Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Highly efficient reduction of carbon dioxide with a borane catalyzed by bis(phosphinite) pincer ligated palladium thiolate complexes

Qiang-Qiang Ma,^a Ting Liu,^a Shujun Li,^a Jie Zhang,^{*a} Xuenian Chen^{*a} and Hairong Guan^{*b}

^aSchool of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and

Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China.

^bDepartment of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, OH 45221-0172,

USA

E-mails: jie.zhang@htu.edu.cn (J.Z.); xnchen@htu.edu.cn (X.C.); hairong.guan@uc.edu (H.G.)

General information for synthesis and characterization	1
Syntheses of $[2,6-(R_2PO)_2C_6H_3]PdSY$ (1-4)	1-3
X-ray structure determination of complexes 1 , 2 and 3	3
Table S1 Summary of crystal data and structure refinement for complexes 1, 2 and 3	4
Fig. S1: ORTEP drawing of complex 2	4
Table S2-S4: Bond lengths and angles for complexes 1, 2 and 3	5-8
Catalytic hydroboration of CO_2 with complexes 1 , 2 and 3	9
Figs S2-S7: NMR spectra for catalytic hydroboration of CO ₂	10-12

General information for synthesis and characterization

Unless otherwise indicated, all the syntheses were carried out under a nitrogen atmosphere using standard Schlenk and glove box techniques. Solvents used for the reactions were degassed and dried using standard procedures. Benzene- d_6 was distilled from Na and benzophenone under a nitrogen atmosphere. Catecholborane was purchased from Sigma-Aldrich and purified by vacuum distillation. ¹H, ¹¹B and ³¹P NMR spectra were recorded on a Bruker Advance 400 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker Advance 400 MHz or a Bruker AVANCE III 600 MHz spectrometer. Mass spectra were performed on a Bruker micrOTOF II instrument. Palladium chloride complexes [2,6-(R₂PO)₂C₆H₃]PdCl (R = ^tBu, ⁱPr, Ph) were synthesized according to published procedures.¹⁻³

Synthesis of [2,6-(ⁱPr₂PO)₂C₆H₃]PdSPh (1)

To a suspension of NaH (240 mg, 10.0 mmol) in 20 mL of THF was added thiophenol dropwise (1.0 mL, 10.0 mmol) at 0 °C under a nitrogen atmosphere. The resulting mixture was warmed to room temperature and stirred for 1 h. A solution of [2,6-(ⁱPr₂PO)₂C₆H₃]PdCl (966.5 mg, 2 mmol) in THF (10 mL) was then added. The mixture was refluxed under a nitrogen atmosphere for 36 h. After cooling to room temperature, the mixture was filtered through a pad of Celite and the volatiles were removed under vacuum. The residue was extracted with hexane for three times (20 mL \times 3) and the combined hexane solution was concentrated followed by recrystallization to produce complex 1 as an orange crystalline solid (947 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, δ): 7.46 (d, 2H, ArH, J = 7.2 Hz), 6.95-7.02 (m, 3H, ArH), 6.90 (t, 1H, ArH, J = 7.4 Hz), 6.56 (d, 2H, ArH, J = 7.9 Hz), 2.09-2.20 (m, 4H, CH(CH₃)₂), 1.20–1.28 (m, 24H, CH(CH₃)₂). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃, δ): 165.88 (t, ArC, J = 6.2 Hz), 148.20 (t, ArC, J = 4.4 Hz), 134.73 (t, ArC, J = 4.3 Hz), 134.06 (s, ArC), 128.12 (s, ArC), 127.36 (s, ArC), 122.73 (s, ArC), 105.58 (t, ArC, J = 7.0 Hz), 29.13 (t, CH(CH₃)₂, J = 12.0 Hz), 17.32 (t, CH(CH₃)₂, J = 3.3 Hz), 16.74 (s, CH(CH₃)₂). ¹³C{¹H} NMR (151 MHz, C₆D₆, δ): 166.41 (t, ArC, J = 6.4 Hz), 150.66 (t, ArC, J = 4.5 Hz), 135.63 (t, ArC, J = 3.6 Hz), 134.52 (s, ArC), 128.35 (s, ArC), 127.53 (s, ArC), 122.58 (s, ArC), 106.03 (t, J = 6.9 Hz, ArC), 29.30 (t, $CH(CH_3)_2$, J = 11.1 Hz), 17.25 (t, $CH(CH_3)_2$, J = 3.3 Hz), 16.63 (s, $CH(CH_3)_2$). ³¹P{¹H} NMR (162) MHz, C_6D_6 , δ): 189.69 (s). HRMS (ESI): m/z Calculated for $C_{24}H_{36}O_2P_2PdS + Na^+ [M + Na]^+$ 579.0854, found 579.0847.

