Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Synergistic Luminescence Enhancement of a Pyridyl-substituted Triarylmethyl Radical Based on Fluorine Substitution and Coordination to Gold

Yohei Hattori,^a Tetsuro Kusamoto,^{*a} Tohru Sato,^b and Hiroshi Nishihara^{*a}

^aDepartment of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ^bDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.

Contents

Materials and methods	S2
Table S1 Crystallographic data	S5
Table S2 Summary of absorption and emission	S 6
Fig. S1 ESR spectra	S 7
Fig. S2 Absorption and emission spectra of [Au ^I (Br ₂ PyBTM)PPh ₃]BF ₄	S 8
Fig. S3 Comparison between D_1 and Q_1 states	S 8
Fig. S4 Photostability	S 9
Cartesian coordinates of all the optimized geometries by DFT calculations	S10
Abstracted results of TD-DFT calculations	S12
Calculated hyperfine coupling constants by DFT calculations	S17

Synthesis of [Au^I(F₂PyBTM)PPh₃]BF₄

 $[Au^{I}(F_{2}PyBTM)PPh_{3}]BF_{4}$ was synthesized by similar method to $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$ utilizing modified literature procedure.^[1] Under an nitrogen atmosphere, chloro(triphenylphosphine)gold(I) (24.9 mg, 0.0503 mmol) was dissolved in dry THF (2 mL) and silver tetrafluoroborate (ca. 20 mg, 0.1 mmol) was added at 0°C, stirred for 15 min, and filtered. The filtrate was added to a solution of F₂PyBTM (25.0 mg, 0.0513 mmol) in THF (2 mL), and stirred at room temperature for 30 min, and then evaporated. Red powder was precipitated from dichloromethane -diethyl ether (-30 °C), washed with diethyl ether, and dried in vacuo to afford $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$ (25.8 mg, 0.0250 mmol, 50% yield). **ESI-TOF-MS** m/z: $[Au^{I}(F_{2}PyBTM)PPh_{3}]^{+}$ Calcd for C₃₆H₂₁NAuCl₆F₂P 974.9177; Found 974.9055.

Synthesis of [Au^I(F₂PyBTM)PPh₃]ClO₄

 $[Au^{I}(F_{2}PyBTM)PPh_{3}]ClO_{4}$ was synthesized by a similar method to $[Au^{I}(PyBTM)PPh_{3}]ClO_{4}$ according to the literature procedure.^[1] Under an nitrogen atmosphere, chloro(triphenylphosphine)gold(I) (7.4 mg, 0.015 mmol) was dissolved in dry THF (2 mL) and silver perchlorate (**Caution: perchlorate salts are potentially explosive**, 5 mg, 0.025 mmol) was added at 0°C, stirred for 15 min, and filtered. The filtrate was added to a solution of F₂PyBTM (7.5 mg, 0.015 mmol) in THF (2 mL), and stirred at room temperature for 30 min, and then evaporated. Red powder was precipitated from dichloromethane-hexane to afford $[Au^{I}(PyBTM)PPh_{3}]ClO_{4}$ (12.6 mg, 0.012 mmol, 80% yield).

Synthesis of [Au^I(Br₂PyBTM)PPh₃]BF₄

[Au^I(Br₂PyBTM)PPh₃]BF₄ was synthesized by a similar method to [Au^I(PyBTM)PPh₃]BF₄ utilizing modified literature procedure.^[1] Under an nitrogen atmosphere, chloro(triphenylphosphine)gold(I) (25.5 mg, 0.0515 mmol) was dissolved in dry THF (2 mL) and silver tetrafluoroborate (ca. 20 mg, 0.1 mmol) was added at 0°C, stirred for 15 min, and filtered. The filtrate was added to a solution of Br₂PyBTM (32.5 mg, 0.0534 mmol) in THF (2 mL), and stirred at room

temperature for 30 min, and then evaporated. Red powder was precipitated from dichloromethane -diethyl ether (-30 °C), washed with diethyl ether, and dried in vacuo to afford [Au^I(PyBTM)PPh₃]BF₄ (9.2 mg, 0.00797 mmol, 15% yield). **ESI-TOF-MS** m/z: [Au^I(Br₂PyBTM)PPh₃]⁺ Calcd for C₃₆H₂₁NAuBr₂Cl₆P 1062.7576; Found 1062.7595.

