Supporting Information

Direct catalytic enantioselective Mannich-type reaction of dichloroacetonitrile using chiral bis(imidazoline)-Pd catalysts

Masaru Kondo,^{†,‡} Mami Sugimoto,[†] Shuichi Nakamura^{*,†,‡}

[†]Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)

‡Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)

Tel & Fax: 81-52-735-5245

CONTENTS:

General method	S2
Reaction Condition	S3
Synthesis of palladium-pincer complex with phebim	S4
General procedure for the reaction of α -dichloroacetonitrile with N-sulfonylimines catalyzed b	y chiral
phebim-Pd(II) complexes	S4
Characterization data of 3a , 3b , 3d-q , 5-8	S4-S11
MO calculation	S12
References	S15
¹ H, ¹⁹ F, ¹³ C NMR Spectra	316-S56
HPLC Charts	357 - 876

General Methods:

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm The TLC plates were visualized with UV light and 7% phosphomolybdic Merck silica-gel (60-F254). acid or *p*-anisaldehyde in ethanol/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 µm. Optical rotations were measured on a JASCO P-2200. ¹H NMR (300 MHz), ¹⁹F NMR (282 MHz) and ¹³C NMR (75.5 MHz) spectra for solution in CDCl₃ were recorded on a Varian Gemini-300 and Bruker Avance 500. Chemical shifts (δ) are expressed in ppm downfield from internal TMS, $CHCl_3$ or C_6F_6 . Infrared spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZnSe ATR unit. HRMS were recorded on a Waters SYNAPT HPLC analyses were performed on a JASCO PU-2080 Plus using 4.6 x 250 mm DAICEL G2 (ESI). CHIRALPAK IA-3[®], IC[®], ID, IE-3[®] column.

Table S1. Reaction condition

N ^S Ph ^H H	SO_2CH_3 CI + CI C	4a (5 AgOA Additi CN	mol%) \c (5 mol%) ve Temp., Tin		
1b	2a (1.5 ed	quiv.)			3D
Entry	Additive	Temp. (°C)	Time (h)	Yield (%)	Ee (%)
1	-	r.t.	21	16	53
2	K ₂ CO ₃ (20 mol%)	r.t.	21	99	53
3	K ₂ CO ₃ (20 mol%)	0	20	99	59

Entry	Additive	Temp. (°C)	Time (h)	Yield (%)	Ee (%)
1	K ₂ CO ₃ (20 mol%)	-20	24	99	91
2	K ₂ CO ₃ (20 mol%)	-40	24	75	92
3	K ₂ CO ₃ (20 mol%)	-60	144	30	94
4	Cs ₂ CO ₃ (20 mol%)	-60	144	55	84
5	HFIP (100 mol%)	-20	12	56	91

Synthesis of palladium-pincer complex with phebim:

Catalysts 4a-e were synthesized by using previous our method.¹

General procedure for the reaction of dichloroacetonitrile with *N*-sulfonylimines catalyzed by chiral phebim-Pd(II) complexes:

2a (8 μ L, 0.0996 mmol), *N*-sulfonylimine **1b** (12.2 mg, 0.0664 mmol), and K₂CO₃ (1.8 mg, 0.0133 mmol) were added to the mixture of Ag(acac) (0.7 mg, 3.32 μ mol), **4e** (3.2 mg, 3.32 μ mol) in THF (0.5 mL) at -20 °C. After disappearance of *N*-sulfonylimine **1a** monitored by TLC, it was passed through celite with THF. Filtration and removal of solvent under reduced pressure gave a residue, which was purified by column chromatography (Benzene/CH₃CN=95/5) giving **3a** (20.7 mg, 99%) as a white solid.

(3S)-2,2-Dichloro-3-phenyl-3-(toluenesulfonyl)aminopropionitrile (3a)

 $[\alpha]_D^{25}$ +12.3 (*c* 0.24, CHCl₃, 47% ee); mp = 207.9-208.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.32 (s, 3H), 5.06 (d, *J* = 10.5 Hz, 1H), 6.17-5.96 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 7.29-7.23 (m, 5H), 7.56 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.6, 67.6, 71.6, 114.2, 127.2, 128.7, 128.8. 129.6, 130.0, 132.2, 136.5, 144.2; IR (ATR) 3250, 3010, 2949, 2249, 1512, 1444, 1329, 1166, 923, 758, 703 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₆H₁₄Cl₂N₂NaO₂S [M+Na⁺]: 391.0050, found 391.0049; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 12.0 min (minor), 13.7 min (major).

(3S)-2,2-Dichloro-3-phenyl-3-(methanesulfonyl)aminopropionitrile (3b)

 $[\alpha]_D^{25}$ +44.5 (*c* 0.24, CHCl₃, 91% ee); mp = 123.2-123.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.88 (s, 3H), 5.23 (d, *J* = 9.9 Hz 1H), 6.14-6.11 (m, 1H), 7.53-7.42 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.6, 67.4, 71.7, 114.3, 128.8, 129.2, 130.6, 132.7; IR (ATR) 3243, 2924, 2853, 2249, 1584, 1457, 1440, 1325, 1165, 980, 757, 734 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₀H₁₀Cl₂N₂NaO₂S [M+Na⁺]: 314.9737, found 314.9736; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 11.9 min (major), 13.3 min (minor).