Synthesis of $[2,6-(^{t}Bu_{2}PO)_{2}C_{6}H_{3}]PdSPh(2)$

Complex 2 was prepared from $[2,6-(^{t}Bu_{2}PO)_{2}C_{6}H_{3}]PdCl$, thiophenol and NaH in 80% yield as a bright yellow crystalline solid by procedures similar to those used for complex 1. ¹H NMR (400 MHz, CDCl₃, δ): 7.47 (d, 2H, ArH, J = 7.1 Hz), 6.95-7.00 (m, 3H, ArH), 6.87 (t, 1H, ArH, J = 7.1Hz), 6.56 (d, 2H, ArH, J = 7.6 Hz), 1.31–1.33 (m, 36H, C(CH₃)₃). ¹³C{¹H} NMR (151 MHz, C₆D₆, δ): 167.12 (t, ArC, J = 5.5 Hz), 149.85 (t, ArC, J = 1.8 Hz), 135.30 (t, ArC, J = 2.5 Hz), 134.57 (s, ArC), 128.58 (s, ArC), 128.35 (s, ArC), 122.13 (s, ArC), 105.74 (t, ArC, J = 7.1 Hz), 39.98 (t, $C(CH_3)_3$, J = 7.7 Hz), 27.81 (t, $C(CH_3)_3$, J = 3.6 Hz). ³¹P{¹H} NMR (162 MHz, C_6D_6 , δ): 192.36 (s). HRMS (ESI): m/z Calculated for $C_{28}H_{44}O_2P_2PdS + Na^+ [M + Na]^+ 635.1482$, found 635.1475.

Synthesis of $[2,6-(Ph_2PO)_2C_6H_3]PdSPh$ (3)

Complex 3 was prepared from $[2,6-(Ph_2PO)_2C_6H_3]PdCl$, thiophenol and NaH as a yellow crystalline solid in 80% yield by procedures similar to those used for complex **1**. ¹H NMR (400 MHz, CDCl₃, δ): 7.76-7.80 (m, 8H, ArH), 7.33-7.48 (m, 12H, ArH), 7.06 – 7.18 (m, 3H, ArH), 6.77 (d, 2H, Ar*H*, J = 8.0 Hz), 6.61 (t, 1H, Ar*H*, J = 7.3 Hz), 6.52 (t, 2H, Ar*H*, J = 7.6 Hz). ¹³C{¹H} NMR (151 MHz, C_6D_6 , δ): 164.84 (t, ArC, J = 7.6 Hz), 148.12 (t, ArC, J = 3.7 Hz), 138.08 (t, ArC, J = 5.0 Hz), 134.15 (t, ArC, J = 25.8 Hz), 134.10 (s, ArC), 132.32 (t, ArC, J = 8.2 Hz), 131.75 (s, ArC), 128.94 (t, ArC, J = 5.1 Hz), 128.39 (s, ArC), 127.62 (s, ArC), 122.29 (s, ArC), 107.38 (t, ArC, J = 7.8 Hz). $^{31}P{^{1}H}$ NMR (162 MHz, CDCl₃, δ): 147.78 (s). HRMS (ESI): m/z Calculated for C₃₆H₂₈O₂P₂PdS $+ Na^{+} [M + Na]^{+} 715.0225$, found 715.0225.