X-ray structural analysis

Red single crystals of $[Au^{I}(F_{2}PyBTM)PPh_{3}]ClO_{4}$ were obtained by diffusing hexane into a dichloromethane solution. Diffraction data for X-ray analysis were collected with an AFC10 diffractometer coupled with a Rigaku Saturn CCD system equipped with a rotating-anode X-ray generator producing graphite-monochromated MoK α radiation ($\lambda =$ 0.7107 Å). Lorentz polarization and numerical absorption corrections were performed with the program *Crystal Clear 1.3.6*. Structures were solved by the direct method using SIR 92 software^[2] and refined against *F*² using SHELXL-97.^[3] *Crystal Structure 4.0* software was used to prepare the material for publication. The crystallographic data are listed in Table 5-3. CCDC 1494043 contain the supplementary crystallographic data of this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Instruments

ESR spectra were recorded with a JEOL JES-FA200 spectrometer with X-band microwave. Deoxygenated sample solutions were charged in a $5\text{mm}\phi$ sample tube. Magnetic field was calibrated with the Mn²⁺/MgO standard. ESI–TOF mass spectra were recorded using an LCT Micromass spectrometer. UV-vis absorption spectra were recorded with a JASCO V-570 spectrometer. Steady-state emission spectra were measured with a HITACHI F-4500 spectrometer. Sample solutions were bubbled with argon before the measurements. Absolute photoluminescence quantum yields were measured with a Hamamatsu Photonics C9920-02G. Fluorescence lifetime measurements were performed using a Hamamatsu Photonics Quantaurus-Tau C11367-02.

Evaluation of stability under UV light

A 2mL solution and small stir bar in 1-cm-optical-path-length quartz cells were sealed, set at a JASCO FP-8600 spectrofluorometer, and stirred using mini-magnetic stirrer. Intensity of luminescence was observed exciting at 370 nm light (excitation slit was 5.0 nm, and shutter control was off). Radiation flux of a Xe lamp in fluorometer was measured using a photon counter (8230E, ADC Corporation). A JASCO FP-8600 spectrofluorometer can irradiate much stronger excitation light (~1200 μ W) than a HITACHI F-4500 spectometer (~70 μ W). Differences between previous evaluation and results reported here are attributed to the strength of excitation light.

Computational details

DFT calculations were executed using the Gaussian09 program package.^[4] The geometries of the compounds were optimized without symmetry constraints using the crystal structure coordinate as the starting structure. Calculations were performed using M06 functional^[5] with the SDD basis set (Au) and the 6-31G(d) basis set (H, C, N, P, Cl). Cartesian coordinates of all the optimized geometries are listed in the supporting information. Frequency calculations were carried out to ensure that the optimized geometries were minima on the potential energy surface, in which no imaginary frequencies were observed in any of the compounds. TD-DFT calculations were performed using M06 to calculate the first 15 doublet transitions.

References

1. M. Munakata, S.-G. Yan, M. Maekawa, M. Akiyama and S. Kitagawa, J. Chem. Soc., Dalton Trans., 1997, 22, 4257-4262.

2. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.* 1994, **27**, 435.

3. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, U. S. A. 2009.

5. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

	[Au ^I (F ₂ PyBTM)PPh ₃]·ClO ₄ ·0.5hexane		
Empirical formula	$C_{39} H_{21} Au Cl_9 F_2 N O_4 P$		
Fw/gmol ⁻¹	1081.71		
Crystal system	monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Crystal size / mm	$0.1\! imes\!0.05\! imes\!0.05$		
Temperature / K	113(2)		
<i>a</i> / Å	8.7297(6)		
b/Å	28.911(2)		
c/Å	15.5735(12)		
α / °	90		
βl°	103.822(4)		
γl°	90		
V / Å ³	3816.7(5)		
Ζ	4		
$ ho_{ m calced}$ / g cm ⁻³	1.882		
λ/Å	0.7107		
μ / mm ⁻¹	4.453		
Reflections collected	30181		
Independent reflections	8723		
Parameters	481		
R _{int}	0.0471		
° <i>R</i> 1	0.0532		
^b wR2	0.1221		
℃GoF	1.080		
CCDC No.	1494043		

