Supporting Information

Diastereoselective Construction of Cyclopent-2-enone-4-ols from Aldehydes and 1,2-Allenones Catalyzed by *N*-Heterocyclic Carbene

Dengke Ma, Chunling Fu, and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China Fax: (+86) 21-55665687

E-mail: masm@sioc.ac.cn

General information	S2		
Experimental details and analytical data	S2-S24		
References	S25		
¹ H, ¹³ C NMR and HPLC spectra of products	S26-S89		

General: ¹H and ¹³C NMR spectra were recorded with a Bruker AM 300 MHz spectrometer. IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. 1-Ethyl-3-methylimidazolium tetrafluoroborate was purchased from J&K. Cs₂CO₃ was purchased from Energy Chemical. 1,4-Dioxane and toluene were distilled from Na/benzophenone before use. CH₂Cl₂ was distilled from CaH₂ before use. All liquid aldehydes were freshly distilled before use. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers.

1,2-Allenones 2a,¹ 2b,² 2c,³ $2e^4$, and $2f^{3,5}$ were prepared according to reported literatures.

Experimental details and analytical data

1. Optimization of the reaction conditions.

Table	S1	Reaction	exploration ⁶	ı
1 4010	~ -	1000001011	onprotation	

		NHC		+	Product yield ^b %				Pagework of
Entry X	Х	precursor	solvent	(h)	(E) -3 aa	(Z)-3 aa	4 aa	5aa	$2a^{b}\%$
1	2	A1	toluene	22.5	37	4	3		2
2	2	A2	toluene	22.5	38	3	5		—
3	2	B1	toluene	27.5	4	_			12
4	2	B2	toluene	27.5	_				55
5	2	B3	toluene	8.5	18	2	3		—
6	2	С	toluene	23.5	_		1		78
7^c	2	D	toluene	23.5	_				64
8^d	2	Е	toluene	23.5	_		4		78
9	1.2	A1	toluene	22.5	34	4	2	3 ^e	24
10	1.2	A1	dioxane	3	24	4	5	40 ^f	_
11	1.2	A1	THF	27.5	29	2	3	9^g	5
12	1.2	A1	DCM	15.5	49	6	10	12^{h}	_
13 ^{<i>i</i>}	1.2	A1	DMF	21.8	_				_
14^{i}	1.2	A1	CH ₃ CN	22	4		_		_
15	1.2	A1	CH ₃ OH	24	_	_			

^{*a*} Reaction conditions: A solution of NHC precursor and Cs_2CO_3 in solvent (1 mL) was stirred at 20 °C for 10 min, then 0.8 mmol of **1a**, 0.4 mmol of **2a**, and solvent (1 mL) were added sequentially. The resulting mixture was then stirred at 20 °C for the time indicated in the Table. ^{*b*} Determined by NMR of the crude product using dibromomethane as the internal standard. ^{*c*} The Benzoin product was formed in 39% yield. ^{*d*} The Benzoin product was formed in 74% yield. ^{*e*} Dr was 100:0 as determined by NMR. ^{*f*} Dr was 95:5 as determined by NMR. ^{*g*} Dr was 88:12 as determined by NMR. ^{*h*} Dr was 100:0 as determined by NMR. ^{*i*} 20 mol % of Cs_2CO_3 was used.

E. du	NHC	t	Product yield ^b %					Recovery of
Entry	precursor	(h)	(E) -3aa	(Z) -3 aa	4aa	5aa	Benzoin product	2a ^b %
1	A1	3	24	4	5	40^{c}	—	_
2	B1	23	2	—	_		_	15
3	B2	22	3		—		—	22
4	B3	23.25	22	—	_		_	1
5	С	22	_	_	—	—	21	48
6	D	22	_	—	_		36	40
7	Е	22		_	_	_	85	61
8	F	22	3		_		68	59

^{*a*} Reaction conditions: A solution of NHC precursor and Cs_2CO_3 in dioxane (1 mL) was stirred at 20 °C for 10 min, then 0.48 mmol of **1a**, 0.4 mmol of **2a**, and dioxane (1 mL) were added sequentially. The resulting mixture was then stirred at 20 °C for the time indicated in the Table. ^{*b*} Determined by NMR of the crude product using dibromomethane as the internal standard. ^{*c*} Dr was 95:5 as determined by NMR.

2. Preparation of 1,2-allenyl ketones 2d

(1) 9-(Benzyloxy)nona-1,2-dien-4-one (2d)⁶ (mdk-9-109)

To a Schlenk flask were added $Fe(NO_3)_3 \cdot 9H_2O$ (124.2 mg, 0.3 mmol), TEMPO (48.0 mg, 0.3 mmol), NaCl (17.8 mg, 0.3 mmol), and DCE (8 mL) with stirring. Then 9-(benzyloxy)nona-1,2-dien-4-ol⁷ (741.2 mg, 3 mmol) and DCE (4 mL) were added. The residual air in the reaction system was excluded by oxygen provided by a balloon.

After that, the resulting mixture was stirred at rt under oxygen provided by the balloon. After 3.5 h, the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: ethyl ether (20 mL×3)), evaporation, and column chromatography on silica gel (petroleum ether (60- 90 °C)/ethyl acetate = 15/1 (480 mL) to 10/1 (440 mL)) afforded **2d** (527.8 mg, 72%) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.23 (m, 5H, ArH), 5.77 (t, *J* = 6.5 Hz, 1H, =CH), 5.22 (d, *J* = 6.3 Hz, 2H, =CH₂), 4.49 (s, 2H, CH₂), 3.46 (t, *J* = 6.6 Hz, 2H, CH₂), 2.61 (t, *J* = 7.4 Hz, 2H, CH₂), 1.69-1.55 (m, 4H, CH₂ × 2), 1.46-1.33 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 216.6, 200.8, 138.5, 128.3, 127.6, 127.5, 96.7, 79.3, 72.9, 70.1, 39.0, 29.5, 25.8, 24.3; IR (neat) v (cm⁻¹) 3087, 3064, 3029, 2988, 2936, 2859, 2793, 1958, 1933, 1682, 1496, 1454, 1409, 1363, 1308, 1204, 1158, 1104, 1028; MS (70 ev, EI) m/z (%) 244 (M⁺, 0.43), 91 (100); Elemental analysis calcd (%) for C₁₆H₂₀O₂: C, 78.65, H, 8.25; Found: C, 78.44; H, 8.16.

