, 3H), 2.18 – 2.08 (m, 1H), 2.08 – 1.91 (m, 1H), 1.78 – 1.64 (m, 1H), 1.58 (m, 1H), 1.51 – 1.35 (m, 1H), 1.30 – 1.05 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) – 178.49 (m). Its spectroscopic data agree with literature data.^[11]

N-(2-fluoro-6-hydroxycyclohexyl)-4-methylbenzenesulfonamide (2k)

The product was prepared from Syn-7-tosyl-7-azabicyclo[4.1.0]heptan-2-ol **1k** according to the general hydrofluorination procedure to afford the title compound in 61% yield, as a white solid. The structure of this compound is also confirmed by X-Ray crystallography. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 5.08 (d, *J* = 5.4 Hz, 1H), 4.57 (dtd, *J* = 50.0, 9.5, 4.6 Hz, 1H), 4.22 (s, 1H), 3.17 (tdd, *J* = 8.9, 5.6, 3.2 Hz, 1H), 2.43 (s, 3H), 2.20 – 1.96 (m, 2H), 1.85 – 1.33 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 143.63, 136.72, 129.65, 127.21, 90.58 (d, *J* = 176.1 Hz), 69.12 (d, *J* = 6.5 Hz), 59.68 (d, *J* = 18.1 Hz), 36.44, 26.29, 21.55, 17.44 (d, *J* = 9.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 186.52 (d, *J* = 48.9 Hz, 1F). MS: m/z = 287.1 [M] ⁺. HRMS: calcd. for C₁₃H₁₈FNSO₃Na⁺ [M+Na]⁺ 310.0884; found 310.0884, cald. for C₁₃H₁₉FNSO₃⁺ [M+H] ⁺ 288.1064; found 288.1064.

N-(1-bromo-3-fluoro-3-methylbutan-2-yl)-4-methylbenzenesulfonamide (2l)

The product was prepared from 3-(bromomethyl)-2,2-dimethyl-1-tosylaziridine **11** according to the general hydrofluorination procedure to afford the title compound in 78% yield, as a viscous colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.61 (m, 2H), 7.42 – 7.21 (m, 2H), 5.06 – 4.88 (m, 1H), 4.05 – 3.83 (m, 1H), 3.62 (ddd, *J* = 14.2, 8.3, 3.6 Hz, 1H), 3.18 (ddd, *J* = 14.1, 9.4, 4.6 Hz, 1H), 2.43 (s, 3H), 1.49 (d, *J* = 18.7 Hz, 3H), 1.43 (d, *J* = 18.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.84 , 136.75 , 129.87 , 127.05 , 95.38 (d, *J* = 172.1 Hz), 58.83 (d, *J* = 26.4 Hz), 45.68 (d, *J* = 4.6 Hz), 25.94 (d, *J* = 24.0 Hz), 23.45 (d, *J* = 24.0 Hz), 21.54 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -138.14 (m, 1F). MS: m/z = 337.0 [M] ⁺. HRMS: calcd. for C₁₂H₁₇FBrNSO₂Na⁺ [M+Na]⁺ 360.0040; found 360.0037, cald. for C₁₂H₁₈FBrNSO₂⁺ [M+H]⁺ 338.0220; found 338.0217.

N-(2-fluoro-2-methyl-4-phenoxybutyl)-4-methylbenzenesulfonamide (2m)

The product was prepared from 2-methyl-2-(2-phenoxyethyl)-1-tosylaziridine **1m** according to the general hydrofluorination procedure to afford the title compound in 93% yield, as a viscous colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.61 (m, 2H), 7.45 – 7.19 (m, 4H), 6.96 (m, 1H), 6.87 – 6.72 (m, 2H), 4.87 (m, 1H), 4.04 (m, 2H), 3.15 (m, 2H), 2.41 (s, 3H), 2.15 (m, 2H), 1.45 (d, *J* = 22.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.09 , 143.58 , 136.78 , 129.78 , 129.52 , 126.97 , 121.12 , 114.35 , 95.49 (d, *J* = 170.5 Hz), 62.79 (d, *J* = 7.5 Hz), 50.36 (d, *J* = 25.7 Hz), 36.57 (d, *J* = 22.6 Hz), 23.06 (d, *J* = 23.5 Hz), 21.51 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -149.50 – -149.77 (m). MS: m/z = 351.13 [M]⁺. HRMS: calcd. For C₁₈H₂₃FNSO₃⁺ [M+H]⁺ 352.1377; found 352.1375.

N-(2-fluoro-2-methylcyclohexyl)-4-methylbenzenesulfonamide (2n)

The product was prepared from 1-methyl-7-tosyl-7-azabicyclo[4.1.0]heptane **1n** according to the general hydrofluorination procedure to afford the title compound in 84% yield, as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.63 (m, 2H), 7.42 – 7.05 (m, 2H), 5.14 (d, *J* = 8.2 Hz, 1H), 3.52 – 3.17 (m, 1H), 2.41 (s, 3H), 1.94 – 1.05 (m, 10H), 0.86 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.31 , 137.71 , 129.55 , 127.11 , 95.36 (d, *J* = 173.5 Hz), 57.59 (d, *J* = 24.7 Hz), 35.61 (d, *J* = 20.7 Hz), 29.40 (d, *J* = 4.6 Hz), 22.07 (d, *J* = 1.5 Hz), 21.94 , 21.53 (d, *J* = 1.2 Hz), 20.81 (d, *J* = 25.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -141.11 (m, 1F). MS: m/z = 285.12 [M] ⁺. HRMS: calcd. for C₁₈H₂₃FNSO₃⁺ [M+H] ⁺ 285.1272; found 285.1270.

Benzyl (2-fluoropropyl)carbamate (20)^[12]

This compound is known. The major product (90:1 as obtained by ¹⁹F NMR) was prepared from benzyl 2-methylaziridine-1-carboxylate **10** according to the general hydrofluorination procedure to afford the title compound in 66% yield as a yellow. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (m, 5H), 5.27 – 5.16 (m, 1H), 5.12 (s, 2H), 4.90 – 4.58 (m, 1H), 3.51 (m, 1H), 3.22 (m, 1H), 1.32 (dd, *J* = 23.7, 6.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.50 , 136.39 , 128.54 , 128.17 , 128.10 , 89.73 (d, *J* = 166.6 Hz), 66.89 , 46.21 (d, *J* = 20.8 Hz), 18.05 (d, *J* = 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ - 179.9 (m, 1F). Its spectroscopic data agree with literature data.

(9H-fluoren-9-yl)methyl (2-fluoropropyl)carbamate (2p)

The product was prepared from (9H-fluoren-9-yl)methyl-2-methylaziridine-1-carboxylate according to the general hydrofluorination procedure to afford the title compound quantitatively as a white solid 76%. The major product was isolated almost exclusively with trace amount of the minor product. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.68 (m, 2H), 7.68 – 7.53 (m, 2H), 7.53 – 7.37 (m, 2H), 7.37 – 7.25 (m, 2H), 5.22 (s, 1H), 4.75 (dt, $J_{\text{H-F}}$ = 48.2, 5.8 Hz, 1H), 4.43 (d, J = 6. Hz, 2H), 4.23 (t, J = 6.5 Hz, 1H), 3.68 – 3.38 (m, 1H), 3.38 – 3.10 (m, 1H), 1.33 (dd, J = 23.8, 6.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.52 , 143.87 , 141.32 , 127.72 , 127.06 , 125.04 , 120.01 , 89.79 (d, J = 166.6 Hz), 66.85 , 47.21 , 46.19 (d, J = 20.6 Hz), 18.05 (d, J = 21.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 179.54 – -179.87 (m, 1F). EI MS: m/z = 299.1[M] ⁺. HRMS (ESI+): calcd. For C₁₈H₁₇FNSO₂Na⁺ [M+Na]⁺ 322.1219; found 322.1218, cald. for C₁₈H₁₈FNSO₂⁺ [M+H]⁺ 300.1400; found 300.1399 .

N-(2-fluoropropyl)benzamide (2q)¹¹

The product was prepared from (2-methylaziridin-1-yl)(phenyl)methanone according to the general hydrofluorination procedure to afford the title compound quantitatively as a yellow oil 58%. The major product was isolated in >30:1 regioselectivity though contaminated a little with the Heine product. This compound is known. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78–7.76 (m, 2H), 7.51–7.38 (m, 3H), 6.71 (br s, 1H), 4.92 – 4.75 (m, 1H), 3.90 – 3.79 (m, 1H), 3.44 – 3.33 (m, 1H), 1.42 – 1.35 (dd, *J* = 23.9, 6.2 Hz, 3H). 13C NMR (100 MHz, Chloroform-*d*) δ -167.67, -134.14, -131.60, -128.55, -126.96, -90.69 – 89.03 (d, *J* = 166 Hz), -45.05 – -44.85 (d, *J* = 20 Hz), -18.38 – -18.16 (d, *J* = 22 Hz) ¹⁹F NMR (CDCl₃, 376 MHz) δ -179.16 – -179.62.1 (m, 1F). Its spectroscopic data agree with literature data.

4. Details of Computational Chemistry

The hydrogen bonding assisted pathway was taken as initial guess for the transition state calculation. In a first approach B3LYP/aug-cc-pVDZ level of theory was used and when a negative vibration mode which corresponds to the transition structure was achieved the level of theory was M062X/aug-ccpVDZ. Many attempts to find the S_N 2-like transition state that leads to non-observed product were performed, but none of them was successful.

The optimization and frequency calculations for starting materials and product was conducted in the same level of theory. For the energy barrier diagram construction the sum of energies of starting materials was taken as reference. All calculations was performed at Gaussian09.² The transition structure optimized showed only one imaginary frequency that corresponds to transition state displacement vectors.

Compound	E _{eletronic} /hartree	ΔE/kcal mol ⁻¹	G/hartree	∆G/kcal mol ⁻¹
HF	-100.423004	0.0	-100.429909	0.0
<i>(S)</i> -1d	-1222.996774	0.0	-1222.745713	0.0
TS-3	-1323.354791	40.8	-1323.097735	48.9
(S)-2d	-1323.461642	-26.3	-1323.195865	-12.7

² Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;

Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.: Martin, B. L.: Maraluma, K.; Zaluravueli, V. C. A.; Saluadar, B.; Damenhorg, L. I.; Damenhorg, L. J.; Damiela, A.

W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford, CT, USA, 2009.

Figure S 1. Electronic energy barrier diagram for hydrogen bonding assisted pathway

Figure S 2. Free energy barrier diagram for hydrogen bonding assisted pathway

Figure S 3. Hydrogen bonding assisted transition state optimized structure

Figure S 4. One of the attempts to achieve S_N 2-like transition state. Structure not optimized.

Z-matrix for optimized structures and transition state

HF-optimized structure

%mem=16000MB # opt freq M062X/aug-cc-pVDZ

OPT-HF

0 1 F 0.00000 0.00000 0.09213 H 0.00000 0.00000 -0.82917

(S)-1d-optimized structure

%mem=48000MB # opt freq M062X/aug-cc-pVDZ

OPT-Reagent-Aziridine

0 1			
С	-0.93470000	1.04798900	-1.19510000
Ν	-0.53805000	1.10932900	0.21563000
С	-1.58343100	2.01918900	-0.27624000
С	-1.57546000	-0.25013100	-1.65397000
Н	-0.22789100	1.49538900	-1.89579000
Н	-1.31030100	3.06639900	-0.39919000
Н	-0.78397000	-1.00901100	-1.72147000
Н	-1.96300000	-0.08948100	-2.66827000
Н	-2.56550100	1.80633900	0.14103000
S	0.97057900	1.84669000	0.52709000
0	0.96849900	2.20205000	1.95280000
0	1.26665900	2.87569000	-0.49362000
С	2.04241000	0.45108000	0.25108000
С	2.15509000	-0.51539000	1.24906000
С	2.73054000	0.35267000	-0.95122000
С	2.97904000	-1.61058000	1.02023000
Н	1.61527000	-0.39147000	2.18645000
С	3.55360000	-0.75404000	-1.15979000
Н	2.63393000	1.14092000	-1.69532000
С	3.68667000	-1.74545000	-0.18387000
Н	3.08643000	-2.37348000	1.79144000
Н	4.10772000	-0.84135000	-2.09387000
С	4.57545000	-2.94103000	-0.40364000
Н	5.08598000	-2.88305000	-1.37039000
Н	5.33468000	-3.00948000	0.38546000
Н	3.98857000	-3.86800000	-0.37814000
С	-2.68595000	-0.73031100	-0.75397000
С	-4.02130000	-0.46311100	-1.06991000
С	-2.39735000	-1.40953100	0.43415000
С	-5.05049000	-0.86455100	-0.21854000
Н	-4.25800000	0.06650900	-1.99357000
С	-3.42272000	-1.81176100	1.28774000
Н	-1.35831000	-1.61039100	0.69393000
С	-4.75235000	-1.53981100	0.96400000

Н	-6.08627000	-0.65087100	-0.47957000
Н	-3.18413000	-2.33913100	2.21033000
Н	-5.55367000	-1.85547100	1.63063000

TS-optimized structure

%mem=16000MB

opt=(ts,calcfc,noeigentest,tight) Int=UltraFine freq=noraman nosymm M062X/aug-cc-pVDZ