Table S1. Crystallographic data of [Au^I(F₂PyBTM)PPh₃]ClO₄·0.5hexane

 ${}^{a}R_{1} = \Sigma ||F^{o}| - |F^{c}|| / \Sigma |F^{o}| \ (I \ge 2\sigma(I)). \ {}^{b}wR_{2} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma w(F^{o2})^{2}]^{1/2} \ (I \ge 2\sigma(I)). \ {}^{c}\text{GOF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2}].$

Table S2. Summary of absorption and emission

	$\lambda_{\rm abs} [{\rm nm}] (\varepsilon [10^3 { m M}^{-1} { m cm}^{-1}])$	$\lambda_{\rm em}$ [nm]
[Au ^I (F ₂ PyBTM)PPh ₃]BF ₄	367 (12), 419 (6.1), 557 (1.1)	622
[Au ^I (PyBTM)PPh ₃]BF ₄	380 (23), 434 (11), 566 (1.9)	653
[Au ^I (Br ₂ PyBTM)PPh ₃]BF ₄	381 (15), 438 (7.6), 571 (1.4)	666
F ₂ PyBTM	351 (16), 523 (0.85)	566
PyBTM	370 (25), 541 (1.0)	585
Br ₂ PyBTM	376 (20), 548 (1.0)	593

Fig. S1 ESR spectrum of $[Au^{I}(F_{2}PyBTM)PPh_{3}]BF_{4}$ at (a) 289K, (b) 175 K in dichloromethane. (c) Simulated ESR spectrum using calculated hyperfine coupling constants (0.35 mT with ¹⁴N, 0.29 mT with 2¹⁹F, 0.14 mT with ³¹P, 0.15 mT with 2¹H, 0.13 mT with 2¹H, and 0.08 mT with 2¹H).

Fig. S2 Absorption and emission spectra of $[Au^{I}(Br_{2}PyBTM)PPh_{3}]BF_{4}$ (pink line), $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$ (orange line), $Br_{2}PyBTM$ (purple line) and PyBTM (green line) in dichloromethane.

Fig. S3 Comparison between D_1 and Q_1 states. The D_1 state is lower in energy than the Q_1 state and $D_1 \rightarrow Q_1$ intersystem crossing does not occur.

Fig. S4 Plots showing the emission decay of $[Au^{I}(F_{2}PyBTM)PPh_{3}]BF_{4}$ (3 red lines), $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$ (3 orange lines), $F_{2}PyBTM$ (3 blue lines), PyBTM (3 green lines), and TTM (3 deep blue lines) in dichloromethane under continuous excitation with light at $\lambda_{ex} = 370$ nm. The half-lives ($[Au^{I}(F_{2}PyBTM)PPh_{3}]BF_{4}$: $t_{1/2} = 600 \pm 100$ s, $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$: $t_{1/2} = 1300 \pm 400$ s, $F_{2}PyBTM$: $t_{1/2} = 500 \pm 100$ s, PyBTM: $t_{1/2} = 900 \pm 100$ s) were estimated. Note that the photostability of PyBTM derivatives is much higher than that of TTM ($t_{1/2} = 17 \pm 3$ s). Multiplication of the absorption coefficients at 370 nm (A_{370}) and the half-lives ($t_{1/2}$) equals to (7 ± 1) × 10⁶ s M⁻¹ cm⁻¹ for $[Au^{I}(F_{2}PyBTM)PPh_{3}]BF_{4}$, (2.5 ± 0.8) × 10⁷ s M⁻¹ cm⁻¹ for $[Au^{I}(PyBTM)PPh_{3}]BF_{4}$, (6 ± 1) × 10⁶ s M⁻¹ cm⁻¹ for $F_{2}PyBTM$, (2.3 ± 0.3) × 10⁷ s M⁻¹ cm⁻¹ for PyBTM, and (3 ± 1) × 10⁵ s M⁻¹ cm⁻¹ for TTM.

A JASCO FP-8600 spectrofluorometer used for the present study irradiates much stronger excitation light (~1200 μ W) than a HITACHI F-4500 spectometer (~70 μ W) used for our previous studies does. Differences in $t_{1/2}$ between previous reports and present study are attributed to the strength of excitation light. While PyBTM and F₂PyBTM showed exponential decay, gold complexes displayed slightly accelerated decay probably because of multi-step process. Gold complexes showed slower decomposition than ligands do at shorter irradiation time (Log (intensity) > -0.05).