3. Preparation of cyclopent-2-enone-4-ols 5aa-5ee

(1) 4-(4-Bromophenyl)-4-hydroxy-3-methyl-5-pentylcyclopent-2-enone (5aa) (mdk-9-019-2)

Typical Procedure I: To a dry Schlenk flask was added Cs₂CO₃ (65.1 mg, 0.2 mmol) under N₂. Then 1-ethyl-3-methylimidazolium tetrafluoroborate (40.3 mg, 0.2 mmol),

dioxane (3.75 mL), and CH₂Cl₂ (1.25 mL) were added sequentially under N₂. The resulting mixture was stirred at rt. After 10 min, the mixture was cooled to -10 °C, 1a (226.8 mg, 1.2 mmol)/CH₂Cl₂ (1.25 mL) and **2a** (152.3 mg, 1 mmol)/dioxane (3.75 mL) were added sequentially. The resulting mixture was stirred at -10 °C. After 19.5 h. the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: ethyl acetate (20 mL \times 3)), evaporation, and column chromatography on silica gel (petroleum ether (30 °C ~ 60 °C, redistillation)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 mL \times 2) to 3/1 (400 mL)) afforded 5aa (0.1796 g, 53%, dr > 99:1) (the dr of the crude product was 95:5 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.7 Hz, 2H, ArH), 7.13 (brs, 2H, ArH), 6.13 (q, J = 1.3 Hz, 1H, =CH), 2.72 (s, 1H, OH), 2.58 (dd, $J_1 = 9.0$ Hz, $J_2 = 5.4$ Hz, 1H, CH), 1.90 (d, J = 1.5 Hz, 3H, CH₃), 1.59-1.46 (m, 1H, one proton from CH₂), 1.40-0.94 (m, 6H, CH₂ \times 3), 0.89-0.72 (m, 4H, CH₃ + one proton from CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 206.1, 176.1, 138.4, 131.3, 130.1, 127.5, 121.6, 85.2, 61.4, 31.6, 27.1, 25.9, 22.1, 13.9, 13.6; IR (neat) v (cm⁻¹) 3435, 2954, 2930, 2859, 1693, 1625, 1589, 1572, 1487, 1466, 1456, 1434, 1397, 1375, 1307, 1297, 1245, 1232, 1205, 1164, 1075, 1010; MS (70 ev, EI) m/z (%) 338 ($M^{+}(^{81}Br)$, 4.15), 336 ($M^{+}(^{79}Br)$, 4.56), 265 (100); HRMS calcd for $C_{17}H_{21}^{79}BrO_2$ (M⁺): 336.0725, found: 336.0728.

The following compounds were prepared according to Typical procedure I.

(2) 4-Hydroxy-3-methyl-5-pentyl-4-phenylcyclopent-2-enone (5ba) (mdk-8-065)

The reaction of **1b** (127.4 mg, 1.2 mmol), **2a** (153.0 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.0 mg, 0.2 mmol), and Cs₂CO₃ (65.3 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 11 h afforded **5ba** (0.1966 g, 76%, dr = 99:1) (petroleum ether (60 °C ~ 90 °C, redistillation)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 mL) to 3/1 (400 mL)) (the dr of the crude product was 96:4 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.51-6.97 (m, 5H, ArH), 6.14 (q, J = 1.3 Hz, 1H, =CH), 2.81 (s, 1H, OH), 2.60 (dd, $J_1 = 9.2$ Hz, $J_2 = 5.3$ Hz, 1H, CH), 1.91 (d, J = 1.5 Hz, 3H, CH₃), 1.59-1.45 (m, 1H, one proton from CH₂), 1.38-0.91 (m, 6H, CH₂ \times 3), 0.90-0.78 (m, 1H, one proton from CH₂), 0.75 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (75) MHz, CDCl₃) δ 206.3, 176.1, 139.2, 130.1, 128.2, 127.5, 125.5, 85.6, 61.4, 31.7, 27.1, 25.8, 22.1, 13.9, 13.7; IR (neat) v (cm⁻¹) 3439, 3087, 3060, 3028, 2955, 2930, 2859, 1693, 1626, 1601, 1491, 1448, 1374, 1301, 1246, 1232, 1205, 1165, 1131, 1093, 1066, 1015; MS (70 ev, EI) m/z (%) 258 (M⁺, 14.47), 187 (100); Elemental analysis calcd (%) for C₁₇H₂₂O₂: C, 79.03; H, 8.58; Found: C, 79.00; H, 8.81.

(3) 4-Hydroxy-3-methyl-4-phenyl-5-propylcyclopent-2-enone (5bb) (mdk-8-080)

The reaction of **1b** (127.6 mg, 1.2 mmol), **2b** (124.3 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (39.9 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 15.5 h afforded **5bb** (0.1461 g, 63%, dr = 99:1) (petroleum ether (30 $^{\circ}C \sim 60 {^{\circ}C})/ethyl$ acetate = 10/1 (440 mL) to 5/1 (480 mL × 2 + 180 mL) to 3/1 (400 mL)) (the dr of the crude product was 95:5 as determined via the NMR analysis) as a liquid (solid, m. p. 79~81 °C (EtOH)): ¹H NMR (300 MHz, CDCl₃) δ 7.47-6.99 (m, 5H, ArH), 6.13 (q, J = 1.4 Hz, 1H, =CH), 3.18 (s, 1H, OH), 2.64 (dd, *J*₁ = 8.7 Hz, *J*₂ = 5.4 Hz, 1H, CH), 1.91 (d, J = 1.5 Hz, 3H, CH₃), 1.55-1.39 (m, 1H, one proton from CH₂), 1.39-1.14 (m, 2H, CH₂), 0.89-0.75 (m, 1H, one proton from CH₂), 0.69 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.7, 176.6, 139.3, 129.9, 128.2, 127.5, 125.5, 85.5, 61.1, 28.1, 20.8, 13.9, 13.7; IR (neat) v (cm⁻¹) 3435, 3087, 3060, 3028, 2958, 2933, 2871, 1694, 1626, 1601, 1491, 1465, 1448, 1375, 1319, 1301, 1249, 1220, 1194, 1170, 1131, 1096, 1066, 1034, 1002; MS (70 ev, EI) m/z (%) 230 (M⁺, 9.35), 187 (100); HRMS calcd for $C_{15}H_{18}O_2$ (M⁺): 230.1307, found: 230.1310.