Synthesis of [2.6-(ⁱPr₂PO)₂C₆H₃]PdSCH₂Ph (4)

Complex 4 was prepared from $[2,6-({}^{i}Pr_{2}PO)_{2}C_{6}H_{3}]PdCl$, benzenemethanethiol and NaH as a pale yellow crystalline solid in 78% yield by procedures similar to those used for complex 1. ¹H NMR (400 MHz, CDCl₃, δ): 7.41 (d, 2H, ArH, J = 7.4 Hz), 7.22 – 7.26 (m, 2H, ArH), 7.12 (t, 1H, ArH, J = 5.6 Hz), 6.95 (t, 1H, ArH, J = 8.0 Hz), 6.56 (d, 2H, ArH, J = 7.9 Hz), 3.89 (s, 2H, CH₂), 2.34-2.41(m, 4H, CH(CH₃)₂), 1.24 – 1.38 (m, 24H, CH(CH₃)₂). $^{13}C{^{1}H}$ NMR (151 MHz, C₆D₆, δ): 166.03 (t, ArC, J = 6.6 Hz), 147.07 (s, ArC), 136.67 (s, ArC), 131.65 (s, ArC), 129.08 (s, ArC), 128.35 (s, ArC), 125.98 (s, ArC), 105.92 (t, ArC, J = 7.1 Hz), 38.88 (t, SCH₂, J = 7.2 Hz), 29.51 (t, $CH(CH_3)_2$, J = 11.9 Hz), 17.31 (t, $CH(CH_3)_2$, J = 3.5 Hz), 16.66 (s, $CH(CH_3)_2$). ³¹P{¹H} NMR (162) 2

MHz, CDCl₃, δ): 191.39 (s). HRMS (ESI): m/z Calculated for C₂₅H₃₈O₂P₂PdS + Na⁺ [M + Na]⁺ 593.1004, found 593.1004.

X-ray structure determination of complexes 1, 2 and 3

Single crystals of complexes 1, 2 and 3 were obtained from crystallization in *n*-hexane. Intensity data were collected at 296 K on a Bruker SMART6000 CCD diffractometer using graphite-monochromated MoK α radiation, $\lambda = 0.71073$ Å. The frames were integrated with the Bruker APEX2 software package using a narrow-frame algorithm. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structures were solved by a combination of direct methods in SHELXTL and the difference Fourier technique and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model. No solvent of crystallization is present in the lattice for any of the structures. Crystal data collection and refinement parameters are summarized in Table S1. The structure of **2** is shown in Figs S1; bond lengths and angles are provided in Tables S2-S4 respectively.

	1	2	3
Empirical formula	$C_{24}H_{36}O_2P_2PdS$	$C_{28}H_{44}O_2P_2PdS$	$C_{36}H_{28}O_2P_2PdS$
Formula weight	556.93	613.03	692.98
Temp, K	296(2)	296(2)	296(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P -1	P -1	P -1
<i>a</i> , Å	8.7065(15)	8.6167(9)	9.0944(7)
b, Å	11.0937(19)	11.5992(12)	11.4218(9)
<i>c</i> , Å	15.130(3)	16.4263(17)	15.9032(12)
α()	73.3056(17)	77.1791(12)	95.9441(8)
β ()	80.9582(19)	79.8629(14)	103.4741(8)
γ(⁹	74.8990(18)	73.9166(13)	102.0487(8)
Volume, Å ³	1346.1(4)	1526.6(3)	1550.8(2)
Z	2	2	2
$d_{\rm calc}$, g cm ⁻³	1.374	1.334	1.484
λ, Å	0.71073	0.71073	0.71073
μ , mm ⁻¹	0.903	0.803	0.801
No. of data collected	4807	7086	7119
No. of unique data	4369	4867	5718
$R_{\rm int}$	0.0172	0.0350	0.0175
Goodness-of-fit on F^2	1.015	1.088	1.055
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0235, 0.0657	0.0481, 0.0950	0.0325, 0.0805
R_1 , w R_2 (all data)	0.0286, 0.0757	0.0776, 0.1175	0.0401, 0.0879

 Table S1 Summary of crystal data and structure refinement for complexes 1, 2 and 3

Figure S1 ORTEP drawing of $[2,6-(^{t}Bu_{2}PO)_{2}C_{6}H_{3}]PdSPh$ (2) at the 50 % probability level. Hydrogen atoms are omitted for clarity.