UM06/ SDD(Au), 6-31G(d)(H, C, N, F, P, Cl)

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	79	0	2.622986	-0.018801	0.069232
2	17	0	-5.995178	0.236270	2.191286
3	17	0	-6.906787	5.145140	0.274688
4	17	0	-5.915628	-0.202004	-2.232172
5	17	0	-6.976445	-5.098286	-0.362156
6	17	0	-3.123552	-2.261474	2.027503
7	17	0	-3.011756	2.243288	-1.962438
8	15	0	4.939470	-0.004097	-0.001815
9	7	0	0.481132	-0.031021	0.087543
10	6	0	-6.321598	2.636255	1.082846
11	6	0	-2.358216	-0.014171	0.046873
12	6	0	-1.587120	0.921166	0.764985
13	6	0	-0.208207	0.895984	0.774825
14	6	0	-0.199480	-0.952286	-0.616457
15	6	0	-1.578218	-0.961649	-0.645214
16	6	0	-3.799491	-0.001920	0.020693
17	6	0	-4.545121	-1.258376	-0.100596
18	6	0	-4.310481	-2.360448	0.750220
19	6	0	-5.574937	-1.432281	-1.049857
20	6	0	-6.322175	-2.597291	-1.141028
21	6	0	-6.050213	-3.640269	-0.266400
22	6	0	-5.042290	-3.533178	0.685199
23	6	0	-4.527806	1.267166	0.112930
24	6	0	-5.589938	1.459373	1.022199
25	6	0	-6.000115	3.672840	0.217373
26	6	0	-4.958351	3.547896	-0.694732
27	6	0	-4.243215	2.363649	-0.729727
28	6	0	5.695752	-0.581892	1.541641
29	6	0	5.135541	-1.678372	2.206136
30	6	0	5.741934	-2.178042	3.351758
31	6	0	6.902693	-1.582228	3.840078
32	6	0	7.461243	-0.490908	3.181901
33	6	0	6.862522	0.011386	2.031260
34	6	0	5.593470	1.659869	-0.311710

35	6	0	5.057311	2.734626	0.406293
36	6	0	5.580140	4.010223	0.239851
37	6	0	5.562006	-1.069649	-1.332231
38	6	0	6.642652	-1.931125	-1.130629
39	6	0	7.119974	-2.697345	-2.190086
40	6	0	6.527681	-2.601163	-3.444956
41	6	0	5.452917	-1.738014	-3.649779
42	6	0	4.966632	-0.976255	-2.595798
43	6	0	6.653500	1.870004	-1.196972
44	6	0	6.633930	4.218382	-0.647607
45	6	0	7.168732	3.152000	-1.363260
46	1	0	-7.123497	2.745583	1.808032
47	1	0	0.343674	1.632238	1.353227
48	1	0	0.359991	-1.695659	-1.178433
49	1	0	-7.097289	-2.692738	-1.896703
50	1	0	-4.843771	-4.345909	1.378569
51	1	0	-4.720930	4.355690	-1.381662
52	1	0	4.225651	-2.143671	1.822495
53	1	0	5.305447	-3.030237	3.868427
54	1	0	7.372772	-1.970704	4.741280
55	1	0	8.367360	-0.026617	3.565403
56	1	0	7.303218	0.864865	1.516358
57	1	0	4.233646	2.569033	1.103426
58	1	0	5.163080	4.845015	0.799252
59	1	0	7.111084	-2.005969	-0.149566
60	1	0	7.959178	-3.371570	-2.032328
61	1	0	6.903983	-3.202862	-4.269833
62	1	0	4.991205	-1.662641	-4.632089
63	1	0	4.126459	-0.297348	-2.755221
64	1	0	7.077114	1.035515	-1.755492
65	1	0	7.039188	5.219245	-0.781990
66	1	0	7.992128	3.316550	-2.055128
67	9	0	-2.188056	1.854375	1.483146
68	9	0	-2.169351	-1.888549	-1.379494

Extracted results of TD-DFT calculation.