(4) 5-Benzyl-4-hydroxy-3-methyl-4-phenylcyclopent-2-enone (5bc) (mdk-8-098)

The reaction of **1b** (127.8 mg, 1.2 mmol), **2c** (173.0 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.1 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 22 h afforded **5bc** (0.1598 g, 57%, dr = 92:8) (petroleum ether (30 °C ~ 60 °C)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 mL) to 3/1 (600 mL)) (the dr of the crude product was 92:8 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.26 (m, 3H, ArH), 7.25-6.97 (m, 5H, ArH), 6.81-6.70 (m, 2H, ArH), [6.14 (q, *J* = 1.3 Hz, 0.92H), 6.12 (q, *J* = 1.2 Hz, 0.08H), 1H, =CH], 3.27-3.04 (m, 2H, CH₂), [2.42 (s, 0.08H), 2.30 (s, 0.83H), 1H, OH], 2.26-2.14 (m, 1H, CH), 1.90-1.82 (m, 3H, CH₃); IR (neat) v (cm⁻¹) 3418, 3086, 3061, 3028, 2948, 2916, 2855, 1694, 1625, 1602, 1496, 1448, 1434, 1374, 1304, 1243, 1211, 1162, 1088, 1065, 1014; MS (70 ev, EI) m/z (%) 278 (M⁺, 57.11), 187 (100); Elemental analysis calcd (%) for C₁₉H₁₈O₂: C, 81.99, H, 6.52; Found: C, 81.69; H, 6.47.

(5) 5-(4-(Benzyloxy)butyl)-4-hydroxy-3-methyl-4-phenylcyclopent-2-enone (5bd) (mdk-9-110)

The reaction of **1b** (128.0 mg, 1.2 mmol), **2d** (244.3 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.3 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 11.5 h afforded **5bd** (0.2337 g, 65%, purity= 98%, dr = 99:1) (petroleum ether (60 $^{\circ}$ C ~ 90 °C)/ethyl acetate = 10/1 (440 mL) to 5/1 (420 mL + 600 mL) to 3/1 (400 mL)) (the dr of the crude product was 96:4 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.43-6.99 (m, 10H, ArH), 6.11 (q, J = 1.4 Hz, 1H, =CH), 4.42 (s, 2H, CH₂), 3.49-3.16 (m, 3H, OH + CH₂), 2.65 (dd, $J_1 = 9.0$ Hz, $J_2 =$ 5.1 Hz, 1H, CH), 1.87 (d, J = 1.2 Hz, 3H, CH₃), 1.63-1.19 (m, 5H, CH₂ × 2 + one proton from CH₂), 1.01-0.82 (m, 1H, one proton from CH₂); ¹³C NMR (75 MHz, CDCl₃) § 206.5, 176.8, 139.3, 138.2, 129.6, 128.2, 128.1, 127.6, 127.44, 127.36, 125.5, 85.1, 72.6, 69.9, 60.9, 28.9, 25.4, 23.7, 13.6; IR (neat) v (cm⁻¹) 3439, 3086, 3061, 3029, 2938, 2862, 2793, 1694, 1626, 1601, 1492, 1448, 1372, 1301, 1240, 1203, 1162, 1097, 1068, 1028; MS (70 ev, EI) m/z (%) 350 (M⁺, 3.28), 91 (100); HRMS calcd for $C_{23}H_{26}O_3$ (M⁺): 350.1882, found: 350.1878.

(6) $(4R^*,5S^*)$ -4-(4-Phenylphenyl)-4-hydroxy-3-methyl-5-pentylcyclopent-2-enone ($4R^*,5S^*$ -5ca) (mdk-8-068-1) and ($4R^*,5R^*$)-4-(4-Phenylphenyl)-4-hydroxy-3methyl-5-pentylcyclopent-2-enone ($4R^*,5R^*$ -5ca) (mdk-8-068-2)

The reaction of 1c (225.5 mg, 1.2 mmol), 2a (152.9 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.0 mg, 0.2 mmol), and Cs₂CO₃ (65.5 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 8.5 h afforded impure 4R*,5S*-**5ca** (18.4 mg) and pure 4R*,5R*-**5ca** (241.0 mg, 72%) (petroleum ether (30 °C ~ 60 °C)/ethyl acetate = 10/1 (440 mL + 400 mL) to 5/1 (480 mL + 200 mL) to 3/1 (400 mL)) (the dr of the crude product was 94:6 as determined via the NMR analysis). Further purification of the impure 4R*,5S*-**5ca** (8.9 mg, 3%) (DCM (400 mL)).

 $4R^*,5S^*$ -**5ca**, minor, the less polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.57 (m, 4H, ArH), 7.49-7.34 (m, 5H, ArH), 6.10 (q, *J* = 1.3 Hz, 1H, =CH), 2.61 (dd, *J*₁ = 8.7 Hz, *J*₂ = 5.7 Hz, 1H, CH), 2.01 (s, 1H, OH), 1.92 (d, *J* = 1.5 Hz, 3H, CH₃), 1.83-1.59 (m, 2H, CH₂), 1.51-1.32 (m, 2H, CH₂), 1.31-1.14 (m, 4H, CH₂ × 2), 0.81 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.6, 177.2, 142.4, 140.4, 140.1, 130.5, 128.8, 127.4, 127.3, 127.0, 125.0, 82.8, 59.7, 31.8, 27.3, 26.8, 22.3, 14.1, 14.0; IR (neat) v (cm⁻¹) 3444, 3057, 3029, 2954, 2927, 2857, 1694, 1626, 1600, 1486, 1435, 1405, 1374, 1298, 1263, 1213, 1195, 1180, 1133, 1076, 1007; MS (70 ev, EI) m/z (%) 334 (M⁺, 14.35), 263 (100); HRMS calcd for C₂₃H₂₆O₂ (M⁺): 334.1933, found: 334.1929.

