Cobalt-catalyzed Regioselective Annulation of Silyl Alkynes with *o*-Methoxycarbonylphenylboronic acid

Mitsuhiro Ueda,* Tamami Ueno, Yuki Suyama, and Ilhyong Ryu

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

ueda@c.s.osakafu-u.ac.jp

Supporting Information				
General	S2			
General Procedure	S2			
Spectrum Data	S4			
Experimental Procedure and Spectrum Data for Trimethylsilyl Alkynes				
A Survey of Cobalt Catalysts, Ligands, and Solvents				
References	S12			
Copies of NMR Spectra	S13			

Supporting Information

General

The products were purified by column chromatography on silica gel [Kanto Chem. Co. Silica Gel 60N (spherical, neutral, 40-50 μ m)]. If necessary, there were further purified by preparative HPLC (Japan Analytical Industry Co., Ltd.,LC-908, LC-918) equipped with GPC columns (JAIGEL-1H + JAIGEL-2H columns) using CHCl₃ as an eluent. ¹H NMR spectra were recorded on JEOL ECS-400 (400 MHz) and referenced to the solvent peak at 7.26 ppm for CDCl₃ or TMS peak at 0.00 ppm. ¹³C NMR spectra were recorded on JEOL ECS-400 (100 MHz) and referenced to the solvent peak at 7.26 ppm for CDCl₃ or TMS peak at 0.00 ppm. ¹³C NMR spectra were recorded on JEOL ECS-400 (100 MHz) and referenced to the solvent peak at 77.16 ppm for CDCl₃. Splitting patterns are indicated as follows; s: singlet, d: doublet, dd: double doublet, t: triplet, br: broad, m: multiplet. Infrared spectra were obtained on a JASCO FT/IR-4100 spectrometer; absorptions are reported in reciprocal centimeters. High-resolution mass spectra were recorded with a JEOL MS-700 spectrometer. Melting point were recorded with a BÜCHI Melting Point B-540. MeCN was distilled from CaH₂ before use. All commercially available reagents were used without further purification.

General Procedure

A 25 mL sealed tube equipped with a magnetic stirring bar was charged with $Co(acac)_2$ (0.05 mmol, 10 mol %), DPPE (0.05 mmol, 10 mol %), an alkyne **1** (0.50 mmol, 1.0 equiv), *o*-methoxyphenylboronic acid **2** (0.75 mmol, 1.5 equiv), and MeCN (2.0 mL). The reaction mixture was stirred at 80 °C for 12 h. The mixture was then filtered through silica gel pad. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to yield the desired product **3**. If necessary, there were further purified by preparative HPLC to afford the desired product **3**.

General Procedure 2

Bromination:

To a solution of a 2-aryl-3-silylindenone **3** in anhydrous CH_2Cl_2 at 27 °C under Ar, Br_2 (1.2 equiv) was added. The reaction mixture was stirred at 27 °C for 1 h. The reaction mixture was then quenched with saturated Na_2SO_3 solution, and diluted with H_2O . The resulting solution was extracted with CH_2Cl_2 , and the separated aqueous layer was re-extracted with CH_2Cl_2 . The combined organic layer was washed with brine and dried over Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product **4**.

Suzuki-Miyaura cross coupling reaction:

The reaction was carried out in a two-necked flask. To a suspension of 3-bromoindenone **4**, $Pd(PPh_3)_4$ (3.0 mol %), and arylboronic acid (3.0 equiv) in dioxane, a 2M solution of K_2CO_3 was added. The reaction mixture was stirred at 45 °C for 5 h. The reaction mixture was diluted with H_2O and extracted 3 times with CH_2Cl_2 . The combined organic layer was dried Na_2SO_4 , and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product **5**.