 $[\alpha]_D^{25}$ +29.2 (*c* 0.547, CHCl₃, 90% ee); mp = 95.2-95.8 °C; ¹H NMR (300 MHz, CDCl₃) δ -0.02 (s, 9H), 1.04-0.90 (m, 2H), 3.09-2.90 (m, 2H), 5.33 (d, *J* = 10.0 Hz, 1H), 6.24 (d, *J* = 10.0 Hz, 1H), 7.70-7.61 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃) δ -2.1, 10.4, 50.9, 67.4, 71.9, 114.4, 128.9, 129.0, 129.2, 130.5, 133.2; IR (ATR) 3262, 2956, 2923, 2307, 1460, 1316, 1253, 1149, 840, 795, 751 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₄H₂₀Cl₂N₂NaO₂SSi [M+Na⁺]: 401.0290, found 401.0272; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 9.0 min (major), 10.6 min (minor).

(3S)-2,2-Dichloro-3-(3-methoxyphenyl)-3-(methanesulfonyl)aminopropionitrile (3e)

 $[\alpha]_D^{25}$ +50.1 (*c* 0.437, CHCl₃, 90% ee); mp = 138.7-139.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.89 (s, 3H), 3.83 (s, 3H), 5.18 (d, *J* = 10.2 Hz, 1H), 6.13 (d, *J* = 10.2 Hz, 1H), 7.09-6.98 (m, 3H), 7.40-7.34 (m, 1H); ¹³C NMR (75.5MHz, CDCl₃) δ 42.6, 55.6, 67.4, 71.6, 114.4, 114.5, 115.9, 120.9, 130.3, 134.2,160.0; IR (ATR) 3244, 2946, 2929, 2310, 1494, 1328, 1159, 982, 777, 701 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₁H₁₂Cl₂N₂NaO₃S [M+Na⁺]: 344.9843, found 344.9836; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 10.6 min (major), 12.8 min (minor).

(3S)-2,2-Dichloro-3-(4-methylphenyl)-3-(methanesulfonyl)aminopropionitrile (3f)

 $[\alpha]_D^{25}$ +44.1 (*c* 0.503, CHCl₃, 83% ee); mp = 144.7-145.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.38 (s, 3H), 2.86 (s, 3H), 5.18 (d, *J* = 9.9 Hz, 1H), 6.06 (d, *J* = 9.9 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.4, 42.6, 67.2, 71.8, 114.4, 128.7, 129.7, 129.9, 140.8; IR (ATR) 3266, 2957, 2926, 2248, 1489, 1455, 1327, 973, 768, 721 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₁H₁₂Cl₂N₂O₂SNa [M+Na⁺]: 328.9894, found 328.9901; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 14.4 min (major), 17.8 min (minor).

(3S)-2,2-Dichloro-3-(3-methylphenyl)-3-(methanesulfonyl)aminopropionitrile (3g)

 $[\alpha]_D^{25}$ +50.7 (*c* 0.50, CHCl₃, 93% ee); mp = 98.0-98.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.38 (s, 3H), 2.88 (s, 3H), 5.18 (d, *J* = 9.9 Hz, 1H), 5.17 (d, *J* = 9.9 Hz, 1H), 6.03 (d, *J* = 9.9 Hz, 1H), 7.36-7.26 (m, 4H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.6, 42.6, 67.4, 71.7, 114.4, 125.7, 129.1, 129.5, 131.3, 132.7, 139.2; HRMS (ESI, positive) m/z calcd for C₁₁H₁₂Cl₂N₂NaO₂S [M+Na⁺]: 328.9894, found 328.9901; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 12.7 min (major), 15.7 min (minor).

(3S)-2,2-Dichloro-3-(2-methylphenyl)-3-(methanesulfonyl)aminopropionitrile (3h)

 $[\alpha]_D^{25}$ +66.7 (*c* 0.467, CHCl₃, 87% ee); mp = 140.7-141.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.54 (s, 3H), 2.87 (s, 3H), 5.60 (d, *J* = 9.9 Hz, 1H), 5.84 (br, 1H), 7.37-7.26 (m, 3H), 7.55 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 20.3, 42.7, 62.6, 72.7, 114.4, 126.3, 127.2, 130.3, 131.6, 132.5, 137.7; IR (ATR) 3260, 2970, 2925, 2250, 1492, 1435, 1336, 957, 750, 725 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₁H₁₂Cl₂N₂NaO₂S [M+Na⁺]: 328.9894, found 328.9899; HPLC (DAICEL CHIRALPAK IE-3[®], Hexane:*i*PrOH = 90:10, 1.0 mL/min, 225 nm) tR = 11.9 min (major), 14.2 min (minor).