4*R**,5*R**-5ca, major, the more polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.51 (m, 4H, ArH), 7.50-7.19 (m, 5H, ArH), 6.17 (q, *J* = 1.3 Hz, 1H, =CH), 2.66 (s, 1H, OH), 2.63 (dd, *J*₁ = 9.0 Hz, *J*₂ = 5.1 Hz, 1H, CH), 1.95 (d, *J* = 1.5 Hz, 3H, CH₃), 1.64-1.49 (m, 1H, one proton from CH₂), 1.41-1.19 (m, 2H, CH₂), 1.19-0.83 (m, 5H, $2 \times$ CH₂ + one proton from CH₂), 0.74 (t, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.9, 177.0, 140.3, 140.1, 138.3, 129.8, 128.7, 127.3, 126.9, 126.7, 126.1, 85.3, 61.4, 31.6, 27.1, 25.9, 22.0, 13.82, 13.80; IR (neat) v (cm⁻¹) 3448, 3057, 3029, 2953, 2929, 2858, 1691, 1625, 1600, 1560, 1486, 1435, 1404, 1374, 1317, 1301, 1267, 1232, 1207, 1196, 1180, 1164, 1132, 1076, 1007; MS (70 ev, EI) m/z (%) 334 (M⁺, 18.23), 263 (100); HRMS calcd for C₂₃H₂₆O₂ (M⁺): 334.1933, found: 334.1929.

(7) 4-Hydroxy-3-methyl-5-propyl-4-(p-tolyl)cyclopent-2-enone (5db) (mdk-8-077)

The reaction of **1d** (145.0 mg, 1.2 mmol), **2b** (124.4 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (39.8 mg, 0.2 mmol), and Cs₂CO₃ (65.4 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 32.5 h afforded **5db** (0.1612 g, 65%, purity 98%, dr = 99:1) (petroleum ether (30 °C ~ 60 °C)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 + 120 mL) to 3/1 (400 mL)) (the dr of the crude product was 94:6 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.38-6.77 (m, 4H, ArH), 6.11 (q, *J* = 1.3 Hz, 1H, =CH), 3.19 (s, 1H, OH), 2.63 (dd, *J*₁ = 8.7 Hz, *J*₂ = 5.4 Hz, 1H, CH), 2.34 (s, 3H, CH₃), 1.91 (d, *J* = 1.2 Hz, 3H, CH₃), 1.54-1.15 (m, 3H, CH₂ + one proton from CH₂), 0.93-0.76 (m, 1H, one proton from CH₂), 0.71 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.8, 176.8, 137.1, 136.3, 129.7, 128.9, 125.4, 85.4, 61.0, 28.0, 20.9, 20.8, 14.0, 13.7; IR (neat) v (cm⁻¹) 3443, 3051, 3024, 2958, 2932, 2871, 1693, 1625, 1511, 1465, 1434, 1409, 1375, 1316, 1300, 1286, 1248, 1220, 1193, 1170, 1131, 1111, 1078, 1038, 1021, 1008; MS (70 ev, EI) m/z (%) 244 (M⁺, 16.88), 201 (100); HRMS calcd for C₁₆H₂₀O₂ (M⁺): 244.1463, found: 244.1472.

(8) 5-Benzyl-4-hydroxy-3-methyl-4-(naphth-2-yl)cyclopent-2-enone (5ec)

(mdk-8-106)

The reaction of **1e** (191.5 mg, 1.2 mmol), **2c** (173.0 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.0 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 13 h afforded **5ec** (0.1866 g, 57%, dr = 91:9) (petroleum ether (30 °C ~ 60 °C)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 mL + 180 mL) to 3/1 (400 mL + 200 mL)) (the dr of the crude product was 92:8 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.92-7.59 (m, 4H, ArH), 7.59-7.40 (m, 2H, ArH), 7.20-6.90 (m, 4H, ArH), 6.81-6.57 (m, 2H, ArH), [6.20 (q, *J* = 1.3 Hz, 0.91H), 6.17 (q, *J* = 1.3 Hz, 0.09H), 1H, =CH], 3.30-3.06 (m, 2H, CH₂), [2.67 (s, 0.08H), 2.57 (s, 0.89H), 1H, OH], 2.22 (dd, *J*₁ = 14.4 Hz, *J*₂= 9.9 Hz, 1H, CH), 1.88 (d, *J* = 1.2 Hz, 3H, CH₃); IR (neat) v (cm⁻¹) 3432, 3084, 3059, 3027, 2978, 2947, 2918, 2853, 1691, 1625, 1601, 1507, 1497, 1454, 1434, 1373, 1357, 1304, 1271, 1247, 1211, 1196, 1161, 1115, 1077, 1034, 1019; MS (70 ev, EI) m/z (%) 328 (M⁺, 14.99), 237 (100); Elemental analysis calcd (%) for C₂₃H₂₀O₂: C, 84.12, H, 6.14; Found: C, 83.69; H, 6.25.

(9) $(4R^*,5S^*)$ -4-Hydroxy-5-isopropyl-3-methyl-4-(naphthalen-2-yl)cyclopent-2enone $(4R^*,5S^*-5ee)$ (mdk-8-115-1) and $(4R^*,5R^*)$ -4-Hydroxy-5-isopropyl-3methyl-4-(naphthalen-2-yl)cyclopent-2-enone $(4R^*,5R^*-5ee)$ (mdk-8-115-2)

The reaction of **1e** (191.6 mg, 1.2 mmol), **2e** (124.5 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (39.9 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 22.5 h afforded $4R^*$, $5S^*$ -**5ee** (3.8 mg, 1%) and $4R^*$, $5R^*$ -**5ee** (156.3 mg, 55%) (petroleum ether (30 °C ~ 60 °C)/ethyl acetate = 60/1 (400 mL × 2) to 10/1 (440 mL) to 5/1 (480 mL × 3) to 3/1 (400 mL)) (the dr of the crude product was 95:5 as determined via the NMR analysis).