Spectrum Data 2-(4-Methoxyphenyl)-3-(trimethylsilyl)-1*H*-inden-1-one (3a)

Orange solid (135.6 mg, 88% yield); m.p. = 144.4-144.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.18 (s, 9H), 3.84 (s, 3H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.16-7.24 (m, 4H), 7.37 (t, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.48 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.33,

55.3, 113.5, 123.1, 123.2, 125.6, 127.9, 130.1, 131.1, 134.1, 147.6, 149.0, 155.9, 159.9, 198.2; IR (neat) 1439, 1609, 1709, 2340, 2358, 2834, 2897, 3065, 3390 cm⁻¹; EI-MS *m/z* (relative intensity) 308 ([M⁺], 100), 293 (62), 275 (44), 235 (11), 165 (13); HRMS (EI) *m/z* calcd for $C_{19}H_{20}O_2Si$ ([M]⁺) 308.1233, found: 308.1233.

2-(4-Hydroxyphenyl)-3-(trimethylsilyl)-1*H*-inden-1-one (3b)

Red solid (82.2 mg, 56% yield); m.p. = 158.1-158.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.18 (s, 9H), 4.83 (brs, 1H), 6.84 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.17-7.26 (m, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.48 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 0.23, 115.2, 123.2, 123.4, 125.1, 128.0, 130.1, 131.2, 134.4, 147.8, 148.9, 156.4, 156.8, 199.2; IR (neat) 1251, 1455, 1608, 1696, 2359 cm⁻¹; EI-MS *m/z* (relative intensity) 294([M⁺], 100), 279 (85), 261 (86), 151 (9), 221 (16) 189 (13), 165 (25), 89 (13), 85 (40), 73 (25); HRMS (EI) *m/z* calcd for C₁₈H₁₈O₂Si ([M]⁺) 294.1076, found: 294.1063.

2-(4-Aminophenyl)-3-(trimethylsilyl)-1*H*-inden-1-one (3c)

Red oil (70.0 mg, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.19 (s, 9H), 3.76 (brs, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 7.15-7.26 (m, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.52 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.35, 114.5, 122.97,

123.0, 123.1, 127.7, 130.2, 131.0, 134.1, 146.9, 148.0, 149.2, 154.9, 198.5; IR (neat) 1455, 1606, 1704, 2955 cm⁻¹; EI-MS *m/z* (relative intensity) 293 ([M⁺], 100), 278 (54), 260 (32), 150 (19), 83 (29); HRMS (EI) *m/z* calcd for C₁₈H₁₉NOSi ([M]⁺) 293.1236, found: 293.1243.

2-Phenyl-3-(trimethylsilyl)-1*H*-inden-1-one (3d)^[1,2]

Yellow oil (54.5 mg, 39% yield); the structure was determined by ¹H NMR and ¹³C NMR of previous reports.^{[1,2] 1}H NMR (400 MHz, CDCl₃) δ 0.16 (s, 9H), 7.21-7.26 (m, 4H), 7.36-7.41 (m, 4H), 7.50 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.19, 123.3, 128.0 (two peaks overlap), 128.2,

128.4, 129.9, 130.2, 133.4, 134.2, 148.1, 148.8, 156.9, 197.9; IR (neat) 1252, 1455, 1708, 2955 cm⁻¹; EI-MS *m/z* (relative intensity) 278 ([M⁺], 100), 263 (83), 245 (81), 212 (12), 203 (11), 176 (10), 129 (9), 115 (11), 75 (8), 73 (20); HRMS (EI) *m/z* calcd for C₁₈H₁₈OSi ([M]⁺) 278.1127, found: 278.1123.

2-(4-Iodophenyl)-3-(trimethylsilyl)-1*H*-inden-1-one (3e)

Orange solid (70.2 mg, 35% yield); m.p. = 84.1-84.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.18 (s, 9H), 6.98 (d, *J* = 8.4 Hz, 2H), 7.20-7.26 (m, 2H), 7.39 (dt, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

0.30, 94.5, 123.4, 123.5, 128.4, 130.0, 131.7, 132.9, 134.3, 137.1, 146.8, 148.6, 157.6, 197.4; IR (neat) 1604, 1708, 2953 cm⁻¹; EI-MS *m/z* (relative intensity) 404 ([M⁺], 100), 389 (16), 262 (64), 247 (23), 213 (34); HRMS (EI) *m/z* calcd for C₁₈H₁₇IOSi ([M]⁺) 404.0093, found: 404.0083.