TS-Aziridine

01			
F	-0.23145	-1.54609	-1.66941
С	-0.28844	-0.71339	0.47653
Ν	1.77424	-0.92111	-0.50355
С	1.10249	-1.11304	0.78497
С	-1.48285	-1.50352	0.75218
Н	-0.39471	0.31093	0.11245
Н	1.50328	-0.47273	1.58773
Н	-1.28147	-2.57579	0.79253
Н	-2.31497	-1.27008	0.08604
Н	1.16544	-2.16315	1.09449
S	2.40479	0.59444	-0.65848
0	1.48240	1.62005	-0.08553
0	2.86641	0.72917	-2.05015
С	3.84220	0.58233	0.41650
С	3.87163	1.37860	1.55330
С	4.91672	-0.23978	0.07482
С	5.00523	1.34707	2.37019
Н	3.02357	2.02334	1.77592
С	6.03551	-0.25718	0.89719
Н	4.86758	-0.84432	-0.82957
С	6.09513	0.53421	2.05565
Н	5.04190	1.97253	3.26189
Н	6.88469	-0.89012	0.63799
С	7.32298	0.50106	2.92806
Н	8.20934	0.81237	2.36090
Н	7.21460	1.16814	3.78962
Н	7.50922	-0.51483	3.29907
С	-1.68729	-0.91295	2.15413
С	-2.35038	0.31070	2.30652
С	-1.16024	-1.56285	3.27771
С	-2.51711	0.86093	3.57512

Н	-2.74333	0.82544	1.42982
С	-1.33042	-1.01188	4.54373
Н	-0.63337	-2.50924	3.15857
С	-2.00879	0.19980	4.69278
Н	-3.04188	1.80745	3.69046
Н	-0.93527	-1.52750	5.41714
Н	-2.13912	0.63031	5.68433
Н	0.74545	-1.28417	-1.41799

(S)-2d-optimized structure

%mem=16000MB # opt freq M062X/aug-cc-pVDZ

OPT-Product

0 1			
F	3.55027	-1.80767	-1.16800
С	2.63822	-0.87566	-0.64998
Ν	0.55106	-2.30327	-0.71161
С	1.28306	-1.16911	-1.27353
С	3.13131	0.52889	-0.97488
Н	2.60645	-1.03530	0.43245
Н	0.63807	-0.28645	-1.19422
Н	3.12187	0.67398	-2.06362
Н	4.17189	0.60786	-0.63559
Н	1.43548	-1.36786	-2.34231
S	-0.19835	-2.03265	0.77968
0	0.67696	-1.27396	1.69846
0	-0.72953	-3.34665	1.17787
С	-1.52457	-0.94285	0.30058
С	-1.36715	0.42879	0.45875
С	-2.68446	-1.49948	-0.23482
С	-2.40886	1.26690	0.06018
Н	-0.45004	0.82989	0.89009
С	-3.71212	-0.64680	-0.61741
Н	-2.77193	-2.58050	-0.33006
С	-3.58775	0.74428	-0.47732
Н	-2.29691	2.34472	0.17621
Н	-4.63177	-1.06297	-1.02902
С	-4.71767	1.64508	-0.90209
Н	-5.63166	1.40701	-0.34363
Н	-4.47228	2.69776	-0.72867
Н	-4.93842	1.51197	-1.96874

С	2.26888	1.56816	-0.29500
С	2.26629	1.67475	1.10096
С	1.42792	2.40784	-1.03162
С	1.45163	2.60433	1.74350
Н	2.90057	1.01636	1.69431
С	0.61120	3.34175	-0.39280
Н	1.41419	2.33280	-2.11936
С	0.62158	3.44367	0.99743
Н	1.46210	2.67155	2.82988
Н	-0.03203	3.99047	-0.98598
Н	-0.01273	4.17281	1.49940
Н	1.08643	-3.16819	-0.64502

6. Copies of NMR Spectra

¹H NMR for 1n-1

¹³C NMR for 1n-1

¹³C NMR for 1n

¹H NMR for 1r

¹³C NMR for 1r

S36

¹H NMR for 2b

¹³C NMR for 2b

¹⁹F NMR for 2b

¹H NMR for 2e

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

¹⁹F NMR for 2g

¹³C NMR for 2h

¹⁹F NMR for 2h

¹H NMR for 2l

¹⁹F NMR for 2l

76 74 33 31 31	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{smallmatrix} & 6 \\ & $
インシン		$\cdots \cdots $

¹H NMR for 2n

¹³C NMR for 2n

¹⁹F NMR for 2m

¹H NMR for 2n

¹³C NMR for 2n

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -27 f1 (ppm)

¹H NMR of 20

¹³C NMR of 20

¹⁹F NMR of 20

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

¹H NMR for 2q

¹³C NMR for 2q

S73

7. HPLC Traces

HPLC traces for rac-1a

Chromatogram with Gradient -100.00 0.80 0.70 14.842 -80.00 16.832 0.60 NHTs 0.50 -60.00 Me (NN) A% 0.40 -40.00 0.30-0.20 -20.00 0.10 0.00--0.00 M $\overline{\Lambda}$ Δ 5.00 10.00 20.00 25.00 15.00 30.00 Minutes

 SampleName fluoroamine 2a rac; Vial 4; Injection 1; Channel W 	V2996 ; Date Acquired 7/27/2016 4:40:00 PM
---	--

	Peak Results							
28 3	Retention time (min)	Height	Width (sec)	Area	% Area	Peak Type	Processed Channel Descr.	
1	14.842	551965	86.955	12954070	49.83	Unknown	PDA 214.0 nm	
2	16.832	475511	108.945	13044909	50.17	Unknown	PDA 214.0 nm	

Chromatography conditions: Waters 600 HPLC pump, Waters 2996 PDA detector, CHIRALPAK[®]IC column (5 μ m, 4.6 mm I.D. × 250 mm L), 20% isopropanol/80% hexane, 1 m L/min, λ = 214 nm

HPLC traces for (S)-1a

Chromatography conditions: Waters 600 HPLC pump, Waters 2996 PDA detector, CHIRALPAK[®]IC column (5 μ m, 4.6 mm I.D. × 250 mm L), 20% isopropanol/80% hexane, 1 m L/min, λ = 214 nm

 SampleName fluoroamine 2c rad 	; Vial 5; Injection 1; Channel W2996 ;	; Date Acquired 7/27/2016 5:11:51 PM
---	--	--------------------------------------

_	Peak Results							
	Retention time (min)	Height	Width (sec)	Area	% Area	Peak Type	Processed Channel Descr.	
1	17.993	374387	123.935	11415266	49.89	Unknown	PDA 227.0 nm	
2	21.047	312683	132.930	11463394	50.11	Unknown	PDA 227.0 nm	

Chromatography conditions: Waters 600 HPLC pump, Waters 2996 PDA detector, CHIRALPAK[®]IC column (5 μ m, 4.6 mm I.D. × 250 mm L), 20% isopropanol/80% hexane, 1 m L/min, λ = 227 nm

SampleName OE-RAC-FLUOROTOSYLAMINEnew3; Vial 1; Injection 1; Date Acquired 9/14/2015 7:34:14 PM

Peak	Resu	lts
------	------	-----

	Retention time (min)	Peak Type	Width (sec)	Height	Area	% Area	Processed Channel Descr.
1	18.091	Unknown	94.960	376461	12701597	46.54	PDA 227.0 nm
2	25.190	Unknown	162.935	306614	14589820	53.46	PDA 227.0 nm

Chromatography conditions: Waters 600 HPLC pump, Waters 2996 PDA detector, CHIRALCEL[®]OD-H column (5 μ m, 4.6 mm I.D. × 250 mm L), 10% isopropanol/90% hexane, 1 mL/min, λ = 214 nm

HPLC Traces for (S)-2d

Chromatography conditions: Waters 600 HPLC pump, Waters 2996 PDA detector, CHIRALCEL[®]OD-H column (5 μ m, 4.6 mm I.D. × 250 mm L), 10% isopropanol/90% hexane, 1 mL/min, λ = 214 nm

8. X-Ray Crystallography Data of 2k (CCDC 1490050)

Table 1. Crystal data and structure refinement for gbh33rta.				
Identification code	gbh33rta			
Empirical formula	C26 H36 F2 N2 O6 S2			
Formula weight	574.69			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 6.3281(4) Å	$\alpha = 105.544(6)^{\circ}$.		
	b = 12.8693(9) Å	$\beta = 93.657(5)^{\circ}$.		
	c = 17.8671(10) Å	$\gamma = 100.435(5)^{\circ}$.		
Volume	1368.94(15)Å ³	•		
Ζ	2			
Density (calculated)	1.394 Mg/m^3			
Absorption coefficient	0.252 mm ⁻¹			
F(000)	608			
Crystal color, habit	colorless plate			
Crystal size	0.40 x 0.11 x 0.05 mm ³			
Theta range for data collection	3.37 to 25.68°.			
Index ranges	-7<=h<=7, -15<=k<=15, -21<=	=l<=21		
Reflections collected	18222			
Independent reflections	5177 [R(int) = 0.0359]			
Completeness to theta = 25.68°	99.6 %			
Absorption correction	Semi-empirical from equivalen	its		
Max. and min. transmission	1.000 and 0.976			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5177 / 0 / 476			
Goodness-of-fit on F ²	1.030			
Final R indices [I>2sigma(I)]	R1 = 0.0396, $wR2 = 0.0729$			
R indices (all data)	R1 = 0.0601, wR2 = 0.0811			
Largest diff. peak and hole	0.281 and -0.289 e.Å ⁻³			

	Х	у	Z	U(eq)
S(1)	6164(1)	5000(1)	2554(1)	41(1)
O(1)	7080(3)	5209(1)	3345(1)	57(1)
O(2)	3897(2)	4976(1)	2404(1)	55(1)
O(3)	6900(2)	7955(1)	2058(1)	45(1)
F(1)	9965(2)	5459(1)	965(1)	66(1)
N(1)	7477(3)	5932(1)	2226(1)	40(1)
C(1)	6862(3)	6075(2)	1461(1)	37(1)
C(2)	5566(3)	6984(2)	1533(1)	39(1)
C(3)	5008(4)	7157(2)	745(2)	52(1)
C(4)	7014(5)	7393(2)	347(2)	58(1)
C(5)	8279(5)	6478(2)	271(2)	57(1)
C(6)	8850(4)	6329(2)	1057(1)	42(1)
C(7)	6582(3)	3708(2)	1999(1)	37(1)
C(8)	8568(4)	3609(2)	1740(2)	50(1)
C(9)	8870(4)	2588(2)	1323(2)	55(1)
C(10)	7241(4)	1661(2)	1161(1)	52(1)
C(11)	5278(4)	1776(2)	1436(1)	53(1)
C(12)	4941(4)	2791(2)	1850(1)	44(1)
C(13)	7626(5)	551(2)	707(2)	86(1)
S(2)	2583(1)	9681(1)	2453(1)	41(1)
O(4)	4826(2)	9663(1)	2604(1)	55(1)
O(5)	1651(3)	9482(1)	1664(1)	55(1)
O(6)	1795(2)	6746(1)	2964(1)	44(1)
F(2)	-1399(2)	9256(1)	3991(1)	69(1)
N(2)	1211(3)	8761(1)	2777(1)	45(1)
C(14)	1756(3)	8628(2)	3549(1)	41(1)
C(15)	3068(3)	7729(2)	3500(1)	39(1)
C(16)	3548(4)	7567(2)	4297(1)	49(1)
C(17)	1489(4)	7326(2)	4667(2)	53(1)
C(18)	218(5)	8230(2)	4722(2)	58(1)
C(19)	-278(4)	8375(2)	3928(1)	45(1)
C(20)	2292(3)	10999(2)	2996(1)	36(1)
C(21)	4018(4)	11723(2)	3483(1)	46(1)
C(22)	3822(4)	12783(2)	3854(1)	51(1)
C(23)	1925(4)	13136(2)	3749(1)	48(1)
C(24)	202(4)	12392(2)	3268(1)	50(1)
C(25)	356(4)	11329(2)	2893(1)	45(1)
C(26)	1764(7)	14308(2)	4136(3)	76(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for gbh33rta. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths [Å] and angl	les [°] for	gbh33rta