	10010 02 2 0110 10180			
C1-C23	1.368(6)	C12-C18	1.518(4)	
C1-C15	1.382(5)	C12-C22	1.529(5)	
C2-C4	1.518(4)	C12-P1	1.823(3)	
C2-C3	1.529(5)	C13-C20	1.526(5)	
C2-P2	1.830(3)	C13-C24	1.528(5)	
C5-C6	1.391(3)	C13-P1	1.827(3)	
C5-C7	1.391(3)	C14-C25	1.512(6)	
C5-Pd1	2.015(2)	C14-C21	1.536(4)	
C6-C10	1.380(4)	C14-P2	1.827(3)	
C6-O1	1.397(3)	C16-C19	1.386(5)	
C7-C11	1.385(4)	C19-C23	1.361(5)	
C7-O2	1.393(3)	O2-P2	1.6558(19)	
C8-C15	1.385(4)	O1-P1	1.6570(18)	
C8-C16	1.385(4)	P1-Pd1	2.2775(7)	
C8-S1	1.772(3)	P2-Pd1	2.2871(6)	
C10-C17	1.387(4)	Pd1-S1	2.3674(7)	
C11-C17	1.381(4)			
C23-C1-C15	121.3(4)	C1-C15-C8	120.4(3)	
C4-C2-C3	111.0(3)	C8-C16-C19	120.9(3)	
C4-C2-P2	114.9(2)	C11-C17-C10	121.6(3)	
C3-C2-P2	108.7(2)	C23-C19-C16	120.8(3)	
C6-C5-C7	116.4(2)	C19-C23-C1	118.8(3)	
C6-C5-Pd1	121.19(18)	C7-O2-P2	114.47(15)	
C7-C5-Pd1	122.39(18)	C6-O1-P1	114.79(15)	
C10-C6-C5	122.8(2)	O1-P1-C12	102.89(11)	
C10-C6-O1	118.5(2)	O1-P1-C13	101.11(13)	
C5-C6-O1	118.7(2)	C12-P1-C13	107.21(13	
C11-C7-C5	122.9(2)	O1-P1-Pd1	105.04(6)	
C11-C7-O2	119.1(2)	C12-P1-Pd1	116.15(9)	
C5-C7-O2	117.9(2)	C13-P1-Pd1	121.60(10)	
C15-C8-C16	117.7(3)	O2-P2-C14	101.90(13)	
C15-C8-S1	119.7(2)	O2-P2-C2	100.52(12)	
C16-C8-S1	122.5(2)	C14-P2-C2	107.91(14)	
C6-C10-C17	118.3(3)	O2-P2-Pd1	105.31(7)	
C17-C11-C7	118.0(2)	C14-P2-Pd1	113.56(10)	
C18-C12-C22	111.5(3)	C2-P2-Pd1	124.33(10)	
C18-C12-P1	113.5(2)	C5-Pd1-P1	80.27(7)	
C22-C12-P1	109.6(2)	C5-Pd1-P2	79.16(7)	
C20-C13-C24	112.5(4)	P1-Pd1-P2	158.25(3)	
C20-C13-P1	110.7(2)	C5-Pd1-S1	174.54(7)	
C24-C13-P1	109.2(2)	P1-Pd1-S1	95.26(3)	
C25-C14-C21	111.9(3)	P2-Pd1-S1	104.85(3)	

Table S2 Bond lengths (Å) and angles () for complex 1

C25-C14-P2	110.4(3)	C8-S1-Pd1	109.98(8)	
C21-C14-P2	109.6(2)			