2-(Furan-3-yl)-3-(trimethylsilyl)-1*H*-inden-1-one (3f)

Brown oil (70.2 mg, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.30 (s, 9H), 6.45-6 (s, 1 H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.22-7.26 (m, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.46-7.47 (m, 2H), 7.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.42, 112.3, 117.1, 123.2, 123.3, 128.0, 130.2, 134.2, 139.4,

142.4, 142.6, 149.2, 156.2, 197.7; IR (neat) 1714, 2900, 2957 cm⁻¹; EI-MS *m/z* (relative intensity) 268 ($[M^+]$, 13), 256 (12), 149 (28), 85 (68), 83 (100), 71 (31), 69 (20), 57 (23); HRMS (EI) *m/z* calcd for C₁₆H₁₆O₂Si ($[M]^+$) 268.0920, found: 268.0924.

2-(Thiophen-3-yl)-3-(trimethylsilyl)-1H-inden-1-one (3g)

Brown oil (78.8 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.22 (s, 9H), 7.05 (dd, J = 5.2 Hz, 1.2 Hz, 1H), 7.20 (t, J = 6.0 Hz, 1H), 7.22-7.26 (m, 1H), 7.33-7.39 (m, 2H), 7.48 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.15, 123.2, 123.3, 125.1, 125.5, 128.1,

129.4, 130.1, 133.3, 134.2, 143.1, 148.9, 156.9, 197.7; IR (neat) 1671, 1712, 2359, 2898, 3070, 3107 cm⁻¹; EI-MS *m/z* (relative intensity) 284 ([M⁺], 100), 269 (88), 151 (76), 211 (16), 209 (12), 165 (18), 139 (28), 83 (31), 73 (27); HRMS (EI) *m/z* calcd for C₁₆H₁₆OSSi ([M]⁺) 284.0691, found: 284.0686.

3-(Trimethylsilyl)-2-[(trimethylsily)ethynyl]-1*H*-inden-1-one (3h)

Brown oil (82.1 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.25 (s, 9 H), 0.44 (s, 9 H), 7.20-7.24 (m, 2 H), 7.44 (dt, *J* = 7.2 Hz, 1.2 Hz, 1 H), 7.43-7.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -0.47, -0.16, 98.6, 108.0, 123.6, 123.7, 129.1, 129.2, 130.5, 134.5,

148.2, 165.4, 194.5; IR (neat) 1604, 1715, 1724, 2142, 2898, 2960, 3072, 3421 cm⁻¹; EI-MS *m/z* (relative intensity) 298 ($[M^+]$, 100), 283 (55), 224 (29), 209 (19), 165 (10), 85 (13), 73 (42); HRMS (EI) *m/z* calcd for C₁₇H₂₂OSi₂ ($[M]^+$) 298.1209, found: 298.1208.

2-Methyl-3-(trimethylsilyl)-1*H*-inden-1-one (3i)^[1,2]

Yellow solid, a mixture of two regio isomers, *d.r.* = 94:6 (87.4 mg, 76% yield); the structures of both regio isomers were determined by ¹H NMR and ¹³C NMR of previous reports.^[1,2] Spectrum data of major regio isomer was shown; ¹H NMR (400 MHz, CDCl₃) δ 0.38 (s, 9H), 1.94 (s, 3H),

7.08-7.12 (m, 2H), 7.26-7.31 (m, 1H), 7.38 (d, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.03, 10.5, 122.3, 122.7, 127.3, 130.3, 134.0, 144.1, 149.4, 153.9, 199.6; IR (neat) 1168, 1251, 1457, 1590, 1607, 1710, 2956 cm⁻¹; EI-MS *m/z* (relative intensity) 216([M]⁺, 32), 201 (42), 176 (82), 149 (90), 133 (100), 105 (84), 104 (92), 77 (67), 76 (64), 57 (30); HRMS (EI) *m/z* calcd for C₁₃H₁₆OSi ([M]⁺) 216.0970, found: 216.0957.