<u>S(1)-O(1)</u>	1 4282(16)
S(1) - O(2)	1.4357(15)
S(1) - O(2) S(1) N(1)	1.4337(13) 1.5077(19)
S(1) - N(1) S(1) - C(7)	1.3977(10) 1.7684(10)
S(1)-C(7)	1.7084(19) 1.420(2)
O(3) - C(2)	1.429(2)
U(3)-H(30)	0.80(2)
F(1)- $C(6)$	1.40/(2)
N(1)-C(1)	1.465(3)
N(1)-H(1N)	0.82(2)
C(1)-C(6)	1.518(3)
C(1)-C(2)	1.529(3)
C(1)-H(1)	0.93(2)
C(2)-C(3)	1.513(3)
C(2)-H(2)	0.985(19)
C(3)-C(4)	1.517(4)
C(3)-H(3A)	0.94(2)
C(3)-H(3B)	0.97(2)
C(4)-C(5)	1.522(4)
C(4)-H(4A)	0.96(2)
C(4)-H(4B)	0.93(3)
C(5)-C(6)	1 499(3)
C(5)-H(5A)	0.97(2)
C(5)-H(5B)	0.94(2)
C(6)-H(6)	0.94(2) 0.941(19)
C(7)-C(12)	1.376(3)
C(7) - C(8)	1.370(3) 1.382(3)
C(8)-C(9)	1.362(3) 1.379(3)
C(8)-U(9)	0.90(2)
C(0) - C(10)	1.379(3)
C(0) - H(0)	1.579(5)
C(10) C(11)	1.382(2)
C(10) - C(11)	1.363(3) 1.512(2)
C(10)- $C(13)$	1.313(3) 1.380(2)
C(11) - C(12)	1.360(3)
C(11)- $H(11)C(12)$ $H(12)$	0.94(3)
$C(12) - \Pi(12)$ $C(12) - \Pi(12A)$	0.92(2)
$C(13) - \Pi(13A)$	0.9000
C(13)-H(13B) C(12)-H(12C)	0.9600
C(13)-H(13C)	0.9000
S(2) - O(3)	1.4312(10) 1.4222(15)
S(2) - O(4)	1.4333(15)
S(2)-N(2)	1.5965(19)
S(2)-C(20)	1.7624(19)
O(6)-C(15)	1.431(2)
O(6)-H(6O)	0.80(3)
F(2)-C(19)	1.426(2)
N(2)-C(14)	1.462(3)
N(2)-H(2N)	0.82(2)
C(14)-C(19)	1.516(3)
C(14)-C(15)	1.529(3)
C(14)-H(14)	0.93(2)
C(15)-C(16)	1.514(3)
C(15)-H(15)	0.967(19)
C(16)-C(17)	1.518(3)
C(16)-H(16A)	1.00(2)

C(16)-H(16B)	0.99(2)
C(17)-C(18)	1.516(4)
C(17)-H(17A)	0.97(2)
C(17)-H(17B)	0.97(3)
C(18)-C(19)	1.501(3)
C(18)-H(18A)	0.98(2)
C(18)-H(18B)	0.91(3)
C(19)-H(19)	0.989(19)
C(20)-C(21)	1.377(3)
C(20)-C(25)	1.384(3)
C(21)-C(22)	1 379(3)
C(21)-H(21)	0.91(2)
C(22)-C(23)	1 378(3)
C(22)-H(22)	0.94(2)
C(23)-C(24)	1.380(3)
C(23)-C(26)	1 506(3)
C(24)-C(25)	1.300(3) 1.377(3)
C(24)-H(24)	0.93(2)
C(25)-H(25)	0.99(2)
C(26)-H(26A)	0.90(2) 0.89(4)
C(26)-H(26R)	0.09(4)
C(26) - H(26C)	0.91(4) 0.87(3)
e(20) II(200)	0.07(5)
O(1)-S(1)-O(2)	118.43(10)
O(1)-S(1)-N(1)	106.66(10)
O(2)-S(1)-N(1)	108.10(10)
O(1)-S(1)-C(7)	108.98(10)
O(2)-S(1)-C(7)	106.18(9)
N(1)-S(1)-C(7)	108.15(9)
C(2)-O(3)-H(30)	109.4(17)
C(1)-N(1)-S(1)	123.19(15)
C(1)-N(1)-H(1N)	119.9(15)
S(1)-N(1)-H(1N)	113.5(15)
N(1)-C(1)-C(6)	110.62(17)
N(1)-C(1)-C(2)	111.53(16)
C(6)-C(1)-C(2)	110.02(17)
N(1)-C(1)-H(1)	108.6(12)
C(6)-C(1)-H(1)	108.5(12)
C(2)-C(1)-H(1)	107.5(12)
O(3)-C(2)-C(3)	111.22(18)
O(3)-C(2)-C(1)	105.99(16)
C(3)-C(2)-C(1)	111.27(18)
O(3)-C(2)-H(2)	108.9(11)
C(3)-C(2)-H(2)	111.3(11)
C(1)-C(2)-H(2)	108.0(11)
C(2) - C(3) - C(4)	111.6(2) 107.8(12)
C(2)-C(3)-H(3A)	107.8(13) 112 7(12)
$C(4)-C(3)-\Pi(3A)$	112.7(13) 110.2(14)
$C(2)$ - $C(3)$ - $\Pi(3D)$	110.3(14) 100 5(14)
H(3A) - C(3) - H(3B)	107.3(14) 104.7(18)
$\Gamma(3)_{\Gamma(4)_{\Gamma(5)}}$	1107.7(10)
C(3)-C(4)-H(4A)	110.7(2) 110 2(14)
C(5)-C(4)-H(4A)	109.2(14)
C(3)-C(4)-H(4R)	109.0(14) 109.4(15)
C(5)-C(4)-H(4B)	109 1(14)
	()

H(4A)-C(4)-H(4B)	108(2)
C(6)-C(5)-C(4)	110.5(2)
C(6)-C(5)-H(5A)	107.3(15)
C(4)-C(5)-H(5A)	108.8(14)
C(6)-C(5)-H(5B)	107.8(16)
C(4)-C(5)-H(5B)	111.4(15)
H(5A)-C(5)-H(5B)	111(2)
F(1)-C(6)-C(5)	109.11(17)
F(1)-C(6)-C(1)	109.07(17)
C(5)-C(6)-C(1)	112.1(2)
F(1)-C(6)-H(6)	105.2(12)
C(5)-C(6)-H(6)	112.4(12)
C(1)-C(6)-H(6)	108.7(12)
C(12)-C(7)-C(8)	1201(2)
C(12)-C(7)-S(1)	119 55(16)
C(8)-C(7)-S(1)	120 35(16)
C(9)-C(8)-C(7)	1193(2)
C(9)-C(8)-H(8)	1217(14)
C(7)- $C(8)$ -H(8)	1190(14)
C(10)- $C(9)$ - $C(8)$	121 6(2)
C(10)-C(9)-H(9)	121.0(2) 120.8(15)
C(8) - C(9) - H(9)	117.6(15)
C(9)-C(10)-C(11)	117.0(13) 118.1(2)
C(9)- $C(10)$ - $C(13)$	1204(2)
C(11)- $C(10)$ - $C(13)$	120.1(2) 121.5(2)
C(12)-C(11)-C(10)	121.3(2) 121.1(2)
C(12) - C(11) - H(11)	1195(15)
C(10)- $C(11)$ - $H(11)$	119.6(15) 119.4(15)
C(7)-C(12)-C(11)	119.8(2)
C(7)-C(12)-H(12)	121.3(14)
C(11)-C(12)-H(12)	118.8(14)
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(10)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(5)-S(2)-O(4)	119.15(10)
O(5)-S(2)-N(2)	106.02(10)
O(4)-S(2)-N(2)	107.78(10)
O(5)-S(2)-C(20)	108.31(9)
O(4)-S(2)-C(20)	105.56(9)
N(2)-S(2)-C(20)	109.86(10)
C(15)-O(6)-H(6O)	108.7(18)
C(14)-N(2)-S(2)	123.10(15)
C(14)-N(2)-H(2N)	118.7(16)
S(2)-N(2)-H(2N)	113.7(16)
N(2)-C(14)-C(19)	110.46(18)
N(2)-C(14)-C(15)	111.40(17)
C(19)-C(14)-C(15)	110.50(17)
N(2)-C(14)-H(14)	109.5(12)
C(19)-C(14)-H(14)	108.2(12)
C(15)-C(14)-H(14)	106.7(12)
O(6)-C(15)-C(16)	111.22(18)
O(6)-C(15)-C(14)	106.45(16)
C(16)-C(15)-C(14)	110.96(18)

O(6)-C(15)-H(15)	108.6(11)
C(16)-C(15)-H(15)	110.7(12)
C(14)-C(15)-H(15)	108.8(11)
C(15)-C(16)-C(17)	111.4(2)
C(15)-C(16)-H(16A)	108.5(13)
C(17)-C(16)-H(16A)	108.7(13)
C(15)-C(16)-H(16B)	108.2(13)
C(17)-C(16)-H(16B)	112.9(13)
H(16A)-C(16)-H(16B)	107.0(18)
C(18)-C(17)-C(16)	111.0(2)
C(18)-C(17)-H(17A)	109.3(13)
C(16)-C(17)-H(17A)	109.9(13)
C(18)-C(17)-H(17B)	109.4(14)
C(16)-C(17)-H(17B)	109.3(14)
H(17A)-C(17)-H(17B)	108 0(19)
C(19)-C(18)-C(17)	1104(2)
C(19)-C(18)-H(18A)	109.0(15)
C(17)-C(18)-H(18A)	1115(14)
C(19)-C(18)-H(18B)	107.0(17)
C(17)-C(18)-H(18B)	109.9(16)
H(18A)-C(18)-H(18B)	109.9(10) 109(2)
F(2)-C(19)-C(18)	109(2) 109 82(17)
F(2) - C(19) - C(14)	109.02(17) 108.56(18)
C(18)-C(19)-C(14)	1120(2)
E(10) = C(10) = U(10)	103.6(11)
C(18)-C(19)-H(19)	111 9(11)
C(14)-C(19)-H(19)	110.6(11)
C(21)-C(20)-C(25)	120.01(19)
C(21)-C(20)-C(23)	120.01(17) 120.26(15)
C(25)-C(20)-S(2)	120.20(15) 119.60(16)
C(20)-C(21)-C(22)	119.00(10) 119.7(2)
C(20)-C(21)-C(22) C(20)-C(21)-H(21)	119.7(2) 119.7(14)
C(20)-C(21)-H(21)	119.7(14) 120.6(14)
$C(22) - C(21) - \Pi(21)$ C(23) - C(22) - C(21)	120.0(14) 121.4(2)
C(23) - C(22) - C(21) C(23) - C(22) - H(22)	121.4(2) 120.8(15)
C(23)-C(22)-H(22) C(21)-C(22)-H(22)	120.0(15) 117.0(15)
$C(21)$ - $C(22)$ - $\Pi(22)$ C(22) $C(23)$ $C(24)$	117.9(13) 118.0(2)
C(22) - C(23) - C(24)	120.6(3)
C(24) - C(23) - C(26)	120.0(3) 121 3(3)
C(24)-C(23)-C(20)	121.3(3) 121.7(2)
C(25) - C(24) - C(25) C(25) - C(24) - U(24)	121.7(2) 110.0(14)
C(23) - C(24) - H(24)	119.0(14) 110.2(14)
C(24) C(25) C(20)	119.3(14) 110.2(2)
C(24) - C(25) - C(20)	119.2(2) 120 5(14)
C(24)-C(25)-H(25)	120.3(14) 120.2(14)
$C(20)-C(25)-\Pi(25)$	120.2(14)
$C(23)-C(20)-\Pi(20A)$	110(2)
$U(25)-U(20)-\Pi(20D)$ U(26A) C(26) U(24D)	110(2) 101(2)
$\Pi(20A) - U(20) - \Pi(20B)$	101(3) 111(2)
$U(25)-U(20)-\Pi(20U)$ U(26A) C(26) U(26C)	111(2) 120(2)
$\Pi(20A)-U(20)-\Pi(20U)$	120(3)
H(20B)-C(26)-H(26C)	104(3)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
<u>S(1)</u>	40(1)	37(1)	47(1)	14(1)	11(1)	10(1)
O(1)	73(1)	57(1)	41(1)	16(1)	10(1)	8(1)
O(2)	38(1)	46(1)	85(1)	17(1)	18(1)	14(1)
O(3)	42(1)	38(1)	53(1)	2(1)	5(1)	17(1)
F(1)	84(1)	65(1)	68(1)	23(1)	32(1)	49(1)
N(1)	37(1)	37(1)	44(1)	14(1)	-1(1)	3(1)
C(1)	42(1)	30(1)	36(1)	6(1)	0(1)	4(1)
C(2)	32(1)	39(1)	45(1)	10(1)	4(1)	8(1)
C(3)	54(1)	57(2)	51(2)	18(1)	0(1)	22(1)
C(4)	76(2)	67(2)	46(2)	28(1)	12(1)	29(2)
C(5)	74(2)	61(2)	44(2)	15(1)	18(1)	26(2)
C(6)	49(1)	36(1)	45(1)	9(1)	13(1)	19(1)
C(7)	38(1)	36(1)	43(1)	16(1)	7(1)	12(1)
C(8)	43(1)	41(1)	70(2)	21(1)	11(1)	12(1)
C(9)	56(2)	57(2)	64(2)	25(1)	17(1)	30(1)
C(10)	70(2)	44(1)	46(1)	15(1)	0(1)	24(1)
C(11)	62(2)	39(1)	56(2)	16(1)	0(1)	3(1)
C(12)	43(1)	46(1)	48(1)	19(1)	9(1)	7(1)
C(13)	113(2)	58(2)	82(2)	1(2)	-3(2)	44(2)
S(2)	43(1)	32(1)	49(1)	11(1)	8(1)	10(1)
O(4)	41(1)	39(1)	85(1)	11(1)	14(1)	16(1)
O(5)	72(1)	47(1)	43(1)	12(1)	7(1)	9(1)
O(6)	40(1)	37(1)	51(1)	5(1)	6(1)	14(1)
F(2)	77(1)	57(1)	73(1)	5(1)	10(1)	35(1)
N(2)	43(1)	37(1)	54(1)	17(1)	-6(1)	0(1)
C(14)	45(1)	32(1)	42(1)	7(1)	-4(1)	3(1)
C(15)	33(1)	41(1)	44(1)	13(1)	5(1)	5(1)
C(16)	44(1)	54(1)	51(2)	19(1)	1(1)	10(1)
C(17)	59(2)	61(2)	44(2)	21(1)	7(1)	14(1)
C(18)	64(2)	64(2)	46(2)	8(1)	15(1)	20(1)
C(19)	49(1)	36(1)	48(1)	2(1)	7(1)	18(1)
C(20)	38(1)	33(1)	41(1)	15(1)	9(1)	10(1)
C(21)	42(1)	43(1)	54(1)	14(1)	3(1)	14(1)
C(22)	57(2)	39(1)	51(1)	6(1)	2(1)	7(1)
C(23)	66(2)	40(1)	48(1)	18(1)	24(1)	21(1)
C(24)	50(1)	55(1)	60(2)	27(1)	18(1)	28(1)
C(25)	40(1)	45(1)	53(1)	16(1)	4(1)	11(1)
C(26)	100(3)	46(2)	88(3)	15(2)	37(2)	30(2)
			~ /	~ /		~ /