(3S)-2,2-Dichloro-3-(3,5-dimethylphenyl)-3-(methanesulfonyl)aminopropionitrile (3i)

 $[\alpha]_D^{25}$ +37.6 (*c* 0.23, CHCl₃, 94% ee); mp = 153.2-154.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.34 (s, 6H), 2.90 (s, 3H) , 5.12 (d, *J* = 9.9 Hz, 1H) , 5.86 (d, *J* = 9.9 Hz, 2H) , 7.08 (s, 2H), 7.36 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.5, 42.6, 50.3, 67.5, 71.8, 114.4, 126.4, 128.5, 132.2, 132.8, 139.0; IR (ATR) 3255, 2954, 2925, 2250, 1497, 1489, 1333, 979, 770, 710 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₂H₁₄Cl₂N₂NaO₂S [M+Na⁺]: 343.0051, found 343.0051; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 10.6 min (major), 14.4 min (minor).

(3S)-2,2-Dichloro-3-(3-fluoromophenyl)-3-(methanesulfonyl)aminopropionitrile (3j)

[α]_D²⁵ +37.2 (*c* 0.343, CHCl₃, 80% ee); mp = 119.2-119.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.96 (s, 3H), 5.24 (d, *J* = 10.5 Hz, 1H), 6.15 (d, *J* = 10.5 Hz, 1H), 7.32-7.15 (m, 3H), 7.48-7.41 (m, 1H); ¹⁹F NMR (282 MHz, CDCl₃) δ -113.4; ¹³C NMR (75.5 MHz, CDCl₃) δ 42.7, 66.8 (d, *J*_{C-F} = 1.7 Hz), 71.3, 114.2, 116.0 (d, *J*_{C-F} = 23.3 Hz), 117.7 (d, *J*_{C-F} = 21.0 Hz), 128.6 (d, *J*_{C-F} = 3.3 Hz), 130.9 (d, *J*_{C-F} = 8.3 Hz), 163.8 (d, *J*_{C-F} = 251.7 Hz); IR (ATR) 3245, 2955, 2925, 2250, 1490, 1454, 1340, 1153, 970, 767, 743 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₀H₉Cl₂FN₂NaO₂S [M+Na⁺]: 332.9643, found 332.9649; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 7.9 min (major), 8.6 min (minor).

(3S)-2,2-Dichloro-3-(1-naphthyl)-3-(methanesulfonyl)aminopropionitrile (3k)

 $[\alpha]_D^{25}$ +40.4 (*c* 0.453, CHCl₃, 93% ee); mp = 163.2-163.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.80 (s, 3H), 6.12 (d, *J* = 9.6 Hz, 1H), 6.25 (d, *J* = 9.6 Hz, 1H), 7.71-7.65 (m, 2H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.96-7.91 (m, 1H), 8.21 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.6, 61.2, 71.9, 114.5, 122.6, 125.2, 125.4, 126.8, 127.9, 129.4, 130.1, 131.3, 131.6, 133.8; IR (ATR) 3253, 2961, 2925, 2253, 1513, 1332, 1160, 974, 775, 738 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₂Cl₂N₂NaO₂S [M+Na⁺]: 364.9894, found 364.9894; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 15.2 min (major), 17.4 min (minor).

(3S)-2,2-Dichloro-3-(2-naphthyl)-3-(methanesulfonyl)aminopropionitrile (3l)

 $[\alpha]_D^{25}$ +45.0 (*c* 0.387, CHCl₃, 85% ee); ¹H NMR (300 MHz, CDCl₃) δ 2.89 (s, 3H), 5.42-5.39 (m, 1H), 6.28 (d, *J* = 9.9 Hz, 1H), 7.60-7.53 (m, 3H), 7.93-7.85 (m, 3H), 7.99 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.7, 67.6, 71.8, 114.4, 124.9, 127.3, 127.8, 127.9, 128.6, 129.3, 129.4, 130.0, 132.8, 134.0; IR (ATR) 3267, 3025, 2931, 2248, 1510, 1436, 1325, 1156, 975, 809, 747 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₂Cl₂N₂NaO₂S [M+Na⁺]: 364.9894, found 364.9895; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 15.5 min (major), 21.3 min (minor).

(3S)-2,2-Dichloro-3-(3,4-methylenedioxyphenyl]-3-(methanesulfonyl)aminopropionitrile (3m)

 $[\alpha]_D^{25}$ +40.8 (*c* 0.583, CHCl₃, 94% ee); mp = 138.1-138.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.92 (s, 3H), 5.13 (d, *J* = 9.9 Hz, 1H), 6.09-5.93 (m, 3H), 6.84 (d, *J* = 8.4 Hz, 1H), 6.98-6.96 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.6, 67.2, 71.8, 102.0, 108.5, 108.7, 114.4, 123.4, 126.3, 148.4, 149.4; IR (ATR) 3230, 2960, 2924, 2250, 1492, 1326, 1159, 932, 768, 730 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₁H₁₀Cl₂N₂NaO₄S [M+Na⁺]: 358.9636, found 358.9637; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 14.0 min (major), 17.9 min (minor).