UM06/ SDD(Au), 6-31G(d)(H, C, N, F, P, Cl)

Excitation energies and oscillator strengths:

Excited State 1: 2.104-A 2.2489 eV 551.30 nm f=0.0489 <S**2>=0.857 199A ->205A -0.11371 186B ->199B -0.10980 196B ->199B -0.12890 198B ->199B 0.95099 198B ->200B -0.11937 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4875.52523126 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.101-A 2.3638 eV 524.51 nm f=0.0104 <S**2>=0.853 199A ->200A -0.11949 194B ->199B 0.35311 197B ->199B 0.89956 Excited State 3: 2.080-A 2.4713 eV 501.69 nm f=0.0070 <S**2>=0.831 196B ->199B 0.97111 198B ->199B 0.15485 Excited State 4: 2.116-A 2.4974 eV 496.46 nm f=0.0302 <S**2>=0.869 199A ->200A -0.19843 187B ->199B 0.10794 194B ->199B 0.85076 197B ->199B -0.40440 Excited State 5: 2.157-A 2.8980 eV 427.83 nm f=0.2367 <S**2>=0.913 192A ->200A 0.14746 199A ->200A 0.85822 182B ->199B -0.14310 187B ->199B -0.24879 194B ->199B 0.27834 Excited State 6: 2.117-A 3.0885 eV 401.44 nm f=0.0005 <S**2>=0.871 195B ->199B 0.99157 Excited State 7: 2.381-A 3.1403 eV 394.81 nm f=0.0058 <S**2>=1.168 188A ->200A -0.20654

199A ->204A	-0.20140				
186B ->199B	0.15746				
188B ->199B	0.90336				
188B ->200B	0.14763				
Excited State 8:	3.115-A	3.2768 eV	378.37 nm	f=0.0558	<s**2>=2.175</s**2>
196A ->210A	-0.24411				
197A ->205A	-0.10157				
197A ->209A	0.26435				
198A ->200A	-0.24274				
198A ->214A	0.14416				
198A ->21/A	0.10948				
199A ->204A	-0.26197				
199A ->205A	0.46037				
199A ->209A	0.10812				
188B ->199B	-0.15075				
194B ->204B	-0.13/01				
194B ->205B	-0.12698				
194B ->209B	0.11433				
190B ->199B	-0.10821				
190B ->211B	0.22129				
197B ->203B	-0.10873				
197D ->209D	-0.20790				
1980 ->1990 1080 ->2000	0.21137				
198B ->200B	0.23208				
196 D - ~21/D	0.14192				
Excited State 9:	3.011-A	3.3138 eV	374.14 nm	f=0.0619	<s**2>=2.016</s**2>
192A ->200A	-0.24142				
196A ->205A	0.15733				
196A ->209A	-0.17081				
197A ->210A	0.20953				
198A ->204A	0.12922				
198A ->205A	-0.20623				
198A ->209A	-0.12177				
199A ->200A	0.12861				
199A ->214A	-0.17846				
199A ->217A	-0.11940				
173B ->199B	0.10506				
182B ->199B	0.19424				
187B ->199B	0.53549				
188B ->204B	0.10030				
194B ->199B	0.10729				

S13

194B ->200B	0.21090				
194B ->217B	0.10203				
196B ->205B	0.11353				
196B ->209B	0.15986				
197B ->211B	-0.19761				
198B ->204B	-0.16278				
198B ->205B	-0.12342				
198B ->209B	0.12525				
Excited State 10:	2.221-A	3.4497 eV	359.40 nm	f=0.0000	<s**2>=0.984</s**2>
192B ->199B	-0.40566				
193B ->199B	0.87517				
Excited State 11:	2.274-A	3.4537 eV	358.99 nm	f=0.0004	<s**2>=1.042</s**2>
192B ->199B	0.84459				
193B ->199B	0.43084				
Excited State 12:	3.441-A	3.4648 eV	357.84 nm	f=0.0000	<s**2>=2.710</s**2>
189A ->203A	-0.16529				
189A ->208A	-0.13303				
190A ->201A	0.10945				
190A ->202A	0.16298				
190A ->203A	-0.12344				
190A ->207A	-0.14899				
190A ->208A	-0.12407				
191A ->206A	0.13405				
191A ->211A	-0.17333				
193A ->207A	0.11556				
193A ->212A	-0.17378				
193A ->213A	-0.17062				
194A ->208A	-0.10462				
195A ->201A	0.27614				
195A ->206A	-0.11480				
195A ->211A	-0.10678				
189B ->203B	0.17421				
189B ->208B	0.13963				
190B ->201B	-0.11485				
190B ->202B	-0.16405				
190B ->203B	0.10475				
190B ->206B	-0.10446				
190B ->207B	0.10798				
190B ->208B	0.10702				
191B ->210B	0.17286				