Table 4. Anisotropic displacement parameters (Å²x 10³) for gbh33rta. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	у	Z	U(eq)
H(30)	6190(40)	8410(20)	2193(14)	58(8)
H(1N)	8730(30)	6169(17)	2436(12)	43(6)
H(1)	5980(30)	5420(16)	1150(11)	39(5)
H(2)	4250(30)	6777(15)	1772(11)	36(5)
H(3A)	4220(30)	7726(18)	823(12)	48(6)
H(3B)	4000(40)	6510(20)	408(14)	59(7)
H(4A)	7930(40)	8080(20)	641(14)	54(7)
H(4B)	6610(40)	7446(19)	-148(15)	60(7)
H(5A)	7370(40)	5790(20)	-47(14)	65(8)
H(5B)	9580(40)	6640(20)	56(14)	65(7)
H(6)	9810(30)	6948(16)	1392(11)	34(5)
H(8)	9620(30)	4214(19)	1842(13)	51(6)
H(9)	10230(40)	2550(20)	1136(14)	69(8)
H(11)	4150(40)	1150(20)	1336(14)	71(8)
H(12)	3620(40)	2836(18)	2034(13)	56(7)
H(13A)	7655	523	165	128
H(13B)	6482	-21	755	128
H(13C)	8986	446	912	128
H(6O)	2530(40)	6300(20)	2856(15)	68(9)
H(2N)	-50(40)	8549(18)	2573(13)	47(7)
H(14)	2610(30)	9276(16)	3867(11)	38(5)
H(15)	4390(30)	7932(15)	3286(11)	36(5)
H(16A)	4500(40)	8259(19)	4644(13)	57(7)
H(16B)	4390(40)	6975(19)	4237(13)	58(7)
H(17A)	590(30)	6626(18)	4359(13)	49(6)
H(17B)	1860(40)	7267(19)	5186(15)	62(7)
H(18A)	-1150(40)	8067(19)	4943(14)	65(7)
H(18B)	1030(40)	8890(20)	5029(15)	71(8)
H(19)	-1310(30)	7729(16)	3578(11)	33(5)
H(21)	5280(40)	11495(18)	3562(13)	55(7)
H(22)	5040(40)	13270(20)	4174(14)	68(8)
H(24)	-1100(40)	12612(18)	3196(13)	58(7)
H(25)	-770(40)	10863(18)	2565(13)	53(7)
H(26A)	2920(60)	14780(30)	4080(20)	138(16)
H(26B)	1910(60)	14440(30)	4660(20)	130(16)
H(26C)	470(60)	14410(30)	4020(20)	113(14)

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for gbh33rta.

Table 6. Torsion angles [°] for gbh33rta.

O(1)-S(1)-N(1)-C(1)	-172.83(15)
O(2)-S(1)-N(1)-C(1)	-44.46(18)
C(7)-S(1)-N(1)-C(1)	70.09(18)
S(1)-N(1)-C(1)-C(6)	-139.26(16)
S(1)-N(1)-C(1)-C(2)	97.95(18)
N(1)-C(1)-C(2)-O(3)	56 8(2)
C(6)-C(1)-C(2)-O(3)	-66 3(2)
N(1)-C(1)-C(2)-C(3)	177.86(18)
C(6)-C(1)-C(2)-C(3)	54 7(2)
O(3)-C(2)-C(3)-C(4)	62.7(3)
C(1)-C(2)-C(3)-C(4)	-55 3(3)
C(2) - C(3) - C(4) - C(5)	55 7(3)
C(3)- $C(4)$ - $C(5)$ - $C(6)$	-56 4(3)
C(4)- $C(5)$ - $C(6)$ - $E(1)$	178 A(2)
C(4) - C(5) - C(6) - C(1)	57 5(3)
N(1) C(1) C(6) - E(1)	59.0(2)
C(2) C(1) C(6) F(1)	177, 36(17)
N(1) C(1) C(6) C(5)	-177.30(17)
$\Gamma(1) - C(1) - C(0) - C(3)$ $\Gamma(2) - \Gamma(1) - \Gamma(6) - \Gamma(5)$	1/9.09(10) 56 A(2)
C(2)-C(1)-C(0)-C(3) O(1) S(1) C(7) C(12)	-30.4(2)
O(1)-S(1)-O(12) O(2) S(1) C(7) C(12)	20.2(2)
V(2)-S(1)-C(7)-C(12) V(1)-S(1)-C(7)-C(12)	-30.2(2)
N(1)-S(1)-C(7)-C(12)	-140.03(18)
O(1)-S(1)-C(7)-C(8)	-79.1(2)
V(2)-S(1)-V(7)-V(8)	152.28(18)
N(1)-S(1)-C(7)-C(8)	36.5(2)
C(12)-C(7)-C(8)-C(9)	1.1(3)
S(1)-C(7)-C(8)-C(9)	1/8.38(18)
C(7)- $C(8)$ - $C(9)$ - $C(10)$	-0.4(4)
C(8) - C(9) - C(10) - C(11)	-0.6(4)
C(8) - C(9) - C(10) - C(13)	-1/9.5(2)
C(9)-C(10)-C(11)-C(12)	1.0(4)
C(13)-C(10)-C(11)-C(12)	1/9.9(2)
C(8)-C(7)-C(12)-C(11)	-0.7(3)
S(1)-C(7)-C(12)-C(11)	-1/8.23(17)
C(10)-C(11)-C(12)-C(7)	-0.4(4)
O(5)-S(2)-N(2)-C(14)	1/5.19(16)
O(4)-S(2)-N(2)-C(14)	46.56(19)
C(20)-S(2)-N(2)-C(14)	-67.99(19)
S(2)-N(2)-C(14)-C(19)	140.00(16)
S(2)-N(2)-C(14)-C(15)	-96.79(19)
N(2)-C(14)-C(15)-O(6)	-56.6(2)
C(19)-C(14)-C(15)-O(6)	66.6(2)
N(2)-C(14)-C(15)-C(16)	-177.77(18)
C(19)-C(14)-C(15)-C(16)	-54.6(2)
O(6)-C(15)-C(16)-C(17)	-63.2(3)
C(14)-C(15)-C(16)-C(17)	55.1(3)
C(15)-C(16)-C(17)-C(18)	-56.2(3)
C(16)-C(17)-C(18)-C(19)	56.5(3)
C(17)-C(18)-C(19)-F(2)	-177.8(2)
C(17)-C(18)-C(19)-C(14)	-57.1(3)
N(2)-C(14)-C(19)-F(2)	-58.7(2)
C(15)-C(14)-C(19)-F(2)	177.56(16)
N(2)-C(14)-C(19)-C(18)	179.85(18)
C(15)-C(14)-C(19)-C(18)	56.1(2)

O(5)-S(2)-C(20)-C(21)	-133.23(17)
O(4)-S(2)-C(20)-C(21)	-4.6(2)
N(2)-S(2)-C(20)-C(21)	111.39(18)
O(5)-S(2)-C(20)-C(25)	42.8(2)
O(4)-S(2)-C(20)-C(25)	171.47(17)
N(2)-S(2)-C(20)-C(25)	-72.57(19)
C(25)-C(20)-C(21)-C(22)	-1.4(3)
S(2)-C(20)-C(21)-C(22)	174.63(18)
C(20)-C(21)-C(22)-C(23)	0.1(4)
C(21)-C(22)-C(23)-C(24)	1.0(3)
C(21)-C(22)-C(23)-C(26)	-177.9(3)
C(22)-C(23)-C(24)-C(25)	-0.8(3)
C(26)-C(23)-C(24)-C(25)	178.0(3)
C(23)-C(24)-C(25)-C(20)	-0.4(3)
C(21)-C(20)-C(25)-C(24)	1.5(3)
S(2)-C(20)-C(25)-C(24)	-174.50(17)

Table 7. Hydrogen bonds for gbh33rta $[{\rm \AA}~and~^\circ].$

D-H	d(D-H) d	d(HA)	<dha< th=""><th>d(DA</th><th>) A</th></dha<>	d(DA) A
O3-H30 O3-H30	0.804 0.804	1.952 3.025	172.07 165.36	2.751 3.808	O4 S2
N1-H1N	0.821	2.019	179.34	2.840	O6 [x+1, y, z]
O6-H6O	0.800	2.042	168.09	2.829	02
N2-H2N	0.819	2.007	177.28	2.825	O3 [x-1, y, z]

X-ray crystallography of 2k. Thermal ellipsoids are shown at 50% probability

9. X-Ray Crystallography Data of 2n (CCDC 1490051)

Table 1. Crystal data and structure refinem	ent for gbh34ltc.	
Identification code	gbh34ltc	
Empirical formula	C14 H20 F N O2 S	
Formula weight	285.37	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P 2_1/c$	
Unit cell dimensions	a = 7.9327(2) Å	α= 90°.
	b = 9.5312(2) Å	$\beta = 100.885(2)^{\circ}$.
	c = 19.6547(5) Å	$\gamma = 90^{\circ}$.
Volume	1459.33(6) Å ³	
Ζ	4	
Density (calculated)	1.299 Mg/m ³	
Absorption coefficient	0.231 mm ⁻¹	
F(000)	608	
Crystal size	0.38 x 0.25 x 0.18 mm ³	
Theta range for data collection	3.38 to 28.05°.	
Index ranges	-10<=h<=10, -12<=k<=12	2, -25<=l<=26
Reflections collected	17380	
Independent reflections	3544 [R(int) = 0.0298]	
Completeness to theta = 28.05°	99.8 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	1.00 and 0.88	_
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3544 / 0 / 252	
Goodness-of-fit on F ²	1.052	
Final R indices [I> 2σ (I)]	R1 = 0.0367, WR2 = 0.090)2
R indices (all data)	R1 = 0.0432, WR2 = 0.094	43
Largest diff. peak and hole	0.376 and -0.309 e.Å ⁻³	

	Х	У	Z	U(eq)	
S(1)	6836(1)	8249(1)	5361(1)	20(1)	
F(1)	9950(1)	10046(1)	7518(1)	33(1)	
O(1)	8469(1)	7562(1)	5479(1)	27(1)	
O(2)	6150(1)	8804(1)	4684(1)	25(1)	
N(1)	6965(2)	9573(1)	5883(1)	21(1)	
C(1)	5328(2)	7058(1)	5578(1)	20(1)	
C(2)	3607(2)	7461(2)	5467(1)	25(1)	
C(3)	2404(2)	6517(2)	5615(1)	27(1)	
C(4)	2877(2)	5178(2)	5865(1)	26(1)	
C(5)	4601(2)	4811(2)	5980(1)	28(1)	
C(6)	5836(2)	5745(2)	5839(1)	25(1)	
C(7)	1524(2)	4162(2)	6002(1)	36(1)	
C(8)	7703(2)	9383(2)	6627(1)	23(1)	
C(9)	6340(2)	9566(2)	7080(1)	29(1)	
C(10)	5738(2)	11079(2)	7103(1)	31(1)	
C(11)	7240(2)	12078(2)	7318(1)	30(1)	
C(12)	8559(2)	11918(2)	6849(1)	28(1)	
C(13)	9194(2)	10422(2)	6825(1)	25(1)	
C(14)	10586(2)	10250(2)	6402(1)	32(1)	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for gbh34ltc. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.4304(10)
S(1)-O(2)	1.4402(10)
S(1)-N(1)	1.6179(12)
S(1)-C(1)	1.7588(14)
F(1)-C(13)	1.4251(16)
N(1)-C(8)	1.4791(17)
N(1)-H(1N)	0.821(19)
C(1)-C(6)	1.3833(19)
C(1)-C(2)	1.3955(19)
C(2)-C(3)	1.381(2)
C(2)-H(2)	0.980(19)
C(3)-C(4)	1.393(2)
C(3)-H(3)	0.947(19)
C(4)-C(5)	1.388(2)
C(4)-C(7)	1.507(2)
C(5)-C(6)	1.390(2)
C(5)-H(5)	0.96(2)
C(6)-H(6)	0.953(18)
C(7)-H(7A)	0.96(2)
C(7)-H(7B)	0.99(3)
C(7)-H(7C)	0.96(2)
C(8)-C(9)	1.535(2)
C(8)-C(13)	1.535(2)
C(8)-H(8)	0.988(17)
C(9)-C(10)	1.523(2)
C(9)-H(9A)	0.994(19)
C(9)-H(9B)	1.00(2)
C(10)-C(11)	1.521(2)
C(10)-H(10A)	0.967(19)
C(10)-H(10B)	0.99(2)
C(11)-C(12)	1.526(2)
C(11)-H(11A)	0.99(2)
C(11)-H(11B)	0.988(19)
C(12)-C(13)	1.516(2)
C(12)-H(12A)	1.00(2)
C(12)-H(12B)	0.996(15)
C(13)-C(14)	1.512(2)
C(14)-H(14A)	0.962(19)
C(14)-H(14B)	1.01(2)
C(14)-H(14C)	0.98(2)
O(1)-S(1)-O(2)	119.33(6)
O(1)-S(1)-N(1)	107.92(6)
O(2)-S(1)-N(1)	105.52(6)

Table 3. Bond lengths [Å] and angles [°] for gbh34ltc.