Table S3 Bond lengths (Å) and angles (\degree) for complex 2					
Pd1-C1	2.000(4)	C7-C8	1.382(6)		
Pd1-P1	2.2833(12)	C13-C14	1.529(7)		
Pd1-P2	2.3193(11)	C13-C16	1.535(7)		
Pd1-S1	2.3745(12)	C13-C15	1.545(7)		
P2-O3	1.654(3)	C21-C23	1.516(7)		
P2-C21	1.862(5)	C21-C22	1.528(7)		
P2-C13	1.869(5)	C21-C24	1.539(7)		
P1-O1	1.653(3)	C5-C6	1.372(6)		
P1-C25	1.841(6)	C17-C18	1.525(7)		
P1-C17	1.880(6)	C17-C19	1.525(9)		
S1-C7	1.752(5)	C17-C20	1.532(7)		
O3-C2	1.390(5)	C8-C12	1.381(7)		
O1-C3	1.393(5)	C9-C12	1.360(8)		
C1-C2	1.386(5)	C9-C11	1.385(8)		
C1-C3	1.393(6)	C10-C11	1.373(7)		
C2-C5	1.389(6)	C25-C26	1.527(8)		
C3-C4	1.372(6)	C25-C27	1.532(10)		
C4-C6	1.386(6)	C25-C28	1.542(8)		
C7-C10	1.374(7)				
C1-Pd1-P1	80.15(12)	C8-C7-S1	118.5(4)		
C1-Pd1-P2	79.70(12)	C14-C13-C16	109.4(4)		
P1-Pd1-P2	159.79(4)	C14-C13-C15	110.0(4)		
C1-Pd1-S1	168.53(13)	C16-C13-C15	108.5(5)		
P1-Pd1-S1	94.31(4)	C14-C13-P2	110.9(4)		
P2-Pd1-S1	105.80(4)	C16-C13-P2	113.1(4)		
O3-P2-C21	100.7(2)	C15-C13-P2	104.9(3)		
O3-P2-C13	99.6(2)	C23-C21-C22	110.8(4)		
C21-P2-C13	113.4(2)	C23-C21-C24	108.2(5)		
O3-P2-Pd1	103.65(11)	C22-C21-C24	109.3(4)		
C21-P2-Pd1	116.22(17)	C23-C21-P2	110.9(4)		
C13-P2-Pd1	119.05(16)	C22-C21-P2	113.3(4)		
O1-P1-C25	100.7(2)	C24-C21-P2	104.1(3)		
O1-P1-C17	101.3(2)	C6-C5-C2	119.3(4)		
C25-P1-C17	114.3(3)	C5-C6-C4	120.6(4)		
O1-P1-Pd1	104.49(11)	C18-C17-C19	109.2(6)		
C25-P1-Pd1	118.4(2)	C18-C17-C20	109.7(4)		
C17-P1-Pd1	114.42(19	C19-C17-C20	109.0(5)		
C7-S1-Pd1	113.45(16)	C18-C17-P1	110.4(4)		
C2-O3-P2	115.8(2)	C19-C17-P1	105.0(3)		

C3-O1-P1	115.6(3)	C20-C17-P1	113.4(5)	
C2-C1-C3	115.4(4)	C12-C8-C7	120.3(5)	
C2-C1-Pd1	122.3(3)	C12-C9-C11	118.8(5)	
C3-C1-Pd1	122.0(3)	C11-C10-C7	121.5(5)	
C1-C2-O3	118.2(4)	C10-C11-C9	120.0(6)	
C1-C2-C5	122.5(4)	C9-C12-C8	121.2(5)	
O3-C2-C5	119.2(4)	C26-C25-C27	106.2(6)	
C4-C3-O1	118.3(4)	C26-C25-C28	110.4(5)	
C4-C3-C1	124.1(4)	C27-C25-C28	110.2(6)	
O1-C3-C1	117.6(4)	C26-C25-P1	112.2(4)	
C3-C4-C6	118.1(4)	C27 C25 P1	104.1(4)	
C10-C7-C8	118.2(5)	C28 C25 P1	113.3(5)	
C10-C7-S1	123.3(4)			