 $4R^{*},5S^{*}$ -**5ee**, minor, the less polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.95-7.91 (m, 1H, ArH), 7.89-7.79 (m, 3H, ArH), 7.54-7.46 (m, 2H, ArH), 7.28 (dd, J_{1} = 8.7 Hz, J_{2} = 2.1 Hz, 1H, ArH), 6.14 (q, J = 1.3 Hz, 1H, =CH), 2.60 (d, J = 4.5 Hz, 1H, CH), 2.35-2.21 (m, 2H, one proton from CH₂ + OH), 1.89 (d, J = 1.5 Hz, 3H, CH₃), 1.11 (d, J = 6.6 Hz, 3H, CH₃), 1.06 (d, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.0, 177.1, 141.3, 133.1, 132.5, 131.7, 128.7, 128.1, 127.6, 126.5, 126.2, 123.3, 122.6, 83.6, 64.5, 27.8, 22.0, 19.8, 13.8; IR (neat) v (cm⁻¹) 3445, 3057, 2957, 2929, 2872, 1688, 1628, 1599, 1507, 1466, 1435, 1385, 1368, 1296, 1272, 1231, 1199, 1160, 1132, 1078, 1020; MS (70 ev, EI) m/z (%) 280 (M⁺, 10.47), 237 (100); HRMS calcd for C₁₉H₂₀O₂ (M⁺): 280.1463, found: 280.1466.

 $4R^*, 5R^*$ -**5ee**, major, the more polar isomer, solid, m. p. 147~149 °C (ethyl acetate): ¹H NMR (300 MHz, CDCl₃) δ 8.12-7.67 (m, 4H, ArH), 7.60-6.90 (m, 3H, ArH), 6.11 (q, *J* = 1.3 Hz, 1H, =CH), 2.56 (s, 1H, OH), 2.52 (d, *J* = 8.7 Hz, 1H, CH), 1.87 (d, *J* = 1.2 Hz, 3H, CH₃), 1.84-1.73 (m, 1H, CH), 1.04 (d, *J* = 6.6 Hz, 3H, CH₃), 0.73 (d, *J* = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 205.7, 175.5, 137.3, 133.0, 132.5, 130.2, 128.2, 127.8, 127.5, 126.3, 126.2, 125.1, 123.7, 85.3, 67.4, 26.5, 21.8, 20.5, 13.3; IR (neat) v (cm⁻¹) 3453, 3057, 2957, 2920, 2870, 1687, 1629, 1599, 1507, 1470, 1435, 1386, 1373, 1301, 1270, 1254, 1234, 1195, 1162, 1123, 1094, 1041, 1030; MS (70 ev, EI) m/z (%) 280 (M⁺, 7.79), 237 (100); Elemental analysis calcd (%) for C₁₉H₂₀O₂: C, 81.40, H, 7.19; Found: C, 81.42; H, 7.24.

(10) 4-Hydroxy-3-methyl-4-phenylspiro[4.5]dec-2-en-1-one (5bf) (mdk-9-010-4)

The reaction of **1b** (126.9 mg, 1.2 mmol), **2f** (150.7 mg, 1 mmol),

1-ethyl-3-methylimidazolium tetrafluoroborate (40.0 mg, 0.2 mmol), and Cs₂CO₃ (65.0 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 32 h, then at 50 °C for 14.5 h afforded (*E*)-**3bf** (0.0094 g, 4%), **4bf** (0.0026 g, 1%), (*Z*)-**3bf** (0.0097 g, 4%), and **5bf** (0.1281 g, 50%) (in the order of polarity in silica gel column) (petroleum ether (60 °C ~ 90 °C, redistillation)/ethyl acetate = 40/1 (400 mL) to 30/1 (480 mL × 2 + 300 mL) to 10/1 (300 mL) to 5/1 (420 mL) to 3/1 (400 mL)).

(*E*)-**3bf**, the least polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.77 (m, 2H, ArH), 7.64-7.57 (m, 1H, ArH), 7.53-7.45 (m, 2H, ArH), 6.51 (q, *J* = 1.5 Hz, 1H, =CH), 2.45-2.31 (m, 4H, CH₃ + one proton from cyclohexyl group), 1.91-1.73 (m, 4H, from cyclohexyl group), 1.71-1.60 (m, 1H, from cyclohexyl group), 1.42-1.15 (m, 5H, from cyclohexyl group); ¹³C NMR (75 MHz, CDCl₃) δ 204.6, 198.5, 149.3, 136.1, 133.1, 130.5, 129.7, 128.5, 51.8, 28.1, 25.8, 25.5, 15.8; IR (neat) v (cm⁻¹) 2929, 2853, 1688, 1660, 1612, 1596, 1448, 1263, 1156, 1143, 1001; MS (70 ev, EI) m/z (%) 256 (M⁺, 8.01), 83 (100); HRMS calcd for C₁₇H₂₀O₂ (M⁺): 256.1463, found: 256.1465.

4bf, the less polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.87-7.80 (m, 2H, ArH), 7.57-7.50 (m, 1H, ArH), 7.48-7.40 (m, 2H, ArH), 5.89 (d, J = 0.9 Hz, 1H, one proton from =CH₂), 5.77 (s, 1H, one proton from =CH₂), 3.68 (d, J = 0.3 Hz, 2H, CH₂), 2.53-2.41 (m, 1H, from cyclohexyl group), 1.98-1.62 (m, 5H, from cyclohexyl group), 1.46-1.16 (m, 5H, from cyclohexyl group); ¹³C NMR (75 MHz, CDCl₃) δ 210.9, 197.4, 142.3, 137.4, 132.2, 129.8, 128.7, 128.1, 50.7, 44.5, 28.4, 25.8, 25.6; IR (neat) v (cm⁻¹) 2929, 2853, 1707, 1656, 1598, 1448, 1339, 1317, 1213, 1143, 1068; MS (70 ev, EI) m/z (%) 256 (M⁺, 4.98), 83 (100); HRMS calcd for C₁₇H₂₀O₂ (M⁺): 256.1463, found: 256.1463.