2-Hexyl-3-(trimethylsilyl)-1*H*-inden-1-one (3j)

Yellow oil, a mixture of two regio isomers, d.r. = 81:19 (44.5 mg, 32% yield); ¹H NMR (400 MHz, CDCl₃): δ 0.28 (s, 2.06H; Si(CH₃)₃ of minor), 0.38 (s, 9H; Si(CH₃)₃ of major), 0.86-0.92 (m, 3H; -CH₃ of major + 0.7H; -CH₃ of minor), 1.28-1.45 (m, 6H; -(CH₂)₃- of major + 1.4H; -(CH₂)₃- of minor), 2.32-2.36 (m, 2H; C-CH₂- of major), 2.64-2.68 (m, 0.5H; C-CH₂- of minor), 7.09-7.13 (m, 2H; Ar-*H* of major + 0.3H; Ar-*H* of minor), 7.27-7.31 (m, 1H; Ar-*H* of major + 0.3H; Ar-*H* of minor), 7.34-7.41 (m, 1H; Ar-*H* of major + 0.3H; Ar-*H* of minor); ¹³C NMR (100 MHz, CDCl₃): major δ 0.21, 14.2, 22.7, 25.2, 29.7, 30.9, 31.8, 122.4, 122.7, 127.3, 130.4, 134.0, 149.1, 149.4, 153.5, 199.6; minor δ 0.14, 14.2, 22.7, 29.22, 29.24, 29.9, 31.8, 119.3, 121.8, 129.0, 132.5, 133.0, 146.7, 149.1, 173.5, 202.5; IR (neat) 1601, 1714, 2928 cm⁻¹; EI-MS *m/z* (relative intensity) 286 ([M]⁺, 32), 271 (30), 257 (20), 216 (87), 201 (71), 185 (26), 146 (56), 141 (71), 115 (33), 83 (49) 73 (100); HRMS (EI) *m/z* calcd for C₁₈H₂₆OSi 286.1753, found: 286.1737.

3-Methyl-2-phenyl-1*H*-inden-1-one (3k)^[1]

Orange solid, a mixture of two regio isomers, d.r. = 83:17 (89.6 mg, 81 % yield); m.p. = 62.8-63.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.93 (s, 0.6H; -CH₃ of minor), 2.33 (s, 3H; -CH₃ of major), 7.07 (d, J = 3.6 Hz, 0.2H; Ar-H of minor), 7.17-7.21 (m, 1H; Ar-H of major + 0.2H; Ar-H of minor), 7.25-7.30 (m, 1H; Ar-H of major + 0.2H; Ar-H of minor), 7.32-7.37 (m, 1H; Ar-H of major), 7.40-7.45 (m, 4H; Ar-H of major + 0.8H; Ar-H of minor), 7.46-7.54 (m, 2H; Ar-H of major + 0.4H; Ar-H of minor); ¹³C NMR (100 MHz, CDCl₃): major δ 12.7, 119.6, 122.2, 127.8, 128.4, 129.0, 129.7, 130.5, 131.3, 133.5, 133.7, 146.0, 154.8, 196.5; minor δ 8.7, 120.5, 122.6, 128.1, 128.2, 128.8, 129.3, 131.1, 131.2, 132.8, 133.3, 145.8, 154.8, 198.3; IR (neat) 1708, 2359, 2934, 2962 cm⁻¹; EI-MS *m/z* (relative intensity) 220 ([M⁺], 100), 219 (37), 191 (43), 165 (18), 83 (29); HRMS (EI) *m/z* calcd for C₁₆H₁₂O 220.0888, found:220.0888. **3k** was known in literature.^[1]