(3S)-2,2-Dichloro-3-(2-furyl)-3-(methanesulfonyl)aminopropionitrile (3n)

 $[\alpha]_D^{25}$ +37.2 (*c* 0.353, CHCl₃, 80% ee); mp = 110.4-111.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.01 (s, 3H), 5.35 (d, *J* = 9.9 Hz, 1H), 5.72 (d, *J* = 9.9 Hz, 1H), 6.51-6.43 (m, 1H), 6.70-6.60 (m, 1H), 7.56-7.47 (m, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.4, 62.0, 70.5, 111.3, 112.5, 114.1, 144.5, 145.2; IR (ATR) 3255, 2957, 2932, 2215, 1644, 1440, 1323, 1156, 978, 790, 755 cm⁻¹; HRMS (ESI) m/z calcd for C₈H₈Cl₂N₂NaO₃S [M+Na⁺]: 304.9530, found 304.9530; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 10.9 min (major), 13.5 min (minor).

(3S)-2,2-Dichloro-3-(3-furyl)-3-(methanesulfonyl)aminopropionitrile (3o)

 $[\alpha]_D^{25}$ +37.4 (*c* 0.397, CHCl₃, 93% ee); mp = 154.1-154.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.02 (s, 3H), 5.35 (d, *J* = 10.2 Hz, 1H), 5.73 (d, *J* = 10.2 Hz, 1H), 6.61 (s, 1H), 7.52-7.45 (m, 1H), 7.72-7.64 (m, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.8, 60.9, 71.6, 109.1, 114.5, 118.9, 142.6, 144.5; IR (ATR) 3250, 2958, 2930, 2250, 1586, 1323, 1155, 1110, 784, 748, 675 cm⁻¹; HRMS (ESI) m/z calcd for C₈H₈Cl₂N₂NaO₃S [M+Na⁺]: 304.9530, found 304.9530; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 10.3 min (major), 11.5 min (minor).

 $[\alpha]_D^{25}$ +48.3 (*c* 0.367, CHCl₃, 93% ee); mp = 152.2-152.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.95 (s, 3H), 5.53-5.56 (br, 2H), 7.08-7.11 (m, 1H), 7.34-7.35 (m, 1H), 7.45-7.47 (m, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.6, 63.8, 71.6, 114.3, 127.5, 128.3, 130.1, 134.8; IR (ATR) 3255, 2943, 2928, 2248, 1578, 1448, 1325, 976, 773, 720 cm⁻¹; HRMS (ESI) m/z calcd for C₈H₈Cl₂N₂NaO₂S₂ [M+Na⁺]: 320.9302, found 320.9313; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 12.4 min (major), 13.5 min (minor).

(3S)-2,2-Dichloro-3-(3-thienyl)-3-(methanesulfonyl)aminopropionitrile (3q)

HN^{-SO₂CH₃ TCN CI CI}

 $[\alpha]_D^{25}$ +52.0 (*c* 0.44, CHCl₃, 93% ee); mp = 154.4-155.4 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.92 (s, 3H), 5.38-5.33 (m, 1H), 6.08 (br, 1H), 7.28-7.27 (m, 1H), 7.45-7.42 (m, 1H), 7.58-7.57 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 42.5, 63.6, 71.5, 114.4, 126.6, 127.0, 127.6, 133.4; IR (ATR) 3253, 2936, 2852, 2338, 1528, 1441, 1324, 977, 773, 670 cm⁻¹; HRMS (ESI) m/z calcd for C₈H₈Cl₂N₂NaO₂S₂ [M+Na⁺]: 320.9302, found 320.9313; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 10.3 min (major), 11.3 min (minor).

(3R)-3-Phenyl-3-(methanesulfonyl)aminopropionitrile (5)

A mixture of **3b** (17.6 mg, 0.06 mmol), $CrCl_2$ (44.2 mg, 0.36 mmol) in THF (0.6 mL) was stirred for 8 h under nitrogen atmosphere. The reaction mixture was diluted with AcOEt and water, aqueous NaHCO₃. The mixture was extracted with AcOEt and washed with water, and dried over Na₂SO₄. Filtration and removal of solvent under reduced pressure gives a residue, which was purified by column chromatography (hexane/AcOEt = 70:30) to give compound **5** as a white solid (10 mg, 74%).

 $[\alpha]_D^{25}$ +34.8 (*c* 0.257, CHCl₃, 89% ee); mp = 88.4-89.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.84 (s, 3H), 2.88-2.97 (m, 2H), 4.96-5.06 (td, *J* = 7.2, 6.6 Hz, 1H), 5.38-5.55 (br, 1H), 7.37-7.48 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃) δ 26.9, 42.2, 54.3, 116.8, 126.4, 129.5, 129.7, 138.0; IR (ATR) 3276, 2970, 2925, 2252, 1497, 1337, 1142, 980, 760, 703 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₀H₁₂N₂NaO₂S

[M+Na⁺]: 247.0517, found 247.0518; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 70:30, 1.0 mL/min, 210 nm) tR = 24.4 min (major), 28.4 min (minor).