(*Z*)-**3bf**, the more polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.89-7.81 (m, 2H, ArH), 7.59-7.50 (m, 1H, ArH), 7.49-7.41 (m, 2H, ArH), 6.44 (q, *J* = 1.5 Hz, 1H, =CH), 2.42-2.29 (m, 1H, from cyclohexyl group), 2.12 (d, *J* = 1.5 Hz, 3H, CH₃), 1.88-1.59 (m, 5H, from cyclohexyl group), 1.33-1.09 (m, 5H, from cyclohexyl group); ¹³C NMR (75 MHz, CDCl₃) δ 201.0, 199.4, 154.1, 134.4, 133.2, 128.7, 128.3, 125.3, 50.1, 27.9, 25.7, 25.5, 21.7; IR (neat) v (cm⁻¹) 2929, 2854, 1675, 1615, 1583, 1449, 1372, 1355, 1311, 1246, 1231, 1161, 1093, 1071; MS (70 ev, EI) m/z (%) 256 (M⁺, 7.51), 174 (100); HRMS calcd for C₁₇H₂₀O₂ (M⁺): 256.1463, found: 256.1466.

5bf, the most polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.72-6.67 (m, 5H, ArH), 6.13 (q, *J* = 1.4 Hz, 1H, =CH), 2.51 (brs, 1H, OH), 1.92 (d, *J* = 1.5 Hz, 3H, CH₃), 1.85-1.40 (m, 6H, from cyclohexyl group), 1.38-1.06 (m, 3H, from cyclohexyl group), 0.91-0.78 (m, 1H, from cyclohexyl group); ¹³C NMR (75 MHz, CDCl₃) δ 210.5, 173.9, 140.6, 129.6, 128.0, 127.4, 125.9, 87.5, 56.3, 32.9, 30.0, 25.4, 22.4, 21.6, 14.1; IR (neat) v (cm⁻¹) 3462, 3085, 3058, 3027, 2933, 2861, 1686, 1631, 1600, 1490, 1449, 1374, 1361, 1310, 1266, 1226, 1194, 1147, 1127, 1105, 1069, 1031; MS (70 ev, EI) m/z (%) 256 (M⁺, 77.01), 151 (100); HRMS calcd for C₁₇H₂₀O₂ (M⁺): 256.1463, found: 256.1459.

(11) 9-Hydroxy-8-vinylideneicosan-7-one (6fa) (mdk-10-039)

The reaction of 1f (221.0 mg, 1.2 mmol), 2a (152.3 mg, 1 mmol),

1-ethyl-3-methylimidazolium tetrafluoroborate (40.3 mg, 0.2 mmol), and Cs₂CO₃ (65.1 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 22 h afforded **6fa** (0.0192 g, 6%) (petroleum ether (60 °C ~ 90 °C)/ethyl acetate = 15/1 (300 mL) to 10/1 (300 mL)) (58% of **1f** and 39% of **2a** were recovered, respectively, as determined via NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.32 (d, *J* = 1.8 Hz, 2H, =CH₂), 4.49-4.38 (m, 1H, CH), 3.12 (d, *J* = 5.4 Hz, 1H, OH), 2.65 (dd, *J*₁ = 7.8 Hz, *J*₂ = 6.9 Hz, 2H, CH₂), 1.65-1.52 (m, 4H, CH₂ × 2), 1.36-1.19 (m, 24H, CH₂ × 12), 0.88 (t, *J* = 6.8 Hz, 6H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 214.5, 203.2, 110.7, 81.2, 68.8, 39.8, 35.1, 31.9, 31.5, 29.7, 29.63, 29.62, 29.58, 29.4, 29.3, 28.8, 25.8, 24.7, 22.7, 22.5, 14.1, 14.0; IR (neat) v (cm⁻¹) 3472, 2955, 2924, 2854, 1958, 1931, 1673, 1466, 1405, 1378, 1278, 1234, 1177, 1080, 1019; MS (70 ev, EI) m/z (%) 336 (M⁺, 1.87), 43 (100); HRMS calcd for C₂₂H₄₀O₂ (M⁺): 336.3028, found: 336.3026.

4. Mechanistic studies

(1) Preparation of (*E*)-3ba and (*Z*)-3ba (mdk-10-022)

To a dry Schlenk flask was added Cs_2CO_3 (97.8 mg, 0.3 mmol) under N₂. Then 1-ethyl-3-methylimidazolium tetrafluoroborate (60.9 mg, 0.3 mmol) and toluene (7.5 mL) were added sequentially under N₂. The resulting mixture was stirred at rt. After 10 min, the mixture was cooled to 20 °C, **1b** (636.4 mg, 6 mmol)/toluene (4.5 mL) and **2a** (456.0 mg, 3 mmol)/toluene (3 mL) were added sequentially. Then the resulting mixture was stirred at 20 °C. After 22.5 h, the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: ethyl acetate (20 mL×3)), evaporation, and column chromatography on silica gel (petroleum ether (60 °C ~ 90 °C)/ethyl acetate = 80/1 (400 mL × 4) to 40/1 (400 mL × 2) to 20/1 (420 mL × 2)) afforded (*E*)-**3ba** (0.2137 g, 27%, purity = 98%) and (*Z*)-**3ba** (0.0265 g, 3%, purity = 80%)

(*E*)-**3ba**, the less polar isomer, liquid: ¹H NMR (600 MHz, CDCl₃) δ 7.83-7.76 (m, 2H, ArH), 7.62-7.57 (m, 1H, ArH), 7.51-7.45 (m, 2H, ArH), 6.45 (q, *J* = 1.2 Hz, 1H, =CH), 2.51 (t, *J* = 7.5 Hz, 2H, CH₂), 2.36 (d, *J* = 1.2 Hz, 3H, CH₃), 1.64-1.57 (m, 2H, CH₂), 1.34-1.23 (m, 6H, CH₂ × 3), 0.88 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.7, 198.4, 148.8, 135.9, 133.1, 130.8, 129.7, 128.5, 44.8, 31.5, 28.7, 23.7, 22.4, 15.7, 14.0; IR (neat) v (cm⁻¹) 3061, 3027, 2956, 2929, 2857, 1694, 1661, 1615, 1597, 1579, 1448, 1405, 1377, 1361, 1316, 1265, 1209, 1179, 1155, 1130, 1075, 1031, 1003; MS (70 ev, EI) m/z (%) 258 (M⁺, 38.90), 105 (100); HRMS calcd for C₁₇H₂₂O₂ (M⁺): 258.1620, found: 258.1621.