192B ->199B	-0.17625				
192B ->207B	-0.10369				
192B ->212B	0.17216				
192B ->213B	0.17306				
193B ->208B	0.10120				
195B ->201B	-0.27753				
195B ->205B	0.11132				
195B ->207B	0.11632				
195B ->210B	0.10892				
195B ->214B	0.10373				
Excited State 13:	3.375-A	3.4768 eV	356.61 nm	f=0.0000	<s**2>=2.598</s**2>
189A ->201A	0.16595				
189A ->203A	0.14185				
189A ->208A	0.12364				
190A ->201A	0.10855				
190A ->207A	-0.11206				
190A ->211A	-0.10154				
191A ->212A	-0.19550				
193A ->206A	0.13193				
193A ->211A	-0.16378				
193A ->213A	-0.12048				
194A ->201A	0.10267				
194A ->212A	-0.14731				
195A ->203A	-0.25678				
195A ->208A	-0.21135				
189B ->201B	-0.17416				
189B ->203B	-0.14253				
189B ->208B	-0.11826				
191B ->212B	0.19590				
192B ->199B	0.29041				
192B ->210B	0.16199				
192B ->213B	0.12321				
193B ->201B	-0.10462				
193B ->212B	0.15049				
195B ->203B	0.25362				
195B ->208B	0.20612				
Excited State 14:	3.430-A	3.4819 eV	356.09 nm	f=0.0000	<s**2>=2.690</s**2>
189A ->202A	-0.16895				
189A ->207A	0.15930				
190A ->201A	-0.12889				
190A ->202A	0.10983				

190A ->203	A	0.11294				
190A ->207	Ά	-0.11607				
191A ->213	A	0.17458				
194A ->206	Ā	-0.12489				
194A ->211	А	0.17776				
194A ->212	A	0.10417				
194A ->213	Α	-0.19432				
195A ->202	A	-0.23485				
195A ->207	Ά	0.21678				
189B ->202	В	0.16126				
189B ->206	В	0.11069				
189B ->207	В	-0.10284				
190B ->201	В	0.13005				
190B ->202	В	-0.12657				
190B ->203	В	-0.12006				
190B ->206	В	-0.13768				
191B ->213	В	-0.17543				
193B ->199	В	0.20248				
193B ->210	В	-0.17646				
193B ->213	В	0.19546				
195B ->202	В	0.23555				
195B ->206	В	0.17838				
195B ->207	В	-0.13255				
Excited State	15:	2.771-A	3.5987 eV	344.52 nm	f=0.1116	<s**2>=1.670</s**2>
196A ->205	A	-0.11495				
196A ->209	A	0.23374				
197A ->210	A	-0.26179				
198A ->205	A	0.11727				
198A ->209	A	0.13642				
199A ->200	A	0.37611				
182B ->199	В	0.11806				
187B ->199	В	0.57090				
188B ->204	В	0.10184				
189B ->199	В	0.11358				
194B ->199	В	-0.13976				
194B ->200	В	-0.13299				
196B ->209	В	-0.21775				
197B ->211	В	0.24475				
198B ->204	В	0.13128				
198B ->209	В	-0.12825				

Calculated hyperfine coupling constants

UM06/ SDD(Au), 6-31G(d)(H, C, N, F, P, Cl)