Table S4 Bond lengths	(Å)	and angles (0) for	comp	lex 3
	1 4 4 7	und unglob		, 101	COMP	10^{1}

	U		1	
C1-C6	1.380(4)	C20-C21	1.389(5)	
C1-C2	1.393(4)	C21-C22	1.388(4)	
C1-Pd1	2.014(3)	C22-C23	1.389(4)	
C2-C3	1.386(4)	C22-P1	1.804(3)	
C2-O2	1.396(3)	C23-C24	1.381(5)	
C3-C5	1.383(4)	C25-C26	1.367(6)	
C4-C6	1.384(4)	C25-C29	1.387(5)	
C4-C5	1.390(4)	C26-C27	1.354(6)	
C6-O1	1.393(3)	C27-C28	1.384(5)	
C7-C12	1.375(5)	C28-C30	1.383(4)	
C7-C8	1.382(5)	C29-C30	1.392(4)	
C7-P2	1.802(3)	C30-P1	1.807(3)	
C8-C9	1.373(7)	C60-C65	1.338(6)	
C9-C10	1.370(8)	C60-C6	1 1.378(6)	
C10-C11	1.365(8)	C60-S1	1.778(4)	
C11-C12	1.384(5)	C61-C62	1.387(6)	
C13-C18	1.381(4)	C62-C63	1.350(9)	
C13-C14	1.383(4)	C63-C64	1.327(13	
C13-P2	1.806(3)	C64-C65	1.395(9)	
C14-C15	1.381(5)	O1-P1	1.6559(19)	
C15-C16	1.355(6)	O2-P2	1.648(2)	
C16-C17	1.360(7)	P1-Pd1	2.2867(7)	
C17-C18	1.411(6)	P2-Pd1	2.2677(7)	
C19-C20	1.361(5)	Pd1-S1	2.3635(8)	
C19-C24	1.372(5)			
C6-C1-C2	116.8(2)	C27-C26-C25	120.2(4)	
C6-C1-Pd1	122.03(19)	C26-C27-C28	120.5(4)	
C2-C1-Pd1	121.16(19)	C30-C28-C27	120.3(3)	

C3-C2-C1	122.6(3)	C25-C29-C30	119.8(4)	
C3-C2-O2	118.9(2)	C28-C30-C29	118.7(3)	
C1-C2-O2	118.5(2)	C28-C30-P1	122.8(2)	
C5-C3-C2	118.2(3)	C29-C30-P1	118.4(2)	
C6-C4-C5	118.3(3)	C65-C60-C61	117.8(4)	
C3-C5-C4	121.2(3)	C65-C60-S1	118.8(4)	
C1-C6-C4	122.8(2)	C61-C60-S1	123.3(3)	
C1-C6-O1	118.4(2)	C60-C61-C62	121.8(5)	
C4-C6-O1	118.7(2)	C63-C62-C61	118.5(6)	
C12-C7-C8	119.2(3)	C64-C63-C62	120.0(6)	
C12-C7-P2	118.8(3)	C63-C64-C65	121.6(7)	
C8-C7-P2	122.0(3)	C60-C65-C64	119.9(7)	
C9-C8-C7	119.6(5)	C6-O1-P1	114.28(16)	
C10-C9-C8	121.0(5)	C2-O2-P2	113.69(16)	
C11-C10-C9	119.8(4)	O1-P1-C22	102.74(12)	
C10-C11-C12	119.6(5)	O1-P1-C30	99.79(11)	
C7-C12-C11	120.7(4)	C22-P1-C30	106.92(12)	
C18-C13-C14	119.6(3)	O1-P1-Pd1	104.82(7)	
C18-C13-P2	119.0(3)	C22-P1-Pd1	115.38(9)	
C14-C13-P2	121.2(2)	C30-P1-Pd1	123.84(10)	
C15-C14-C13	120.8(3)	O2-P2-C7	101.47(13)	
C16-C15-C14	119.6(4)	O2-P2-C13	101.91(12)	
C15-C16-C17	121.2(4)	C7-P2-C13	106.08(13)	
C16-C17-C18	120.1(4)	O2-P2-Pd1	105.56(7)	
C13-C18-C17	118.7(4)	C7-P2-Pd1	124.28(10)	
C20-C19-C24	120.2(3)	C13-P2-Pd1	114.45(10)	
C19-C20-C21	120.7(3)	C1-Pd1-P2	79.62(8)	
C22-C21-C20	119.8(3)	C1-Pd1-P1	79.37(8)	
C21-C22-C23	118.8(3)	P2-Pd1-P1	158.94(3)	
C21-C22-P1	119.1(2)	C1-Pd1-S1	175.08(8)	
C23-C22-P1	121.9(2)	P2-Pd1-S1	96.30(3)	
C24-C23-C22	120.4(3)	P1-Pd1-S1	104.75(3)	
C19-C24-C23	120.1(4)	C60-S1-Pd1	109.66(11)	
C26-C25-C29	120.3(4)			