(*Z*)-**3ba**, the more polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.83 (m, 2H, ArH), 7.60-7.52 (m, 1H, ArH), 7.50-7.40 (m, 2H, ArH), 6.37 (q, *J* = 1.5 Hz, 1H, =CH), 2.44 (t, *J* = 7.4 Hz, 2H, CH₂), 2.12 (d, *J* = 1.5 Hz, 3H, CH₃), 1.56-1.43 (m, 2H, CH₂), 1.28-1.13 (m, 6H, CH₂ × 3), 0.84 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 199.4, 198.5, 153.7, 134.4, 133.3, 128.7, 128.3, 126.1, 42.9, 31.5, 28.7, 23.6, 22.4, 21.6, 14.0; IR (neat) v (cm⁻¹) 2955, 2929, 2857, 1674, 1615, 1583,

1449, 1405, 1370, 1310, 1239, 1159, 1123, 1076; MS (70 ev, EI) m/z (%) 258 (M⁺,
6.39), 105 (100); HRMS calcd for C₁₇H₂₂O₂ (M⁺): 258.1620, found: 258.1623.

(2) Reactions of (E)-3ba and (Z)-3ba in the presence of Cs₂CO₃ respectively

To a dry Schlenk tube was added Cs_2CO_3 (13.2 mg, 0.04 mmol) under N₂. Then dioxane (0.75 mL) and CH₂Cl₂ (0.25 mL) were added sequentially under N₂. The mixture was cooled to -10 °C, (*E*)-**3ba** (51.5 mg, 0.2 mmol, purity = 98%), CH₂Cl₂ (0.25 mL), and dioxane (0.75 mL) were added sequentially. The resulting mixture was stirred at -10 °C. After 12 h, the reaction mixture was filtrated through a short column of silica gel (eluent: ethyl acetate (15 mL×3)), evaporated, and analyzed by NMR with 7 µL of CH₂Br₂ as the internal standard. As a result, 93% of (*E*)-**3ba** was recovered and **5ba** was not formed.

Following the procedure for eq (1), the reaction of (*Z*)-**3ba** (26.0 mg, 0.08 mmol, purity = 80%) and Cs₂CO₃ (5.3 mg, 0.016 mmol) in dioxane (0.6 mL) and CH₂Cl₂ (0.2 mL) at -10 °C for 9 h afforded 81% recovery of (*Z*)-**3ba** without the formation of **5ba** as determined by NMR analysis.

(3) Reactions of (*E*)-3ba and (*Z*)-3ba in the presence of 1-ethyl-3-methylimidazolium tetrafluoroborate and Cs₂CO₃ respectively

To a dry Schlenk tube was added Cs_2CO_3 (13.1 mg, 0.04 mmol) under N₂. Then 1-ethyl-3-methylimidazolium tetrafluoroborate (8.0 mg, 0.04 mmol), dioxane (0.75 mL), and CH₂Cl₂ (0.25 mL) were added sequentially under N₂. The resulting mixture was stirred at rt. After 10 min, the mixture was cooled to -10 °C, (*E*)-**3ba** (52.3 mg, 0.2 mmol, purity = 98%), CH₂Cl₂ (0.25 mL), and dioxane (0.75 mL) were added sequentially. The resulting mixture was stirred at -10 °C. After 12 h, the reaction mixture was filtrated through a short column of silica gel (eluent: ethyl acetate (15 mL×3)), evaporated, and analyzed by NMR with 7 µL of CH₂Br₂ as the internal standard. As a result, 95% of (*E*)-**3ba** was recovered and the formation of **5ba** was not observed.

Following the procedure for eq (3), the reaction of (*Z*)-**3ba** (20.8 mg, 0.064 mmol, purity = 80%), 1-ethyl-3-methylimidazolium tetrafluoroborate (2.7 mg, 0.0128 mmol), Cs_2CO_3 (4.3 mg, 0.0128 mmol) in dioxane (0.48 mL), and CH_2Cl_2 (0.16 mL) at -10 °C for 13 h afforded 34% of **5ba**, 3% of **4ba**, and 41% recovery of (*Z*)-**3ba** as

determined by NMR analysis.

5. Preparation of (*E*)-3aa, 4aa, and (*Z*)-3aa (mdk-10-084)

To a dry Schlenk flask was added Cs₂CO₃ (12.9 mg, 0.04 mmol) under N₂. Then 1-butyl-3-methylimidazolium tetrafluoroborate (9.1 mg, 0.04 mmol) and toluene (1 mL) were added sequentially under N₂. The resulting mixture was stirred at 20 °C. After 10 min, **1a** (151.6 mg, 0.8 mmol), **2a** (60.5 mg, 0.4 mmol), and toluene (1 mL) were added sequentially. Then the resulting mixture was stirred at 20 °C. After 22.5 h, the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: ethyl ether (10 mL×3)), evaporation, and column chromatography on silica gel (petroleum ether (60 °C ~ 90 °C, redistillation)/ethyl acetate = 80/1 (400 mL × 2) to 60/1 (420 mL) to 40/1 (400 mL) to 20/1 (420 mL)) afforded (*E*)-**3aa** (0.0442 g, 33%), **4aa** (0.0048 g, 3%, purity = 83%), and (*Z*)-**3aa** (0.0042 g, 3%, purity = 66%) (in the order of polarity in silica gel column)

(*E*)-3aa, the less polar isomer, liquid: ¹H NMR (600 MHz, CDCl₃) δ 7.69-7.65
(m, 2H, ArH), 7.64-7.61 (m, 2H, ArH), 6.42 (q, *J* = 1.2 Hz, 1H, =CH), 2.51 (t, *J* = 7.5 Hz, 2H, CH₂), 2.34 (d, *J* = 1.2 Hz, 3H, CH₃), 1.64-1.57 (m, 2H, CH₂), 1.34-1.24 (m, 6H, CH₂ × 3), 0.88 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.6,

197.4, 148.4, 134.7, 131.9, 131.1, 128.3, 44.8, 31.5, 28.8, 23.7, 22.4, 15.6, 14.0; IR (neat) v (cm⁻¹) 2955, 2929, 2857, 1694, 1667, 1661, 1615, 1585, 1567, 1481, 1464, 1456, 1396, 1378, 1304, 1261, 1177, 1155, 1130, 1109, 1069, 1008; MS (70 ev, EI) m/z (%) 338 (M⁺(⁸¹Br), 12.47), 336 (M⁺(⁷⁹Br), 12.56), 113 (100); HRMS calcd for $C_{17}H_{21}^{79}BrO_2$ (M⁺): 336.0725, found: 336.0718.