2-Phenyl-3-propyl-1*H*-inden-1-one(3I)

Orange oil; a mixture of two regio isomers, *d.r.* = 87:13 (89.4 mg, 72 % yield); Spectrum data of major regio isomer (**3I**) was shown; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (t, *J* = 7.2 Hz, 3H), 1.70-1.76 (m, 2 H), 2.66-2.71 (m, 2 H), 7.19 (d, *J* = 7.2 Hz, 1 H), 7.25-7.28 (m, 1 H), 7.33-7.48 (m, 6 H), 7.50

(d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.6, 21.8, 28.9, 120.0, 122.4, 127.8, 128.4, 128.8, 129.5, 130.8, 131.4, 133.5, 133.6, 145.3, 158.8, 196.9; IR (neat) 1666, 2250, 3399

cm⁻¹; EI-MS *m/z* (relative intensity) 248 ([M⁺], 100), 219 (55), 189 (24), 165 (12), 115 (12), 83 (27), 73 (9), 57 (10); HRMS (EI) *m/z* calcd for $C_{18}H_{16}O$ 248.1201, found: 248.1201. Spectrum data of minor regio isomer (**3**I') was shown; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, *J* = 7.6 Hz, 3H), 1.51-1.56 (m, 2 H), 2.32 (t, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 7.2 Hz, 1H), 7.18-7.22 (m, 1H), 7.26-7.31 (m, 1H), 7.43-7.52 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 22.8, 25.5, 120.6, 122.6, 127.9, 128.3, 128.9, 129.2, 131.1, 133.0, 133.3, 135.5, 146.0, 155.3, 198.5; IR (neat) 1456, 1704, 2849, 2917, 2961, 3020 cm⁻¹; EI-MS *m/z* (relative intensity) 248 ([M⁺], 70), 219 (100), 189 (44), 165 (27), 149 (13); HRMS (EI) *m/z* calcd for C₁₈H₁₆O 248.1201, found: 248.1201.

2,3-Diphenyl-1*H*-inden-1-one (3m)^[1]

Orange solid (138.3 mg, 98% yield); m.p. = 152.1-152.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 7.2 Hz, 2H), 7.20-7.31 (m, 5H), 7.32-7.42 (m, 6H), 7.59 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 121.4, 123.1, 127.9, 128.2, 128.6, 128.9, 129.1, 129.4, 130.1, 130.87, 130.89,

132.5, 132.9, 133.6, 145.4, 155.5, 196.7. **3m** was known in literature.^[1]

3n is a mixture of **2-(4-methoxyphenyl)-3-phenyl-1***H***-inden-1-one (5a)** and **3-(4-methoxyphenyl)-2-phenyl-1***H***-inden-1-one (5d)**. See the spectrum data of **5a** and **5d**.

2,3-Dipropyl-1*H*-inden-1-one (3o)^[1]

Þh

Yellow oil (100.6 mg, 94% yield); ¹H NMR (400 MHz, $CDCl_3$) δ 0.94 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 1.49 (sexted, J = 7.2 Hz, 2H), 1.65 (sexted, J = 7.2 Hz, 2H), 2.24 (t, J = 7.0 Hz, 2H), 2.52 (t, J = 7.0 Hz, 2H), 7.03 (d, J = 6.8 Hz, 1H), 7.12-7.18 (m, 1H), 7.28-7.34 (m, 1H), 7.37 (d, J = 7.0 Hz, 2H)

6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 14.5, 21.4, 22.7, 25.0, 28.3, 119.1, 121.7, 128.0, 131.2, 133.2, 135.0, 145.8, 157.8, 198.6. **3o** was known in literature.^[1]

2-Metyl-3-propyl-1*H*-inden-1-one (3p)^[2,3]

Yellow oil (81.0 mg, 87% yield), a mixture of two regio isomers, d.r. = 59:41; the structures of both regio isomers were determined by ¹H NMR and ¹³C NMR of previous reports. ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, J =