(2R,3S)- and (2S,3S) -2-Chloro-3-phenyl-3-(methanesulfonyl)aminopropionitrile (6)

A mixture of **3b** (35.2 mg, 0.12 mmol), CrCl₂ (44.2 mg, 0.36 mmol) in THF (1.2 mL) was stirred for 1 h under nitrogen atmosphere. The mixture was diluted with AcOEt and washed with water, and dried over Na₂SO₄. Filtration and removal of solvent under reduced pressure gives a residue, which was purified by column chromatography (hexane/AcOEt = 70:30) to give compound **6** as a white solid (31 mg, 97%). ¹H NMR (300 MHz, CDCl₃) δ 2.92 (s, 3H), 4.82-4.89 (m, 1H), 4.96-5.06 (m, 1H), 7.44-7.46 (m, 5H); ¹³C NMR (75.5MHz, CDCl₃) δ 42.3, 42.5, 47.4, 47.5, 60.1, 60.6, 114.8, 115.2, 127.3, 127.5, 129.5, 129.6, 134.3, 134.5; IR (ATR) 3283, 3023, 2963, 2300, 1457, 1320, 1162, 907, 774, 702 cm⁻¹; HRMS (ESI) m/z calcd for C₁₀H₁₁ClN₂NaO₂S [M+Na⁺]: 281.0128, found 281.0127; HPLC (DAICEL CHIRALPAK IC[®] and IE-3[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 33.6 min (major enantiomer for major-diastereomer), 40.5 min (minor enantiomer for minor-diastereomer).

(2R,3S)- and (2S,3S)-1-(Methanesulfonyl)-3-phenylaziridine-2-carbonitrile (7)

A mixture of **6** (29.8 mg, 0.115 mmol), K_2CO_3 (31.8, 0.23 mmol) in acetone (1.8 mL) was stirred at r.t. for 15 h under nitrogen atmosphere. Removal of solvent under reduced pressure gives a residue, which was purified by column chromatography (hexane/AcOEt = 75:25) to give compound **7** as a colorless oil (25.6 mg, 91%).

¹H NMR (300 MHz, CDCl₃) δ 3.19 (d, *J* = 3.9 Hz, 1H, minor-isomer), 3.24 (s, 3H), 3.63 (d, *J* = 6.9 Hz, 1H, major-isomer), 4.08 (d, *J* = 6.9 Hz, 1H, major-isomer), 4.26 (d, *J* = 3.9 Hz, 1H, minor-isomer), 7.31-7.44 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃) δ 31.0, 31.8, 40.3, 41.2, 44.2, 46.5, 113.2, 113.5, 126.6, 127.4, 129.1, 129.3, 129.7, 130.0, 131.4; IR (ATR) 3029, 2935, 2250, 1606, 1498, 1326, 1153, 794, 716, 697 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₀H₁₀N₂NaO₂S [M+Na⁺]: 245.0361, found 245.0366; HPLC (DAICEL CHIRALPAK ID[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 225 nm) tR = 11.7 min (major enantiomer for major-diastereomer), 13.8 min (minor enantiomer for major-diastereomer).

(3S)-2,2-Dichloro-3-phenyl-3-(methanesulfonyl)aminopropanamide (8)

A mixture of **3b** (13.7 mg, 0.0467 mmol), acetaldoxime (8.4 μ L, 0.14 mmol), and InCl₃·4H₂O (0.7 mg, 0.00234 mmol) in toluene (0.3 mL) was heated to 40 °C for 18 h under nitrogen atmosphere. Removal of solvent under reduced pressure gives a residue, which was purified by column chromatography (hexane/AcOEt = 40:60) to give compound **8** as a white solid (13.0 mg, 90%).

 $[\alpha]_D^{25}$ +47.2 (*c* 0.317, CHCl₃, 91% ee); mp = 178.2-179.0 °C; ¹H NMR (300 MHz, CD₃OD) δ 2.67 (s, 3H), 4.87-4.92 (m, 3H), 7.32-7.38 (m, 3H), 7.56-7.58 (m, 2H); ¹³C NMR (75.5 MHz, CD₃OD) δ 42.0, 66.6, 89.1, 129.2, 130.0, 130.8, 136.8, 169.1; IR (ATR) 3296, 2976, 2930, 2309, 1455, 1309, 1150, 927, 770, 707 cm⁻¹; HRMS (ESI, positive) m/z calcd for C₁₀H₁₂Cl₂N₂NaO₃S [M+Na⁺]: 332.9843, found 332.9843; HPLC (DAICEL CHIRALPAK IC[®], Hexane:*i*PrOH = 70:30, 1.0 mL/min, 225 nm) tR = 16.7 min (minor), 27.8 min (major).

MO Calculations:

The Cartesian Coordination of **4e**-Pd and **2a** using Gaussian 09 B3LYP/LANL2DZ was shown in Table S2.

Table S2.