4aa, the "middle" isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.68 (m, 2H, ArH), 7.62-7.56 (m, 2H, ArH), 5.90 (s, 1H, one proton from =CH₂), 5.72 (s, 1H, one proton from =CH₂), 3.63 (s, 2H, CH₂), 2.51 (t, *J* = 7.5 Hz, 2H, CH₂), 1.64-1.51 (m, 2H, CH₂), 1.36-1.19 (m, 6H, CH₂ × 3), 0.87 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 207.9, 196.3, 142.0, 136.0, 131.5, 131.3, 128.6, 127.3, 46.5, 42.7, 31.6, 28.8, 23.6, 22.5, 14.0; IR (neat) v (cm⁻¹) 2955, 2929, 2857, 1715, 1660, 1585, 1483, 1466, 1397, 1338, 1215, 1174, 1127, 1069, 1012; MS (70 ev, EI) m/z (%) 338 (M⁺(⁸¹Br), 15.50), 336 (M⁺(⁷⁹Br), 14.57), 43 (100); HRMS calcd for C₁₇H₂₁⁷⁹BrO₂ (M⁺): 336.0725, found: 336.0729.

(*Z*)-**3aa**, the more polar isomer, liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.76-7.68 (m, 2H, ArH), 7.63-7.54 (m, 2H, ArH), 6.37 (q, *J* = 1.6 Hz, 1H, =CH), 2.44 (t, *J* = 7.4 Hz, 2H, CH₂), 2.10 (d, *J* = 1.2 Hz, 3H, CH₃), 1.56-1.44 (m, 2H, CH₂), 1.35-1.15 (m, 6H, CH₂ × 3), 0.85 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 198.3, 153.1, 133.3, 132.1, 129.7, 128.4, 126.3, 42.9, 31.5, 28.8, 23.5, 22.4, 21.5, 14.0; IR (neat) v (cm⁻¹) 2954, 2928, 2857, 1674, 1616, 1585, 1483, 1441, 1394, 1370, 1244, 1158, 1070, 1010; MS (70 ev, EI) m/z (%) 338 (M⁺(⁸¹Br), 9.91), 336 (M⁺(⁷⁹Br), 9.01), 183 (100); HRMS calcd for C₁₇H₂₁⁷⁹BrO₂ (M⁺): 336.0725, found: 336.0733.

6. The deuterium-labeling experiment (mdk-10-125)

The reaction of **1b-D**⁸ (129.0 mg, 1.2 mmol, >99% D), **2a** (152.5 mg, 1 mmol), 1-ethyl-3-methylimidazolium tetrafluoroborate (40.6 mg, 0.2 mmol), and Cs_2CO_3 (65.3 mg, 0.2 mmol) in dioxane (7.5 mL) and dichloromethane (2.5 mL) at -10 °C for 22 h afforded **5ba-D** (184.5 mg, 71%, dr = 99:1) (petroleum ether (60 °C ~ 90 °C, redistillation)/ethyl acetate = 10/1 (440 mL) to 5/1 (480 mL)) (the dr of the crude product was 96:4 as determined via the NMR analysis) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.50-6.92 (m, 5H, ArH), 1.59-1.44 (m, 1H, one proton from CH₂), 1.39-0.90 (m, 6H, $CH_2 \times 3$), 0.90-0.69 (m, 4H, one proton from $CH_2 + CH_3$); the following signal is discernible for **5ba**: [6.14 (q, J = 1.5 Hz, 0.80H), 6.07 (q, J = 1.2Hz, 0.01H), 0.81H, =CH], 2.81 (s, 0.88H, OH), 2.60 (dd, $J_1 = 8.9$ Hz, $J_2 = 5.3$ Hz, 0.84H, CH), 1.93-1.86 (m, 2.66H, CH₃); IR (neat) v (cm⁻¹) 3432, 3087, 3060, 3028, 2955, 2931, 2860, 1694, 1625, 1602, 1492, 1448, 1375, 1317, 1302, 1247, 1233, 1205, 1176, 1127, 1099, 1067; MS (70 ev, EI) m/z (%) 259 (M⁺(D), 10.08), 258 (M⁺, 12.72), 187 (100); HRMS calcd for $C_{17}H_{21}DO_2(M^+)$: 259.1683, found: 259.1681.

References:

- 1 S. Ma, S. Yu and S. Yin, J. Org. Chem., 2003, 68, 8996.
- 2 B. Cazes and S. Julia, Synth. Commun., 1977, 7, 273.
- 3 A. Denichoux, F. Ferreira and F. Chemla, Org. Lett., 2004, 6, 3509.
- 4 N. Jin, T. Misaki and T. Sugimura, *Chem. Lett.*, 2013, **42**, 894.
- 5 (a) L. O. Davis and S. L. Tobey, *Tetrahedron Lett.*, 2010, 51, 6078; (b) J. Liu and
 S. Ma, *Tetrahedron*, 2013, 69, 10161.
- 6 (a) S. Ma, J. Liu, S. Li, B. Chen, J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J.

Ye, Q. Yu, W. Yuan and S. Yu, *Adv. Synth. Catal.*, 2011, **353**, 1005; (b) *US Pat.*, 8 748 669 B2, 2014; (c) *JP Pat.*, 5 496 366 B2, 2014; (d) *EP Pat.*, 2 599 765 B1, 2016.

- 7 J. Kuang, H. Luo and S. Ma, Adv. Synth. Catal., 2012, 354, 933.
- 8 H. Yuan, W. Yoo, H. Miyamura and S. Kobayashi, *J. Am. Chem. Soc.*, 2012, **134**, 13970.

,