^{''Pr} 7.2 Hz, 2.3H; -CH₂-CH₃ of minor), 1.01 (t, J = 7.4 Hz, 3H; -CH₂-CH₃ of major), 1.46-1.55 (m, 1.3H; -CH₂-CH₃ of minor), 1.62-1.67 (m, 2H; -CH₂-CH₃ of major), 1.81 (s, 3H; -CH₃ of major), 2.12 (s, 2.1H; -CH₃ of minor), 2.26 (t, J = 7.6 Hz, 1.4H; -CH₂-CH₂-CH₃

of minor), 2.52 (t, J = 7.4 Hz, 2H; -CH₂-CH₂-CH₃ of major), 7.00-7.03 (m, 1H; Ar-*H* of major + 0.7H; Ar-*H* of minor), 7.12-7.19 (m, 1H; Ar-*H* of major + 0.7H; Ar-*H* of minor), 7.26-7.38 (m, 2H; Ar-*H* of major + 1.4H; Ar-*H* of minor); ¹³C NMR (100 MHz, CDCl₃) major δ 7.7, 14.3, 20.9, 28.1, 118.9, 121.7, 127.8, 130.7, 133.2, 135.0, 145.8, 157.6, 198.6; minor δ 11.5, 14.1, 22.3, 24.7, 118.6, 121.5, 128.1, 130.9, 131.2, 135.0, 146.3, 154.1, 198.2; IR (neat) 1456, 1607, 1628, 2871, 2933, 2962, 3071 cm⁻¹; EI-MS *m/z* (relative intensity); 186 ([M]⁺, 100), 178 (62), 149 (53), 85 (45), 71 (57), 57 (52); HRMS (EI) *m/z* calcd for C₁₃H₁₄O ([M]⁺) 186.1045, found: 186.1022. **3p** was known in literature.^[2]

Tetramethyl 2,2'-[(1-oxo-1H-indene-2,3-diyl)bis(methylene)]dimalonate (3q)

Yellow oil (207.2 mg, 99% yield); ¹H NMR (400 MHz, CDCl₃) δ 2.93 (d, *J* = 8.0 Hz, 2H), 3.23 (d, *J* = 7.6 Hz, 2H), 3.72 (s, 6H), 3.73 (s, 6H), 3.73-3.78 (m, 1H), 3.89 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 6.8 Hz, 1H), 7.21 (t, *J* = 6.8 Hz, 1H), 7.36 (dt, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.4 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.9, 25.2, 49.6, 49.9, 52.7, 53.0, 119.6, 122.5, 128.9, 130.4,

132.3, 133.8, 144.1, 155.2, 168.8, 169.2, 197.2; IR (neat) 1456, 1605, 1627, 1748, 2258, 2846, 3401, 3469, 3646 cm⁻¹; EI-MS *m/z* (relative intensity) 418 ([M⁺], 3), 386 (10), 354 (49), 262 (20), 254 (24), 223 (100), 207 (7), 195 (12), 167 (17), 139 (15), 115 (15), 59 (40).

5-Fluoro-2,3-dipropyl-1*H*-inden-1-one (3r)

Yellow oil (21.0 mg, 18% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 1.49 (sexted, J = 7.2 Hz, 2H), 1.63 (sexted, J = 7.2 Hz, 2H), 2.24 (t, J = 7.6 Hz, 2H), 2.49 (t, J = 7.6 Hz, 2H), 6.73-6.81 (m, 2H), 7.34 (dd, J = 7.6 Hz, 5.6 Hz, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ 14.3, 14.5, 21.3, 22.6, 25.2, 28.3, 108.2 ($J_{C-F} = 24.8 \text{ Hz}$), 113.2 ($J_{C-F} = 22.9 \text{ Hz}$), 123.5 ($J_{C-F} = 9.6 \text{ Hz}$), 127.0, 136.6, 149.2 ($J_{C-F} = 9.5 \text{ Hz}$), 155.5 ($J_{C-F} = 1.9 \text{ Hz}$), 166.7 ($J_{C-F} = 251.1 \text{ Hz}$), 196.9; IR (neat) 1471, 1597, 1613, 1713, 2872, 2933, 2961 cm⁻¹; EI-MS *m/z* (relative intensity) 232 ([M⁺], 60), 205 (19), 203 (100), 189 (30), 175 (35), 161 (52), 146 (19), 133 (30).