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	46	0	0.036650	-0.553132	-0.034230
2	7	0	0.017983	1.557680	-0.040647
3	8	0	-3.977376	-4.722837	-0.325200
4	7	0	-1.959371	-0.962565	-0.331509
5	7	0	-3.699841	-2.412244	-0.463651
6	6	0	-3.063148	0.971992	-1.582873
7	6	0	0.092984	-5.278904	-0.026990
8	6	0	-2.749546	0.611463	-2.922587
9	6	0	0.058817	-2.502661	-0.027678
10	6	0	-4.444417	-3.596512	-0.606031
11	6	0	-3.128381	-0.057222	-0.454549
12	6	0	-2.298217	-2.245682	-0.309868
13	6	0	-1.168733	-3.200860	-0.162222
14	6	0	-6.646724	-0.142989	0.032266
15	6	0	-5.443601	-0.759933	0.479498
16	6	0	-3.363520	2.329562	-1.272943
17	6	0	-5.267537	-1.024353	1.870213
18	6	0	-7.656167	0.166854	0.966981
19	6	0	-3.332210	3.293504	-2.296841
20	6	0	-6.307031	-0.700489	2.764173
21	6	0	-4.353481	-1.046362	-0.555136
22	6	0	-5.861454	-3.464475	-1.139782
23	6	0	-7.512303	-0.108818	2.338323
24	6	0	-2.727267	1.613363	-3.914996
25	6	0	-3.003625	2.961423	-3.624638
26	6	0	-1.141891	-4.616361	-0.150301
27	8	0	4.150107	-4.618749	0.282590
28	7	0	2.037038	-0.914254	0.277830
29	7	0	3.807898	-2.319822	0.454513
30	6	0	3.041656	1.037176	1.573752

31	6	0	3.284208	2.409035	1.276920
32	6	0	4.579105	-3.486416	0.598317
33	6	0	3.178141	0.020427	0.440435
34	6	0	2.407405	-2.188261	0.267381
35	6	0	1.302829	-3.170733	0.110411
36	6	0	5.393209	-0.887419	-1.837529
37	6	0	5.531314	-0.623139	-0.442511
38	6	0	2.698929	0.656203	2.901122
39	6	0	6.710041	0.018888	0.033451
40	6	0	6.445978	-0.539045	-2.706422
41	6	0	2.587345	1.652946	3.892551
42	6	0	7.734048	0.352706	-0.876776
43	6	0	4.424949	-0.938159	0.566476
44	6	0	5.975510	-3.326864	1.176678
45	6	0	7.627944	0.077480	-2.251633
46	6	0	3.161215	3.367483	2.298748
47	6	0	2.799400	3.015166	3.612449
48	6	0	1.311218	-4.586187	0.097869
49	1	0	0.106348	-6.365452	-0.027797
50	1	0	-3.193647	0.488171	0.488275
51	1	0	-6.167419	-0.910036	3.823400
52	1	0	-4.785308	-0.961769	-1.552522
53	1	0	-2.473097	1.333045	-4.935890
54	1	0	-2.060651	-5.179722	-0.224931
55	1	0	6.335557	-0.749142	-3.768983
56	1	0	2.311110	1.357003	4.903326
57	1	0	2.243580	-5.127052	0.172600
58	1	0	3.255734	0.576278	-0.495127
59	1	0	4.831772	-0.846651	1.573692
60	6	0	0.003661	2.757449	-0.023685
61	6	0	0.132693	4.114465	0.033529
62	1	0	-6.243226	-4.474850	-1.297090
63	1	0	-6.512968	-2.940143	-0.433898
64	1	0	-5.882600	-2.917955	-2.090504
65	1	0	6.633774	-2.775818	0.497889
66	1	0	5.954143	-2.793846	2.135054
67	1	0	6.378730	-4.329354	1.331064
68	1	0	3.315833	4.415652	2.053376

69	1	0	8.630286	0.842276	-0.501293
70	1	0	-3.538162	4.331484	-2.046154
71	1	0	-8.571328	0.637517	0.613647
72	17	0	-0.538591	4.970318	1.531971
73	17	0	-0.094107	5.086484	-1.522447
74	6	0	-6.894673	0.217497	-1.427825
75	1	0	-6.123207	0.886253	-1.828633
76	1	0	-6.931246	-0.669131	-2.076933
77	1	0	-7.856852	0.729475	-1.530753
78	6	0	-4.005355	-1.643084	2.457326
79	1	0	-3.897824	-2.700173	2.184511
80	1	0	-3.092517	-1.129729	2.134302
81	1	0	-4.036214	-1.589562	3.550587
82	6	0	-8.605910	0.234546	3.332595
83	1	0	-8.268385	1.001268	4.043436
84	1	0	-9.499920	0.617965	2.828543
85	1	0	-8.901111	-0.644786	3.920385
86	6	0	-2.401635	-0.808284	-3.350707
87	1	0	-1.427210	-1.116415	-2.952516
88	1	0	-3.136990	-1.551452	-3.017268
89	1	0	-2.349944	-0.871742	-4.443120
90	6	0	-3.697449	2.795418	0.137967
91	1	0	-2.845192	2.663648	0.817220
92	1	0	-3.937359	3.862961	0.136164
93	1	0	-4.557431	2.263326	0.565745
94	6	0	-2.915204	4.034321	-4.692806
95	1	0	-2.035004	4.670037	-4.523679
96	1	0	-2.828549	3.599959	-5.695505
97	1	0	-3.795906	4.689701	-4.680119
98	6	0	2.408020	-0.780611	3.315276
99	1	0	1.458711	-1.132581	2.892800
100	1	0	3.185127	-1.487321	2.997954
101	1	0	2.332566	-0.851311	4.405920
102	6	0	3.650374	2.893467	-0.118717
103	1	0	2.820385	2.741961	-0.820459
104	1	0	3.852510	3.968392	-0.102706
105	1	0	4.539712	2.390747	-0.522129
106	6	0	2.611282	4.080148	4.676024