O(1)-S(1)-C(1)	107.57(6)
O(2)-S(1)-C(1)	107.80(6)
N(1)-S(1)-C(1)	108.30(6)
C(8)-N(1)-S(1)	119.81(10)
C(8)-N(1)-H(1N)	117.4(13)
S(1)-N(1)-H(1N)	110.9(13)
C(6)-C(1)-C(2)	120.98(13)
C(6)-C(1)-S(1)	120.65(11)
C(2)-C(1)-S(1)	118.36(11)
C(3)-C(2)-C(1)	118.84(14)
C(3)-C(2)-H(2)	120 3(11)
C(1)-C(2)-H(2)	120.8(11)
C(2)-C(3)-C(4)	121 34(14)
C(2)-C(3)-H(3)	120.5(12)
C(4)-C(3)-H(3)	1182(12)
C(5)-C(4)-C(3)	118 66(14)
C(5)-C(4)-C(7)	12144(15)
C(3)-C(4)-C(7)	119 89(15)
C(4)-C(5)-C(6)	121.07(14)
C(4)-C(5)-H(5)	119 6(12)
C(6)-C(5)-H(5)	119.0(12) 119.3(12)
C(1)- $C(6)$ - $C(5)$	119.09(12)
C(1)- $C(6)$ - $H(6)$	1212(11)
C(5)-C(6)-H(6)	119 7(11)
C(4)-C(7)-H(7A)	109.5(13)
C(4)-C(7)-H(7B)	111.9(15)
H(7A)-C(7)-H(7B)	105(2)
C(4)-C(7)-H(7C)	109.4(14)
H(7A)-C(7)-H(7C)	111.0(19)
H(7B)-C(7)-H(7C)	110(2)
N(1)-C(8)-C(9)	111.60(12)
N(1)-C(8)-C(13)	108.31(11)
C(9)-C(8)-C(13)	111.92(12)
N(1)-C(8)-H(8)	107.0(10)
C(9)-C(8)-H(8)	110.0(10)
C(13)-C(8)-H(8)	107.9(10)
C(10)-C(9)-C(8)	112.58(12)
C(10)-C(9)-H(9A)	111.4(11)
C(8)-C(9)-H(9A)	107.7(11)
C(10)-C(9)-H(9B)	111.9(11)
C(8)-C(9)-H(9B)	106.0(11)
H(9A)-C(9)-H(9B)	106.9(15)
C(11)-C(10)-C(9)	111.58(14)
С(11)-С(10)-Н(10А)	108.1(12)
C(9)-C(10)-H(10A)	109.7(11)
C(11)-C(10)-H(10B)	110.5(12)

C(9)-C(10)-H(10B)	109.1(12)
H(10A)-C(10)-H(10B)	107.8(16)
C(10)-C(11)-C(12)	111.12(13)
C(10)-C(11)-H(11A)	109.4(11)
C(12)-C(11)-H(11A)	108.9(11)
C(10)-C(11)-H(11B)	111.3(11)
C(12)-C(11)-H(11B)	109.3(11)
H(11A)-C(11)-H(11B)	106.7(16)
C(13)-C(12)-C(11)	112.48(13)
C(13)-C(12)-H(12A)	109.3(11)
C(11)-C(12)-H(12A)	112.6(11)
C(13)-C(12)-H(12B)	111.3(9)
C(11)-C(12)-H(12B)	108.7(8)
H(12A)-C(12)-H(12B)	102.0(14)
F(1)-C(13)-C(14)	106.23(12)
F(1)-C(13)-C(12)	106.79(12)
C(14)-C(13)-C(12)	113.59(13)
F(1)-C(13)-C(8)	104.21(11)
C(14)-C(13)-C(8)	113.47(13)
C(12)-C(13)-C(8)	111.70(12)
C(13)-C(14)-H(14A)	107.7(11)
C(13)-C(14)-H(14B)	109.1(11)
H(14A)-C(14)-H(14B)	110.3(15)
C(13)-C(14)-H(14C)	110.2(11)
H(14A)-C(14)-H(14C)	107.6(16)
H(14B)-C(14)-H(14C)	111.7(16)

	U11	U ²²	U33	U ²³	U13	U12	
S (1)	19(1)	20(1)	21(1)	0(1)	4(1)	3(1)	
F(1)	36(1)	35(1)	25(1)	4(1)	-6(1)	1(1)	
O(1)	20(1)	29(1)	33(1)	-2(1)	5(1)	5(1)	
O(2)	28(1)	26(1)	20(1)	1(1)	5(1)	4(1)	
N(1)	22(1)	19(1)	21(1)	1(1)	1(1)	2(1)	
C(1)	21(1)	19(1)	19(1)	-2(1)	2(1)	1(1)	
C(2)	23(1)	23(1)	28(1)	0(1)	3(1)	3(1)	
C(3)	22(1)	31(1)	30(1)	-5(1)	5(1)	0(1)	
C(4)	33(1)	27(1)	18(1)	-6(1)	6(1)	-8(1)	
C(5)	37(1)	20(1)	25(1)	2(1)	4(1)	1(1)	
C(6)	26(1)	22(1)	25(1)	1(1)	2(1)	5(1)	
C(7)	45(1)	37(1)	27(1)	-8(1)	13(1)	-17(1)	
C(8)	26(1)	21(1)	22(1)	3(1)	2(1)	-1(1)	
C(9)	31(1)	33(1)	22(1)	3(1)	7(1)	-7(1)	
C(10)	32(1)	39(1)	23(1)	-2(1)	8(1)	0(1)	
C(11)	36(1)	29(1)	26(1)	-3(1)	5(1)	3(1)	
C(12)	33(1)	24(1)	27(1)	0(1)	5(1)	-4(1)	
C(13)	26(1)	26(1)	21(1)	3(1)	0(1)	-2(1)	
C(14)	25(1)	34(1)	38(1)	-1(1)	7(1)	-3(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for gbh34ltc. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

10080(20) 8390(20)	5785(9)	30(5)	
8390(20)	0,00()		
	5282(9)	31(5)	
6770(20)	5546(9)	32(5)	
3890(20)	6149(10)	36(5)	
5465(19)	5913(9)	30(5)	
4540(20)	6351(12)	49(6)	
3270(30)	6193(13)	68(7)	
3990(20)	5579(12)	56(6)	
8424(19)	6681(8)	23(4)	
8930(20)	6897(9)	33(5)	
9210(20)	7551(10)	37(5)	
11360(20)	6650(10)	35(5)	
11150(20)	7427(10)	39(5)	
11880(20)	7801(11)	38(5)	
13060(20)	7307(9)	31(5)	
12560(20)	6983(10)	39(5)	
12264(15)	6378(8)	10(3)	
10570(20)	5939(10)	32(5)	
9230(20)	6395(10)	38(5)	
10840(20)	6591(10)	37(5)	
	$\begin{array}{c} 8390(20)\\ 6770(20)\\ 3890(20)\\ 5465(19)\\ 4540(20)\\ 3270(30)\\ 3990(20)\\ 8424(19)\\ 8930(20)\\ 9210(20)\\ 11360(20)\\ 11360(20)\\ 13060(20)\\ 12560(20)\\ 12264(15)\\ 10570(20)\\ 9230(20)\\ 10840(20)\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for gbh34ltc.

O(1)-S(1)-N(1)-C(8)	-48.59(12)
O(2)-S(1)-N(1)-C(8)	-177.20(10)
C(1)-S(1)-N(1)-C(8)	67.58(12)
O(1)-S(1)-C(1)-C(6)	2.42(13)
O(2)-S(1)-C(1)-C(6)	132.31(12)
N(1)-S(1)-C(1)-C(6)	-113.98(12)
O(1)-S(1)-C(1)-C(2)	-176.24(11)
O(2)-S(1)-C(1)-C(2)	-46.35(13)
N(1)-S(1)-C(1)-C(2)	67.36(12)
C(6)-C(1)-C(2)-C(3)	-0.7(2)
S(1)-C(1)-C(2)-C(3)	178.00(11)
C(1)-C(2)-C(3)-C(4)	-0.6(2)
C(2)-C(3)-C(4)-C(5)	1.5(2)
C(2)-C(3)-C(4)-C(7)	-178.24(14)
C(3)-C(4)-C(5)-C(6)	-1.1(2)
C(7)-C(4)-C(5)-C(6)	178.65(14)
C(2)-C(1)-C(6)-C(5)	1.0(2)
S(1)-C(1)-C(6)-C(5)	-177.58(11)
C(4)-C(5)-C(6)-C(1)	-0.2(2)
S(1)-N(1)-C(8)-C(9)	-112.30(12)
S(1)-N(1)-C(8)-C(13)	124.06(11)
N(1)-C(8)-C(9)-C(10)	-69.88(16)
C(13)-C(8)-C(9)-C(10)	51.69(17)
C(8)-C(9)-C(10)-C(11)	-53.52(17)
C(9)-C(10)-C(11)-C(12)	54.81(17)
C(10)-C(11)-C(12)-C(13)	-55.56(18)
C(11)-C(12)-C(13)-F(1)	-59.49(16)
C(11)-C(12)-C(13)-C(14)	-176.26(13)
C(11)-C(12)-C(13)-C(8)	53.84(17)
N(1)-C(8)-C(13)-F(1)	-173.08(11)
C(9)-C(8)-C(13)-F(1)	63.47(15)
N(1)-C(8)-C(13)-C(14)	-57.98(16)
C(9)-C(8)-C(13)-C(14)	178.57(13)
N(1)-C(8)-C(13)-C(12)	71.99(15)
C(9)-C(8)-C(13)-C(12)	-51.46(16)

Table 6. Torsion angles [°] for gbh34ltc.

Table 7. Intermolecular Hydrogen bonds for gbh34ltc $[{\rm \AA}~and~^\circ].$

D-H d(D-H) d(H..A) <DHA d(D..A) A

N1-H1N 0.821 2.142 167.93 2.950 O2 [-x+1, -y+2, -z+1]

X-ray crystallography of 2n. Thermal ellipsoids are shown at 50% probability

10.X-Ray Crystallography Data of (S)-1a

Table 1. Crystal data and structure refinement for gbh38ltd.