	Isotropic Fermi Contact Couplings								
	Atom	a.u.	MegaHertz	Gauss	10(-4) cm-1				
1	Au(197	0.00000	-0.00001	0.00000	0.00000				
2	Cl(35)	0.00117	0.51096	0.18232	0.17044				
3	Cl(35)	0.00255	1.11995	0.39963	0.37358				
4	Cl(35)	0.00109	0.47820	0.17063	0.15951				
5	Cl(35)	0.00257	1.12485	0.40137	0.37521				
6	Cl(35)	0.00200	0.87581	0.31251	0.29214				
7	Cl(35)	0.00202	0.88704	0.31652	0.29589				
8	P(31)	-0.00217	-3.93466	-1.40399	-1.31246				
9	N(14)	0.03028	9.78228	3.49056	3.26302				
10	C(13)	-0.00723	-8.12914	-2.90068	-2.71159				
11	C(13)	-0.03469	-39.00356	-13.91744	-13.01019				
12	C(13)	0.02241	25.19566	8.99044	8.40437				
13	C(13)	-0.01015	-11.40646	-4.07011	-3.80478				
14	C(13)	-0.01010	-11.35951	-4.05336	-3.78912				
15	C(13)	0.02250	25.29643	9.02640	8.43798				
16	C(13)	0.09807	110.24481	39.33809	36.77371				
17	C(13)	-0.03276	-36.83125	-13.14231	-12.28558				
18	C(13)	0.02789	31.34900	11.18610	10.45690				
19	C(13)	0.02724	30.62008	10.92600	10.21376				
20	C(13)	-0.00726	-8.15989	-2.91165	-2.72185				
21	C(13)	0.01288	14.47843	5.16626	4.82948				
22	C(13)	-0.00721	-8.10571	-2.89232	-2.70377				
23	C(13)	-0.03273	-36.79005	-13.12760	-12.27184				
24	C(13)	0.02724	30.62005	10.92599	10.21375				
25	C(13)	0.01283	14.42881	5.14856	4.81293				
26	C(13)	-0.00718	-8.07072	-2.87983	-2.69210				
27	C(13)	0.02786	31.31848	11.17521	10.44672				
28	C(13)	0.00014	0.15585	0.05561	0.05199				
29	C(13)	0.00002	0.02446	0.00873	0.00816				
30	C(13)	0.00000	0.00433	0.00155	0.00144				
31	C(13)	0.00000	-0.00102	-0.00036	-0.00034				
32	C(13)	0.00001	0.01089	0.00389	0.00363				
33	C(13)	-0.00001	-0.01619	-0.00578	-0.00540				
34	C(13)	0.00009	0.09818	0.03503	0.03275				
35	C(13)	0.00000	-0.00184	-0.00066	-0.00061				
36	C(13)	0.00000	0.00272	0.00097	0.00091				
37	C(13)	-0.00002	-0.02789	-0.00995	-0.00930				

38	C(13)	-0.00003	-0.03109	-0.01109	-0.01037
39	C(13)	0.00000	-0.00016	-0.00006	-0.00005
40	C(13)	-0.00001	-0.00818	-0.00292	-0.00273
41	C(13)	0.00001	0.01034	0.00369	0.00345
42	C(13)	0.00001	0.00811	0.00289	0.00270
43	C(13)	-0.00002	-0.02215	-0.00790	-0.00739
44	C(13)	0.00000	-0.00149	-0.00053	-0.00050
45	C(13)	0.00000	0.00547	0.00195	0.00182
46	H(1)	0.00093	4.17004	1.48797	1.39097
47	H(1)	0.00051	2.27988	0.81352	0.76049
48	H(1)	0.00049	2.19992	0.78499	0.73381
49	H(1)	0.00093	4.17525	1.48983	1.39271
50	H(1)	0.00080	3.57811	1.27676	1.19353
51	H(1)	0.00080	3.57498	1.27564	1.19248
52	H(1)	0.00000	-0.01271	-0.00454	-0.00424
53	H(1)	0.00000	0.00573	0.00204	0.00191
54	H(1)	0.00000	0.00119	0.00043	0.00040
55	H(1)	0.00000	-0.00174	-0.00062	-0.00058
56	H(1)	0.00000	0.00887	0.00316	0.00296
57	H(1)	0.00000	-0.00429	-0.00153	-0.00143
58	H(1)	0.00000	0.00306	0.00109	0.00102
59	H(1)	0.00000	0.00243	0.00087	0.00081
60	H(1)	0.00000	-0.00628	-0.00224	-0.00209
61	H(1)	0.00000	0.00513	0.00183	0.00171
62	H(1)	0.00000	-0.00089	-0.00032	-0.00030
63	H(1)	0.00000	0.00270	0.00096	0.00090
64	H(1)	0.00000	0.00765	0.00273	0.00255
65	H(1)	0.00000	0.00060	0.00021	0.00020
66	H(1)	0.00000	-0.00281	-0.00100	-0.00094
67	F(19)	0.00194	8.17147	2.91578	2.72571
68	F(19)	0.00193	8.10739	2.89292	2.70434