107	1	0	3.462381	4.773063	4.706671
108	1	0	1.713701	4.677639	4.464495
109	1	0	2.495324	3.639326	5.673012
110	6	0	6.915658	0.381358	1.499564
111	1	0	6.120519	1.032429	1.882822
112	1	0	6.956016	-0.505661	2.147941
113	1	0	7.863735	0.913923	1.626141
114	6	0	4.158403	-1.531051	-2.455207
115	1	0	4.067700	-2.591445	-2.189013
116	1	0	3.227934	-1.038695	-2.150535
117	1	0	4.212586	-1.472182	-3.547293
118	6	0	8.735758	0.448782	-3.219829
119	1	0	8.405808	1.230702	-3.917713
120	1	0	9.619521	0.824782	-2.692583
121	1	0	9.044607	-0.414957	-3.823297

References

a) K. Hyodo, S. Nakamura, K. Tsuji, T. Ogawa, Y. Funahashi, N. Shibata, *Adv. Synth. Catal.* 2011, 353, 3385–3390; b) K. Hyodo, S. Nakamura, N. Shibata, *Angew. Chem. Int. Ed.* 2012, 51, 10337–10341.

¹H-NMR

¹³C-NMR

¹H-NMR

220

S-33

S-34

¹³C-NMR

¹H-NMR

¹³C-NMR

¹³C-NMR

¹H-NMR

¹³C-NMR

S-55

(3S)-3-Phenyl-2,2-dichloro-3-(toluenesulfonyl)aminopropionitrile (3a)

racemic-3a

(S)-**3**a

racemic-3a			(S)-3a	
Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	12.8	50.1	1	12.0	26.6
2	14.9	49.9	2	13.7	73.4

(3S) -2,2-Dichloro -3-phenyl -3-(methanesulfonyl)aminopropionitrile (3b)

racemic-3b

(S)-**3b**

 racemic-3b			(S)- 3b	
Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	11.9	49.9	1	11.99	95.5
2	13.6	50.1	2	13.3	4.2

(3S) -2,2-Dichloro -3-phenyl -3-{2-(trimethylsilyl)ethanesulfonyl}aminopropionitrile (3d)

racemic-3d

(S)-**3d**

racemic-3d			(S) -3d	
Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	9.6	50.0	1	9.0	95.2
2	11.3	50.0	2	10.6	4.8

(3S) -2,2-Dichloro -3-(3-methoxyphenyl) -3-(methanesulfonyl)aminopropionitrile (3e)

racemic-3e

(*S*)-3e

racemic-3e				
Peak	tR (min)	Area (%)		
1	11.8	50.1		
2	14.5	49.9		

((<i>S</i>)- 3 e				
Peak	tR (min)	Area (%)			
1	11.8	94.8			
2	14.5	5.2			

(3S) -2,2-Dichloro -3-(4-methyl) -3-(methanesulfonyl)aminopropionitrile (3f)

racemic-3f

(S)-**3f**

race	racemic-3f				
Peak	tR (min)	Area (%)			
1	11.5	50.2			
2	13.8	49.8			

	(<i>S</i>)- 3 f				
Peak	tR (min)	Area (%)			
1	11.4	91.6			
2	13.8	8.4			

(3S) -2,2-Dichloro -3-(3-methyl) -3-(methanesulfonyl)aminopropionitrile (3g)

racemic-3g

(S)-**3g**

race	racemic- 3 g				
Peak	tR (min)	Area (%)			
1	10.6	50.2			
2	13.0	49.8			

 (S)- 3 g				
Peak	tR (min)	Area (%)		
1	10.6	96.5		
2	13.0	3.5		

(3S) -2,2-Dichloro -3-(2-methyl) -3-(methanesulfonyl)aminopropionitrile (3h)

racemic-3h

(S)-**3h**

racemic-3h				
Peak	tR (min)	Area (%)		
1	12.0	49.9		
2	14.2	50.1		

(S)- 3h				
Peak	tR (min)	Area (%)		
1	11.9	93.4		
2	14.2	6.6		

(3S) -2,2-Dichloro -3-(3,5-dimethylphenyl) -3-(methanesulfonyl)aminopropionitrile (3i)