Identification code Empirical formula Formula weight Temperature Wavelength	gbh38ltd C10 H14 F N O2 S 231.28 100(4) K 0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 8.2803(3) A b = 5.19337(16) Å a = 12.1224(6) Å	$\alpha = 90^{\circ}.$ $\beta = 104.425(4)^{\circ}.$
Volume 7	c = 13.1224(6) A 546.51(4) Å ³	$\gamma = 90$.
Density (calculated)	1 405 Mg/m ³	
Absorption coefficient F(000) Crystal color, habit	0.290 mm ⁻¹ 244 colorless needle	
Crystal size	0.48 x 0.06 x 0.05 mm ³	
Theta range for data collection Index ranges	3.32 to 27.54°. -10<=h<=10, -6<=k<=6	, -17<=l<=17
Reflections collected Independent reflections Completeness to theta = 27.54°	11615 2456 [R(int) = 0.043] 99 1 %	
Absorption correction Max. and min. transmission	Semi-empirical from eq 1.000 and 0.741	uivalents
Refinement method Data / restraints / parameters	Full-matrix least-square 2456 / 1 / 168	s on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	1.043 R1 = 0.0330, wR2 = 0.0 R1 = 0.0358, wR2 = 0.0 0.00(7)	0680 0693
Largest diff. peak and hole	0.351 and -0.234 e.Å ⁻³	

	Х	у	Z	U(eq)	
S (1)	7352(1)	4017(1)	7535(1)	21(1)	
F(1)	11532(1)	43(3)	9290(1)	$\frac{21(1)}{30(1)}$	
O(1)	7757(2)	7571(3)	7800(1)	27(1)	
O(2)	5782(2)	3885(3)	7620(1)	26(1)	
N(1)	8784(2)	3186(3)	8294(1)	22(1)	
C(1)	7463(2)	4496(3)	6218(1)	20(1)	
C(2)	8320(2)	6260(4)	5748(2)	23(1)	
C(3)	8304(2)	5991(4)	4696(2)	24(1)	
C(4)	7438(2)	3970(4)	4097(2)	22(1)	
C(5)	6644(2)	2174(4)	4594(2)	22(1)	
C(6)	6646(2)	2413(4)	5641(2)	21(1)	
C(7)	7313(3)	3780(4)	2932(2)	29(1)	
C(8)	10531(3)	3982(5)	8495(2)	24(1)	
C(9)	11541(2)	2742(4)	9484(2)	24(1)	
C(10)	13315(2)	3658(5)	9796(2)	33(1)	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for gbh38ltd. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1 4366(14)
S(1)-O(1)	1.4403(15)
S(1)-N(1)	1 6179(16)
S(1)-C(1)	1 7672(19)
F(1)-C(9)	1 424(2)
N(1)-C(8)	1.464(3)
N(1)-H(1N)	0.87(2)
C(1)-C(2)	1.393(3)
C(1)- $C(6)$	1.395(3)
C(2)-C(3)	1.385(3)
C(2)-H(2)	0.97(2)
C(3)-C(4)	1.398(3)
C(3)-H(3)	0.92(2)
C(4)-C(5)	1.394(3)
C(4)-C(7)	1.509(3)
C(5)-C(6)	1.380(3)
C(5)-H(5)	0.93(2)
C(6)-H(6)	0.92(2)
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(9)	1.503(3)
C(8)-H(8A)	0.94(3)
C(8)-H(8B)	0.97(2)
C(9)-C(10)	1.501(3)
C(9)-H(9)	0.99(2)
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
С(10)-Н(10С)	0.9600
O(2) $O(1)$ $O(1)$	110.01(0)
O(2)-S(1)-O(1)	119.91(9)
O(2)-S(1)-IN(1) O(1) S(1) N(1)	100.40(9)
O(1)-S(1)-IN(1) O(2) S(1) C(1)	107.00(9) 107.27(8)
O(2)-S(1)-C(1) O(1) S(1) C(1)	107.37(8) 106.82(0)
V(1)-S(1)-C(1) V(1)-S(1)-C(1)	100.82(9) 108.05(0)
N(1)-S(1)-C(1) C(2) N(1) S(1)	108.93(9) 110.57(14)
C(0) - IN(1) - S(1) C(0) - IN(1) - U(1N)	119.3/(14) 114.6(14)
$C(0) - IN(1) - \Pi(1IN)$ $S(1) - IN(1) - \Pi(1IN)$	114.0(14) 111.1(14)
C(2) - C(1) - C(6)	111.1(14) 120 15(18)
C(2)-C(1)-C(0)	120.13(10) 120.48(14)
C(2)-C(1)-S(1) C(6)-C(1) S(1)	120.40(14) 110 25(15)
C(0)-C(1)-S(1) C(2)-C(2)-C(1)	117.33(13) 110.67(19)
U(3) - U(2) - U(1)	119.0/(10)

Table 3. Bond lengths [A	A] and angles [°] for	gbh38ltd.
--------------------------	-----------------------	-----------

C(3)-C(2)-H(2)	119.9(14)
C(1)-C(2)-H(2)	120.3(13)
C(2)-C(3)-C(4)	120.87(19)
C(2)-C(3)-H(3)	118.8(14)
C(4)-C(3)-H(3)	120.3(14)
C(5)-C(4)-C(3)	118.37(19)
C(5)-C(4)-C(7)	120.60(18)
C(3)-C(4)-C(7)	121.00(19)
C(6)-C(5)-C(4)	121.50(19)
C(6)-C(5)-H(5)	119.0(12)
C(4)-C(5)-H(5)	119.4(12)
C(5)-C(6)-C(1)	119.35(19)
C(5)-C(6)-H(6)	118.3(13)
C(1)-C(6)-H(6)	122.3(13)
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
N(1)-C(8)-C(9)	110.31(18)
N(1)-C(8)-H(8A)	110.1(14)
C(9)-C(8)-H(8A)	106.5(14)
N(1)-C(8)-H(8B)	111.6(13)
C(9)-C(8)-H(8B)	108.3(13)
H(8A)-C(8)-H(8B)	110(2)
F(1)-C(9)-C(10)	108.78(17)
F(1)-C(9)-C(8)	106.84(16)
C(10)-C(9)-C(8)	113.33(18)
F(1)-C(9)-H(9)	106.3(12)
C(10)-C(9)-H(9)	109.5(11)
C(8)-C(9)-H(9)	111.7(11)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5

	U11	U22	U33	U23	U13	U12	
$\overline{\mathbf{S}(1)}$	22(1)	16(1)	22(1)	1(1)	2(1)	1(1)	
S(1) = F(1)	25(1) 36(1)	10(1) 18(1)	22(1) 35(1)	-1(1)	$\frac{3(1)}{4(1)}$	$\frac{1(1)}{2(1)}$	
$\Omega(1)$	30(1) 34(1)	10(1)	26(1)	-2(1)	4(1) 5(1)	$\frac{2(1)}{3(1)}$	
O(1)	23(1)	$\frac{19(1)}{28(1)}$	28(1)	-2(1) -1(1)	$\frac{3(1)}{7(1)}$	0(1)	
N(1)	23(1)	15(1)	24(1)	2(1)	0(1)	-2(1)	
C(1)	18(1)	17(1)	22(1)	2(1)	1(1)	4(1)	
C(2)	20(1)	16(1)	30(1)	-1(1)	2(1)	-1(1)	
C(3)	22(1)	19(1)	32(1)	4(1)	8(1)	0(1)	
C(4)	18(1)	22(1)	27(1)	1(1)	4(1)	6(1)	
C(5)	19(1)	17(1)	28(1)	-3(1)	1(1)	1(1)	
C(6)	19(1)	15(1)	29(1)	0(1)	5(1)	0(1)	
C(7)	30(1)	29(1)	28(1)	-2(1)	8(1)	3(1)	
C(8)	24(1)	18(1)	29(1)	0(1)	5(1)	-2(1)	
C(9)	27(1)	21(1)	25(1)	-1(1)	7(1)	0(1)	
C(10)	24(1)	33(1)	39(1)	0(1)	3(1)	1(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for gbh38ltd. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)	
H(1N)	8610(20)	1550(50)	8162(16)	20(6)	
H(2)	8880(30)	7730(50)	6146(17)	20(0)	
H(3)	8840(30)	7210(40)	4387(18)	30(6)	
H(5)	6160(20)	730(40)	4226(15)	13(5)	
H(6)	6090(20)	1180(50)	5934(16)	22(5)	
H(7A)	8377	4168	2801	43	
H(7B)	6497	4984	2561	43	
H(7C)	6987	2065	2694	43	
H(8A)	10620(30)	5780(50)	8606(18)	28	
H(8B)	11010(30)	3500(40)	7919(18)	28	
H(9)	11020(20)	2980(40)	10078(16)	18(5)	
H(10A)	13818	3429	9218	49	
H(10B)	13923	2683	10390	49	
H(10C)	13339	5450	9980	49	

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for gbh38ltd.

Table 6. Torsion angles [°] for gbh38ltd.

O(2)-S(1)-N(1)-C(8)	-171.39(16)
O(1)-S(1)-N(1)-C(8)	-42.04(19)
C(1)-S(1)-N(1)-C(8)	73.11(18)
O(2)-S(1)-C(1)-C(2)	148.22(15)
O(1)-S(1)-C(1)-C(2)	18.40(17)
N(1)-S(1)-C(1)-C(2)	-96.87(16)
O(2)-S(1)-C(1)-C(6)	-30.05(16)
O(1)-S(1)-C(1)-C(6)	-159.87(14)
N(1)-S(1)-C(1)-C(6)	84.86(16)
C(6)-C(1)-C(2)-C(3)	2.4(3)
S(1)-C(1)-C(2)-C(3)	-175.84(14)
C(1)-C(2)-C(3)-C(4)	0.0(3)
C(2)-C(3)-C(4)-C(5)	-2.4(3)
C(2)-C(3)-C(4)-C(7)	175.52(18)
C(3)-C(4)-C(5)-C(6)	2.5(3)
C(7)-C(4)-C(5)-C(6)	-175.43(18)
C(4)-C(5)-C(6)-C(1)	-0.2(3)
C(2)-C(1)-C(6)-C(5)	-2.3(3)
S(1)-C(1)-C(6)-C(5)	175.95(14)
S(1)-N(1)-C(8)-C(9)	159.39(15)
N(1)-C(8)-C(9)-F(1)	65.6(2)
N(1)-C(8)-C(9)-C(10)	-174.66(19)

Symmetry transformations used to generate equivalent atoms:

X-ray crystallography of (S)-1a. Thermal ellipsoids are shown at 50% probability

11.X-Ray Crystallography Data of (S)-1d (CCDC 1490053)

Table 1. Crystal data and structure refiner	nent for gbh36lta.			
Identification code	gbh36lta			
Empirical formula	C16 H17 N O2 S			
Formula weight	287.37			
Temperature	100.5(6) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 2 ₁			
Unit cell dimensions	a = 7.3082(2) Å	<i>α</i> = 90°.		
	b = 12.6670(4) Å	$\beta = 102.802(3)^{\circ}$.		
	c = 7.9739(3) Å	$\gamma = 90^{\circ}$.		
Volume	719.82(4) Å ³			
Ζ	2			
Density (calculated)	1.326 Mg/m ³			
Absorption coefficient	0.225 mm ⁻¹			
F(000)	304			
Crystal color, habit	colorless plate			
Crystal size	0.38 x 0.28 x 0.10 mm ³			
Theta range for data collection	3.28 to 28.16°.			
Index ranges	-9<=h<=9, -16<=k<=16, -	·10<=l<=10		
Reflections collected	17424			
Independent reflections	3518 [R(int) = 0.034]			
Completeness to theta = 28.16°	99.8 %			
Absorption correction	multi-scan			
Max. and min. transmission	1.000 and 0.928			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	3518 / 1 / 238			
Goodness-of-fit on F ²	1.019			
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.025, wR2 = 0.058			
R indices (all data)	R1 = 0.026, $wR2 = 0.058$			
Absolute structure parameter	-0.03(4)			
Largest diff. peak and hole	0.291 and -0.195 e.Å ⁻³			
11061(1)	3397(1)			
----------	--	--	--	--
11404(0)	5577(1)	3463(1)	19(1)	
11424(2)	2535(1)	4661(1)	29(1)	
12605(1)	4069(1)	3308(1)	25(1)	
9300(2)	4075(1)	3949(1)	18(1)	
9981(2)	2935(1)	1406(2)	17(1)	
8764(2)	2079(1)	1242(2)	21(1)	
7874(2)	1746(1)	-386(2)	22(1)	
8166(2)	2257(1)	-1853(2)	20(1)	
9432(2)	3096(1)	-1645(2)	20(1)	
10337(2)	3445(1)	-23(2)	18(1)	
7100(2)	1951(1)	-3623(2)	27(1)	
9856(2)	5001(1)	5117(2)	22(1)	
9055(2)	5177(1)	3275(2)	18(1)	
7047(2)	5512(1)	2622(2)	22(1)	
6351(2)	5249(1)	741(2)	19(1)	
6710(2)	5936(1)	-509(2)	23(1)	
6107(2)	5702(1)	-2247(2)	26(1)	
5135(2)	4774(1)	-2748(2)	26(1)	
4775(2)	4086(1)	-1510(2)	26(1)	
5385(2)	4315(1)	226(2)	22(1)	
	11424(2) $12605(1)$ $9300(2)$ $9981(2)$ $8764(2)$ $7874(2)$ $8166(2)$ $9432(2)$ $10337(2)$ $7100(2)$ $9856(2)$ $9055(2)$ $7047(2)$ $6351(2)$ $6710(2)$ $5135(2)$ $4775(2)$ $5385(2)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for gbh36lta. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.4361(11)
S(1)-O(2)	1.4409(11)
S(1)-N(1)	1.6633(11)
S(1)-C(1)	1.7552(13)
N(1)-C(9)	1.4917(17)
N(1)-C(8)	1.4968(18)
C(1)-C(6)	1.3840(18)
C(1)-C(2)	1.3897(18)
C(2)-C(3)	1.383(2)
C(2)-H(2)	0.989(18)
C(3)-C(4)	1.395(2)
C(3)-H(3)	0.924(19)
C(4)-C(5)	1.3940(18)
C(4)-C(7)	1.5044(19)
C(5)-C(6)	1.3882(17)
C(5)-H(5)	0.930(17)
C(6)-H(6)	0.946(16)
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(9)	1.4724(19)
C(8)-H(8A)	0.930(18)
C(8)-H(8B)	0.921(17)
C(9)-C(10)	1.5056(18)
C(9)-H(9)	0.923(15)
C(10)-C(11)	1.5103(18)
C(10)-H(10A)	0.963(17)
C(10)-H(10B)	0.958(18)
C(11)-C(12)	1.391(2)
C(11)-C(16)	1.3924(19)
C(12)-C(13)	1.390(2)
C(12)-H(12)	0.968(18)
C(13)-C(14)	1.385(2)
C(13)-H(13)	0.98(2)
C(14)-C(15)	1.386(2)
C(14)-H(14)	0.926(17)
C(15)-C(16)	1.387(2)
C(15)-H(15)	0.97(2)
C(16)-H(16)	0.970(18)
O(1)-S(1)-O(2)	118.27(7)
O(1)-S(1)-N(1)	106.04(6)
O(2)-S(1)-N(1)	112.07(6)
O(1)-S(1)-C(1)	110.29(7)

Table 3. Bond lengths [Å] and angles [°] for gbh36lta.