Catalytic hydroboration of CO₂ with complexes 1, 2 and 3

$$CO_{2} (1 \text{ atm}) + HBcat \xrightarrow{[Pd] (1 \text{ equiv})} CH_{3}OBcat + catBOBcat$$

$$(500 \text{ equiv}) \xrightarrow{C_{6}H_{6}, RT} 15-25 \text{ min}$$

$$[Pd] = \mathbf{1}, \mathbf{2}, \mathbf{3}$$

Catalytic hydroboration of carbon dioxide was carried out under 1 atm of CO₂ at room temperature in benzene with a catalyst to substrate ratio of 1:500. Typically, 0.011 mmol of the palladium thiolate complex, 5.50 mmol of catecholborane (HBcat), 0.022 mmol of hexamethylbenzene (as an internal standard) and 4 mL of benzene were mixed in a flame-dried 50 mL Schlenk flask under a nitrogen atmosphere, and then CO₂ was bubbled through the solution. The resulting solution was stirred under 1 atm of CO₂ at room temperature until the temperature of the reaction mixture increased to 40-50 °C and a large amount of white precipitate developed. The mixture was stirred for another 2 min and cooled to room temperature. The resulting white precipitate was allowed to settle, and 0.6 mL of the clear liquid was transferred under nitrogen into an NMR tube and ¹¹B NMR spectra were taken. ¹H NMR spectra were taken by mixing 0.3 mL of the clear solution with 0.3 mL of benzene- d_6 in an NMR tube. Turnover number (TON) was calculated based on B–H bond by comparing the ¹H NMR integration of the *CH*₃OBcat methyl resonance (3.38 ppm) with that of the internal standard (2.11 ppm). ¹H NMR and ¹¹B NMR spectra

Fig S2 ¹¹B NMR spectrum of the clear solution after catalytic hydroboration of CO_2 with HBcat under complex 1.

Fig S3 ¹H NMR spectrum of the clear solution after catalytic hydroboration of CO_2 with HBcat under complex 1.

Fig S4 ¹¹B NMR spectrum of the clear solution after catalytic hydroboration of CO_2 with HBcat under complex 2.

Fig S5 1 H NMR spectrum of the clear solution after catalytic hydroboration of CO₂ with HBcat under complex 2.

Fig S6 ¹¹B NMR spectrum of the clear solution after catalytic hydroboration of CO_2 with HBcat under complex 4.

Fig S7 ¹H NMR spectrum of the clear solution after catalytic hydroboration of CO_2 with HBcat under complex 4.

Reference:

- 1. A. V. Polukeev, S. A. Kuklin, P. V. Petrovskii, S. M. Peregudova, A. F. Smol'yakov, F. M. Dolgushin and A. A. Koridze, *Dalton Trans.*, 2011, **40**, 7201.
- 2. J.-F. Gong, Y.-H. Zhang, M.-P. Song and C. Xu, Organometallics, 2007, 26, 6487.
- 3. A. Adhikary, J. R. Schwartz, L. M. Meadows, J. A. Krause and H. Guan, *Inorg. Chem. Front.* 2014, **1**, 71.