racemic-3i

(S)-**3i**

racemic-3i				
Peak	tR (min)	Area (%)		
1	10.6	50.1		
2	14.4	49.9		

((S)- 3i	
Peak	tR (min)	Area (%)
1	10.6	96.9
2	14.4	3.1

(3S) -2,2-Dichloro -3-(3-fluoromophenyl) -3-(methanesulfonyl)aminopropionitrile (3j)

racemic-3j

(S)-**3j**

race	racemic-3j		
Peak	tR (min)	Area (%)	
1	8.9	50.0	
2	9.7	50.0	

((S)- 3 j	
Peak	tR (min)	Area (%)
1	7.9	89.9
2	8.6	10.1

(3S)-2,2-Dichloro-3-(1-naphthyl)-3-(methanesulfonyl)aminopropionitrile (3k)

racemic-3k

(S)-**3**k

race	emic-3k	
Peak	tR (min)	Area (%)
1	15.4	49.9
2	17.7	50.1

(S) -3k	
Peak	tR (min)	Area (%)
1	15.2	96.7
2	17.4	3.3

(3S)-2,2-Dichloro-3-(2-naphthyl)-3-(methanesulfonyl)aminopropionitrile (3l)

racemic-31

(S)-**3**1

rac	emic-31	
Peak	tR (min)	Area (%)
1	14.5	49.9
2	19.3	50.1

	((S)- 3 1	
]	Peak	tR (min)	Area (%)
	1	15.5	92.5
	2	21.3	7.5

(3S) -2,2-dichloro-3-(4,5-Methylenedioxyphenyl) -3-(methanesulfonyl)aminopropionitrile (3m)

racemic-3m

(*S*)-**3**m

racemic-3m		
Peak	tR (min)	Area (%)
1	14.6	50.1
2	18.1	49.9

(.	S)- 3m	
Peak	tR (min)	Area (%)
1	14.0	97.1
2	17.9	2.9

(3S)-2,2-Dichloro-3-(2-furyl)-3-(methanesulfonyl)aminopropionitrile (3n)

racemic-3n

(S)-**3**n

race	racemic- 3n		
Peak	tR (min)	Area (%)	
1	9.9	50.0	
2	12.6	50.0	

(<i>S</i>)- 3 n	
Peak	tR (min)	Area (%)
1	10.9	89.9
2	13.5	10.1

(3S)-2,2-Dichloro-3-(3-furyl)-3-(methanesulfonyl)aminopropionitrile (3o)

racemic-30

(S)**-30**

racemic-30		
Peak	tR (min)	Area (%)
1	10.7	50.0
2	12.0	49.9

((<i>S</i>)- 3 0	
Peak	tR (min)	Area (%)
1	10.3	96.4
2	11.5	3.6

(3S)-2,2-Dichloro-3-(2-thienyl)-3-(methanesulfonyl)aminopropionitrile (3p)

racemic-3p

(S)-**3**p

racemic- 3 p		
Peak	tR (min)	Area (%)
1	12.8	50.0
2	13.9	50.0

((<i>S</i>)- 3 p		
Peak	tR (min)	Area (%)	
1	12.4	96.5	
2	13.5	3.5	

(3S)-2,2-Dichloro-3-(3-thienyl)-3-(methanesulfonyl)aminopropionitrile (3q)

racemic-3q

(S)-**3**q

racemic-3q		
Peak	tR (min)	Area (%)
1	12.0	49.8
2	12.9	50.2

((<i>S</i>)-3q		
Peak	tR (min)	Area (%)	
1	10.3	96.7	
2	11.3	3.3	
(3R)-3-Phenyl-3-(methanesulfonyl)aminopropionitrile (5)

racemic-5

(*R*)-5

racemic-5		
Peak	tR (min)	Area (%)
1	21.0	50.1
2	24.3	49.9

(<i>R</i>)- 5		
Peak	tR (min)	Area (%)
1	20.9	94.4
2	24.2	5.6

(3S) -2-Chloro -3-phenyl-3-(methanesulfonyl)aminopropionitrile (6)

racemic-6

(S)-**6**

racemic-6		
Peak	tR (min)	Area (%)
1	32.9	30.2
2	39.4	19.4
3	41.8	19.8
4	45.5	30.7

(<i>S</i>)-6		
Peak	tR (min)	Area (%)
1	33.6	64.5
2	40.5	1.7
3	42.6	29.8
4	46.8	4.0

racemic-7

(*S*)-7

•	_
racemic	-7

Peak	tR (min)	Area (%)
1	11.7	26.5
2	13.7	26.8
3	18.2	23.5
4	23.0	23.3

(<i>S</i>)-7		
Peak	tR (min)	Area (%)
1	11.7	47.6
2	13.8	3.0
3	17.8	46.6
4	22.7	2.8

(3S)-3-Phenyl-2,2-dichloro-3-(methanesulfonyl) aminopropionamide (8)

racemic-8

(S)-**8**

racemic-8		
Peak	tR (min)	Area (%)
1	16.5	50.0
2	27.8	50.0

(<i>S</i>)- 8		
Peak	tR (min)	Area (%)
1	16.7	4.4
2	27.8	95.6