O(2)-S(1)-C(1)	108.37(6)
N(1)-S(1)-C(1)	100.32(6)
C(9)-N(1)-C(8)	59.03(8)
C(9)-N(1)-S(1)	115.89(9)
C(8)-N(1)-S(1)	115.62(9)
C(6)-C(1)-C(2)	121.31(12)
C(6)-C(1)-S(1)	119.09(10)
C(2)-C(1)-S(1)	119.59(10)
C(3)-C(2)-C(1)	118.99(12)
C(3)-C(2)-H(2)	120.5(10)
C(1)-C(2)-H(2)	120.4(10)
C(2)-C(3)-C(4)	121.19(13)
C(2)-C(3)-H(3)	118.9(11)
C(4)-C(3)-H(3)	119.9(11)
C(5)-C(4)-C(3)	118.39(12)
C(5)-C(4)-C(7)	120.03(13)
C(3)-C(4)-C(7)	121 54(13)
C(6)-C(5)-C(4)	121.31(13)
C(6)-C(5)-H(5)	119 7(11)
C(4)-C(5)-H(5)	119 0(11)
C(1)-C(6)-C(5)	118 77(13)
C(1)- $C(6)$ - $H(6)$	119 7(9)
C(5)-C(6)-H(6)	121.5(9)
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(9)-C(8)-N(1)	60.31(8)
C(9)-C(8)-H(8A)	119.8(11)
N(1)-C(8)-H(8A)	114.0(11)
C(9)-C(8)-H(8B)	119.5(11)
N(1)-C(8)-H(8B)	117.0(11)
H(8A)-C(8)-H(8B)	114.7(15)
C(8)-C(9)-N(1)	60.66(9)
C(8)-C(9)-C(10)	121.96(12)
N(1)-C(9)-C(10)	114.73(11)
C(8)-C(9)-H(9)	117.6(9)
N(1)-C(9)-H(9)	115.6(10)
C(10)-C(9)-H(9)	114.8(9)
C(9)-C(10)-C(11)	111.67(11)
C(9)-C(10)-H(10A)	107.6(9)
C(11)-C(10)-H(10A)	111.6(9)
C(9)-C(10)-H(10B)	109.1(10)
C(11)-C(10)-H(10B)	108.6(10)

H(10A)-C(10)-H(10B)	108.1(14)
C(12)-C(11)-C(16)	118.90(13)
C(12)-C(11)-C(10)	119.93(13)
C(16)-C(11)-C(10)	121.15(12)
C(13)-C(12)-C(11)	120.89(13)
C(13)-C(12)-H(12)	119.8(10)
C(11)-C(12)-H(12)	119.2(10)
C(14)-C(13)-C(12)	119.83(14)
C(14)-C(13)-H(13)	119.7(12)
C(12)-C(13)-H(13)	120.5(12)
C(13)-C(14)-C(15)	119.60(14)
C(13)-C(14)-H(14)	119.7(11)
C(15)-C(14)-H(14)	120.7(11)
C(14)-C(15)-C(16)	120.65(14)
C(14)-C(15)-H(15)	120.6(11)
C(16)-C(15)-H(15)	118.8(11)
C(15)-C(16)-C(11)	120.12(13)
C(15)-C(16)-H(16)	121.5(10)
C(11)-C(16)-H(16)	118.4(10)

	U11	U22	U33	U23	U13	U12	
S (1)	19(1)	22(1)	15(1)	-1(1)	3(1)	4(1)	
O(1)	37(1)	30(1)	19(1)	4(1)	5(1)	12(1)	
O(2)	17(1)	36(1)	22(1)	-8(1)	2(1)	-1(1)	
N(1)	21(1)	18(1)	17(1)	0(1)	6(1)	3(1)	
C(1)	18(1)	17(1)	15(1)	-2(1)	4(1)	3(1)	
C(2)	22(1)	20(1)	23(1)	3(1)	10(1)	-1(1)	
C(3)	19(1)	18(1)	31(1)	-1(1)	9(1)	-4(1)	
C(4)	16(1)	21(1)	22(1)	-4(1)	4(1)	2(1)	
C(5)	23(1)	21(1)	18(1)	2(1)	6(1)	-1(1)	
C(6)	19(1)	17(1)	20(1)	0(1)	6(1)	-1(1)	
C(7)	24(1)	29(1)	25(1)	-7(1)	1(1)	-1(1)	
C(8)	25(1)	22(1)	18(1)	-3(1)	5(1)	3(1)	
C(9)	20(1)	17(1)	18(1)	0(1)	4(1)	0(1)	
C(10)	22(1)	23(1)	21(1)	-2(1)	5(1)	5(1)	
C(11)	13(1)	22(1)	22(1)	0(1)	4(1)	4(1)	
C(12)	18(1)	22(1)	28(1)	2(1)	4(1)	0(1)	
C(13)	23(1)	32(1)	23(1)	8(1)	5(1)	3(1)	
C(14)	18(1)	39(1)	20(1)	-2(1)	-1(1)	4(1)	
C(15)	16(1)	27(1)	32(1)	-7(1)	3(1)	-2(1)	
C(16)	18(1)	22(1)	29(1)	3(1)	8(1)	2(1)	
. /	~ /				~ /	~ /	

Table 4. Anisotropic displacement parameters (Å²x 10³) for gbh36lta. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	х	У	Z	U(eq)	
H(2)	8490(20)	1738(15)	2270(20)	24(4)	
H(3)	7060(20)	1181(15)	-490(20)	25(5)	
H(5)	9690(20)	3414(15)	-2620(20)	25(4)	
H(6)	11200(20)	4013(13)	122(19)	17(4)	
H(7A)	6807	1211	-3641	40	
H(7B)	7853	2094	-4442	40	
H(7C)	5958	2351	-3916	40	
H(8A)	9110(30)	5097(14)	5910(20)	26(4)	
H(8B)	11120(20)	5105(13)	5550(20)	24(4)	
H(9)	9860(20)	5381(12)	2596(19)	11(3)	
H(10A)	6310(20)	5170(13)	3320(20)	18(4)	
H(10B)	6950(20)	6259(14)	2770(20)	23(4)	
H(12)	7330(20)	6601(14)	-160(20)	27(4)	
H(13)	6340(30)	6196(16)	-3120(30)	38(5)	
H(14)	4780(20)	4607(13)	-3910(20)	23(4)	
H(15)	4090(30)	3439(18)	-1840(20)	40(5)	
H(16)	5150(20)	3838(14)	1110(20)	28(4)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for gbh36lta.

O(1)-S(1)-N(1)-C(9)	161.44(9)
O(2)-S(1)-N(1)-C(9)	31.03(11)
C(1)-S(1)-N(1)-C(9)	-83.77(10)
O(1)-S(1)-N(1)-C(8)	95.12(10)
O(2)-S(1)-N(1)-C(8)	-35.30(11)
C(1)-S(1)-N(1)-C(8)	-150.10(10)
O(1)-S(1)-C(1)-C(6)	-147.78(10)
O(2)-S(1)-C(1)-C(6)	-16.87(12)
N(1)-S(1)-C(1)-C(6)	100.70(11)
O(1)-S(1)-C(1)-C(2)	33.38(12)
O(2)-S(1)-C(1)-C(2)	164.29(10)
N(1)-S(1)-C(1)-C(2)	-78.14(11)
C(6)-C(1)-C(2)-C(3)	-1.01(19)
S(1)-C(1)-C(2)-C(3)	177.81(11)
C(1)-C(2)-C(3)-C(4)	-0.5(2)
C(2)-C(3)-C(4)-C(5)	2.1(2)
C(2)-C(3)-C(4)-C(7)	-175.53(13)
C(3)-C(4)-C(5)-C(6)	-2.31(19)
C(7)-C(4)-C(5)-C(6)	175.37(13)
C(2)-C(1)-C(6)-C(5)	0.82(19)
S(1)-C(1)-C(6)-C(5)	-178.01(10)
C(4)-C(5)-C(6)-C(1)	0.88(19)
S(1)-N(1)-C(8)-C(9)	106.08(10)
N(1)-C(8)-C(9)-C(10)	102.41(14)
S(1)-N(1)-C(9)-C(8)	-105.62(11)
C(8)-N(1)-C(9)-C(10)	-114.18(13)
S(1)-N(1)-C(9)-C(10)	140.20(10)
C(8)-C(9)-C(10)-C(11)	-158.53(13)
N(1)-C(9)-C(10)-C(11)	-88.93(14)
C(9)-C(10)-C(11)-C(12)	-84.00(16)
C(9)-C(10)-C(11)-C(16)	94.55(15)
C(16)-C(11)-C(12)-C(13)	0.5(2)
C(10)-C(11)-C(12)-C(13)	179.04(13)
C(11)-C(12)-C(13)-C(14)	0.0(2)
C(12)-C(13)-C(14)-C(15)	-0.1(2)
C(13)-C(14)-C(15)-C(16)	-0.3(2)
C(14)-C(15)-C(16)-C(11)	0.8(2)
C(12)-C(11)-C(16)-C(15)	-0.82(19)
C(10)-C(11)-C(16)-C(15)	-179.39(12)

Table 6. Torsion angles [°] for gbh36lta.

X-ray crystallography of (S)-1d. Thermal ellipsoids are shown at 50% probability

12.X-Ray Crystallography Data of (S)-2d (CCDC 1490052)

Table 1. Crystal data and structure refinem	ent for gbh35lta.	
Identification code	gbh35lta	
Empirical formula	C16 H18 F N O2 S	
Formula weight	307.37	
Temperature	99.9(1) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 8.2947(3) Å	α= 90°.
	b = 9.5293(2) Å	β= 90°.
	c = 18.8749(4) Å	$\gamma = 90^{\circ}$.
Volume	1491.92(7) Å ³	
Ζ	4	
Density (calculated)	1.368 Mg/m ³	
Absorption coefficient	0.231 mm ⁻¹	
F(000)	648	
Crystal color, habit	colorless prism	
Crystal size	0.30 x 0.18 x 0.15 mm ³	
Theta range for data collection	3.26 to 28.06°.	
Index ranges	-10<=h<=10, -12<=k<=12	2, -24<=l<=24
Reflections collected	16718	
Independent reflections	3614 [R(int) = 0.046]	
Completeness to theta = 28.06°	99.8 %	
Absorption correction	multi-scan	
Max. and min. transmission	1.000 and 0.845	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3614 / 0 / 248	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0341, $wR2 = 0.073$	33
R indices (all data)	R1 = 0.0379, wR2 = 0.075	52
Absolute structure parameter	-0.04(6)	
Largest diff. peak and hole	0.376 and -0.320 e.Å ⁻³	

	Х	у	Z	U(eq)	
S(1)	4248(1)	5944(1)	2400(1)	17(1)	
F(1)	8675(1)	5418(1)	3467(1)	25(1)	
O(1)	4153(2)	7312(1)	2720(1)	22(1)	
O(2)	3118(2)	4889(1)	2618(1)	22(1)	
N(1)	6013(2)	5327(2)	2545(1)	19(1)	
C(1)	4047(2)	6189(2)	1476(1)	16(1)	
C(2)	3096(2)	7292(2)	1234(1)	19(1)	
C(3)	2836(3)	7433(2)	509(1)	22(1)	
C(4)	3522(2)	6500(2)	28(1)	21(1)	
C(5)	4477(2)	5416(2)	283(1)	20(1)	
C(6)	4741(2)	5248(2)	1007(1)	20(1)	
C(7)	3214(3)	6680(2)	-756(1)	29(1)	
C(8)	7444(2)	6184(2)	2411(1)	19(1)	
C(9)	8236(2)	6643(2)	3092(1)	18(1)	
C(10)	9741(2)	7518(2)	2981(1)	21(1)	
C(11)	10404(2)	8068(2)	3675(1)	19(1)	
C(12)	11608(2)	7355(2)	4036(1)	22(1)	
C(13)	12140(3)	7816(2)	4694(1)	25(1)	
$\dot{C(14)}$	11471(2)	9000(2)	4997(1)	25(1)	
C(15)	10293(2)	9737(2)	4637(1)	24(1)	
C(16)	9764(2)	9276(2)	3980(1)	22(1)	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for gbh35lta. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

<u>S(1)-O(2)</u>	1.4345(13)
S(1)-O(1)	1.4388(12)
S(1)-N(1)	1.6012(15)
S(1)-C(1)	1.7683(16)
F(1)-C(9)	1.413(2)
N(1)-C(8)	1.463(2)
N(1)-H(1N)	0.815(19)
C(1)-C(6)	1.386(2)
C(1)-C(2)	1.391(2)
C(2)-C(3)	1.392(2)
C(2)-H(2)	0.94(2)
C(3)-C(4)	1.392(3)
C(3)-H(3)	0.94(2)
C(4) - C(5)	1.388(3)
C(4) - C(7)	1.513(3)
C(5)-C(6)	1.392(3)
C(5)-H(5)	0.96(2)
C(6)-H(6)	0.95(2)
C(7)-H(7C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(8)-C(9)	1.508(2)
C(8)-H(8A)	0.97(2)
C(8)-H(8B)	0.94(2)
C(9)-C(10)	1.516(3)
C(9)-H(9)	1.03(2)
C(10)-C(11)	1.515(2)
C(10)-H(10A)	0.94(2)
C(10)-H(10B)	0.95(2)
C(11)-C(12)	1.386(3)
C(11)-C(16)	1.392(3)
C(12)-C(13)	1.391(3)
C(12)-H(12)	0.93(2)
C(13)-C(14)	1.381(3)
C(13)-H(13)	0.95(2)
C(14)-C(15)	1.383(3)
C(14)-H(14)	0.98(2)
C(15)-C(16)	1.387(3)
C(15)-H(15)	0.92(2)
C(16)-H(16)	0.93(2)
O(2)-S(1)-O(1)	118.60(8)
O(2)-S(1)-N(1)	106.96(8)
O(1)-S(1)-N(1)	108.12(8)

Table 3. Bond lengths [Å] and angles [°] for gbh35lta.

O(2)-S(1)-C(1)	108.31(8)
O(1)-S(1)-C(1)	106.75(7)
N(1)-S(1)-C(1)	107.67(8)
C(8)-N(1)-S(1)	120.50(12)
C(8)-N(1)-H(1N)	119.8(14)
S(1)-N(1)-H(1N)	112.7(14)
C(6)-C(1)-C(2)	120.97(15)
C(6)-C(1)-S(1)	120.39(13)
C(2)-C(1)-S(1)	118.51(13)
C(1)-C(2)-C(3)	118.91(17)
C(1)-C(2)-H(2)	119.2(12)
C(3)-C(2)-H(2)	121.9(12)
C(4)-C(3)-C(2)	121.05(18)
C(4)-C(3)-H(3)	121.3(12)
C(2)-C(3)-H(3)	117.6(12)
C(5)-C(4)-C(3)	118.88(17)
C(5)-C(4)-C(7)	121.34(17)
C(3)-C(4)-C(7)	119.78(17)
C(4)-C(5)-C(6)	121 01(17)
C(4)- $C(5)$ - $H(5)$	122 0(13)
C(6)-C(5)-H(5)	117.0(13)
C(1)-C(6)-C(5)	119.17(17)
C(1)-C(6)-H(6)	121.6(12)
C(5)-C(6)-H(6)	119.1(12)
C(4)-C(7)-H(7C)	109.5
C(4)-C(7)-H(7A)	109.5
H(7C)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7C)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
N(1)-C(8)-C(9)	111.60(15)
N(1)-C(8)-H(8A)	109.4(13)
C(9)-C(8)-H(8A)	107.3(12)
N(1)-C(8)-H(8B)	108.0(13)
C(9)-C(8)-H(8B)	112.2(13)
H(8A)-C(8)-H(8B)	108.4(18)
F(1)-C(9)-C(8)	107.36(14)
F(1)-C(9)-C(10)	108.17(14)
C(8)-C(9)-C(10)	113.60(15)
F(1)-C(9)-H(9)	106.2(11)
C(8)-C(9)-H(9)	109.9(12)
C(10)-C(9)-H(9)	111.3(12)
C(11)-C(10)-C(9)	111.67(15)
C(11)-C(10)-H(10A)	110.8(12)
C(9)-C(10)-H(10A)	106.4(13)
C(11)-C(10)-H(10B)	111.1(12)

C(9)-C(10)-H(10B)	106.8(12)
H(10A)-C(10)-H(10B)	109.9(17)
C(12)-C(11)-C(16)	118.54(17)
C(12)-C(11)-C(10)	121.11(17)
C(16)-C(11)-C(10)	120.29(17)
C(11)-C(12)-C(13)	120.82(18)
C(11)-C(12)-H(12)	120.1(14)
C(13)-C(12)-H(12)	119.0(14)
C(14)-C(13)-C(12)	120.06(19)
C(14)-C(13)-H(13)	123.0(14)
C(12)-C(13)-H(13)	116.9(14)
C(13)-C(14)-C(15)	119.70(18)
C(13)-C(14)-H(14)	119.3(13)
C(15)-C(14)-H(14)	121.0(13)
C(14)-C(15)-C(16)	120.17(19)
C(14)-C(15)-H(15)	120.0(14)
C(16)-C(15)-H(15)	119.8(14)
C(15)-C(16)-C(11)	120.68(18)
C(15)-C(16)-H(16)	119.1(14)
C(11)-C(16)-H(16)	120.1(14)

	U11	U22	U33	U23	U13	U12	
S (1)	18(1)	15(1)	17(1)	0(1)	0(1)	-1(1)	
F(1)	26(1)	24(1)	26(1)	8(1)	-5(1)	-2(1)	
O(1)	26(1)	18(1)	21(1)	0(1)	1(1)	0(1)	
O(2)	23(1)	21(1)	24(1)	1(1)	2(1)	-4(1)	
N(1)	19(1)	15(1)	22(1)	0(1)	-4(1)	0(1)	
C(1)	14(1)	17(1)	17(1)	1(1)	-2(1)	-4(1)	
C(2)	20(1)	14(1)	23(1)	-1(1)	0(1)	0(1)	
C(3)	22(1)	18(1)	25(1)	4(1)	-5(1)	0(1)	
C(4)	19(1)	22(1)	21(1)	2(1)	-2(1)	-6(1)	
C(5)	18(1)	22(1)	22(1)	-6(1)	2(1)	-1(1)	
C(6)	17(1)	18(1)	24(1)	0(1)	-3(1)	0(1)	
C(7)	35(1)	29(1)	22(1)	1(1)	-6(1)	-1(1)	
C(8)	18(1)	22(1)	18(1)	2(1)	1(1)	0(1)	
C(9)	17(1)	18(1)	20(1)	2(1)	0(1)	0(1)	
C(10)	18(1)	24(1)	21(1)	3(1)	1(1)	0(1)	
C(11)	14(1)	20(1)	23(1)	4(1)	2(1)	-5(1)	
C(12)	20(1)	18(1)	28(1)	4(1)	0(1)	0(1)	
C(13)	22(1)	23(1)	31(1)	8(1)	-5(1)	-2(1)	
C(14)	24(1)	25(1)	25(1)	2(1)	-4(1)	-9(1)	
C(15)	20(1)	21(1)	31(1)	-3(1)	2(1)	-2(1)	
C(16)	15(1)	22(1)	30(1)	3(1)	-2(1)	0(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for gbh35lta. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)	
H(1N)	6060(20)	4480(20)	2495(10)	16(5)	
H(2)	2660(20)	7920(20)	1562(10)	15(5)	
H(3)	2200(30)	8190(20)	356(10)	16(5)	
H(5)	4980(30)	4740(20)	-28(12)	26(6)	
H(6)	5360(20)	4480(20)	1166(10)	19(5)	
H(7C)	4030	6193	-1020	43	
H(7A)	3241	7660	-874	43	
H(7B)	2174	6302	-873	43	
H(8A)	7130(30)	7020(20)	2157(11)	23	
H(8B)	8140(30)	5660(20)	2124(11)	23	
H(9)	7410(30)	7160(20)	3406(11)	22	
H(10A)	9440(20)	8260(20)	2682(11)	21(5)	
H(10B)	10510(30)	6930(20)	2747(11)	21(5)	
H(12)	12050(30)	6540(20)	3846(12)	32(6)	
H(13)	12980(30)	7290(20)	4911(12)	30(6)	
H(14)	11870(30)	9320(20)	5461(11)	22(5)	
H(15)	9830(30)	10510(20)	4841(12)	30(6)	
H(16)	8940(30)	9760(20)	3753(12)	30(6)	

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for gbh35lta.

O(2)-S(1)-N(1)-C(8)	-176.88(13)
O(1)-S(1)-N(1)-C(8)	-48.10(15)
C(1)-S(1)-N(1)-C(8)	66.90(14)
O(2)-S(1)-C(1)-C(6)	-78.93(16)
O(1)-S(1)-C(1)-C(6)	152.30(15)
N(1)-S(1)-C(1)-C(6)	36.41(16)
O(2)-S(1)-C(1)-C(2)	97.04(15)
O(1)-S(1)-C(1)-C(2)	-31.74(16)
N(1)-S(1)-C(1)-C(2)	-147.63(14)
C(6)-C(1)-C(2)-C(3)	0.5(3)
S(1)-C(1)-C(2)-C(3)	-175.41(15)
C(1)-C(2)-C(3)-C(4)	-0.6(3)
C(2)-C(3)-C(4)-C(5)	0.1(3)
C(2)-C(3)-C(4)-C(7)	179.89(18)
C(3)-C(4)-C(5)-C(6)	0.5(3)
C(7)-C(4)-C(5)-C(6)	-179.32(18)
C(2)-C(1)-C(6)-C(5)	0.0(3)
S(1)-C(1)-C(6)-C(5)	175.89(14)
C(4)-C(5)-C(6)-C(1)	-0.5(3)
S(1)-N(1)-C(8)-C(9)	108.21(15)
N(1)-C(8)-C(9)-F(1)	59.62(18)
N(1)-C(8)-C(9)-C(10)	179.17(15)
F(1)-C(9)-C(10)-C(11)	-66.22(19)
C(8)-C(9)-C(10)-C(11)	174.69(15)
C(9)-C(10)-C(11)-C(12)	94.7(2)
C(9)-C(10)-C(11)-C(16)	-82.6(2)
C(16)-C(11)-C(12)-C(13)	1.5(3)
C(10)-C(11)-C(12)-C(13)	-175.91(18)
C(11)-C(12)-C(13)-C(14)	-0.1(3)
C(12)-C(13)-C(14)-C(15)	-1.2(3)
C(13)-C(14)-C(15)-C(16)	1.2(3)
C(14)-C(15)-C(16)-C(11)	0.2(3)
C(12)-C(11)-C(16)-C(15)	-1.5(3)
C(10)-C(11)-C(16)-C(15)	175.90(17)

Table 6. Torsion angles [°] for gbh35lta.

Table 7. Intermolecular Hydrogen bonds for gbh35lta [Å and °].

D-H d(D-H) d(H..A) <DHA d(D..A) A

N1-H1N 0.815 2.111 171.41 2.920 O1 [-x+1, y-1/2, -z+1/2]

X-ray crystallography of (S)-2d. Thermal ellipsoids are shown at 50% probability

13.References

- [1] K. L. Jensen, E. A. Standley, T. F. Jamison, J. Am. Chem. Soc. **2014**, 136, 11145-11152.
- [2] S. Minakata, Y. Morino, Y. Oderaotoshi, M. Komatsu, *Chem. Commun.* **2006**, 3337-3339.
- [3] Y. Cui, C. He, J. Am. Chem. Soc. 2003, 125, 16202-16203.
- [4] L. Maestre, W. M. C. Sameera, M. M. Díaz-Requejo, F. Maseras, P. J. Pérez, J. Am. Chem. Soc. 2013, 135, 1338-1348.
- [5] J. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am. Chem. Soc. **1998**, 120, 6844-6845.
- [6] G.-Y. Gao, J. D. Harden, X. P. Zhang, *Org. Lett.* **2005**, *7*, 3191-3193.
- [7] A. McGhee, B. M. Cochran, T. A. Stenmark, F. E. Michael, *Chem. Commun.* **2013**, *49*, 6800-6802.
- [8] A. Martin, K. Casto, W. Morris, J. B. Morgan, Org. Lett. 2011, 13, 5444-5447.
- [9] W. Chamchaang, A. R. Pinhas, J. Org. Chem. **1990**, 55, 2943-2950.
- [10] C.-H. Ding, L.-X. Dai, X.-L. Hou, Synlett **2004**, 2218-2220.
- [11] R.-H. Fan, Y.-G. Zhou, W.-X. Zhang, X.-L. Hou, L.-X. Dai, J. Org. Chem. 2004, 69, 335-338.
- [12] N. Vasdev, E. M. van Oosten, K. A. Stephenson, N. Zadikian, A. K. Yudin, A. J. Lough, S. Houle, A. A. Wilson, *Tetrahedron Lett.* **2009**, *50*, 544-547.