3-Bromo-2-(4-methoxyphenyl)-1*H*-inden-1-one (4a)

Red solid (50.5 mg, 82% yield); m.p. = 147.8-148.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 7.00 (d, *J* = 8.8 Hz, 2H), 7.26-7.32 (m, 2H), 7.45-7.49 (m, 2H), 7.68 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 113.9, 121.3, 122.25, 122.31, 129.7, 129.9, 131.0, 134.2, 134.4, 140.5, 143.7, 160.1, 193.0; IR (neat) 1715, 2360 cm⁻¹; EI-MS *m/z* (relative intensity) 314 ([M⁺], 56), 235 (100), 207 (21), 163 (17), 127 (17), 85 (25), 71 (28), 69 (18); HRMS (EI) *m/z* calcd for C₁₆H₁₁BrO₂ 313.9942, found: 313.9942

3-Bromo-2-phenyl-1*H*-inden-1-one (4d)

Yellow oil (48.0 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.41 (m, 2H), 7.42-7.52 (m, 5H), 7.68 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 121.6, 122.4, 128.4, 128.9, 129.6, 129.8, 129.9, 130.1, 134.2, 135.0, 142.3, 143.5, 192.6; IR (neat) 1464, 1539, 2852, 2922

cm⁻¹; EI-MS *m/z* (relative intensity) 284 ([M⁺], 30), 248 (52), 205 (100), 176 (39), 149 (39), 127 (17), 89 (34), 83 (34), 57 (31); HRMS (EI) *m/z* calcd for C₁₅H₉BrO 283.9837, found: 283.9834.

2-(4-Methoxyphenyl)-3-phenyl-1*H*-inden-1-one (5a)^[4]

Red solid (46.6 mg, 93% yield); m.p. = 116.3-116.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 6.80 (d, *J* = 9.2 Hz, 2H), 7.11 (d, *J* = 7.2 Hz, 1H), 7.21-7.28 (m, 3H), 7.34-7.45 (m, 6H), 7.56 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 113.8, 121.1, 123.0, 123.2, 128.6, 128.8, 128.9, 129.2, 130.8,

131.4, 132.0, 133.1, 133.6, 145.7, 153.9, 159.3, 197.1; IR (neat) 1606, 1711 cm⁻¹; EI-MS m/z (relative intensity) 312 ([M⁺], 53), 295 (22), 281 (20), 239 (17), 221 (39), 207 (12), 167 (37), 149 (100), 113 (29); HRMS (EI) m/z calcd for C₂₂H₁₆O₂ 312.1150, found:312.1244. **5a** was known in literature.^[3]

3-(4-Methoxyphenyl)-2-phenyl-1*H*-inden-1-one (5d)^[5]

Red solid (46.5 mg, 88% yield); m.p. = 119.7-120.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.27-7.31 (m, 6H), 7.33-7.40 (m, 3H), 7.58 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 114.3, 121.4, 122.9, 124.9, 127.7, 128.2, 129.0, 130.1, 130.3, 131.16, 131.22, 131.8, 133.4, 145.3, 155.3, 160.6, 196.8; IR (neat) 1510, 1605, 1704 cm⁻¹; EI-MS

m/z (relative intensity) 312 ([M⁺], 100), 281 (31), 268 (19), 239 (45), 83 (48), 71 (34), 57 (24); HRMS (EI) m/z calcd for C₂₂H₁₆O₂ 312.1150, found: 312.1164. **5d** was known in literature.^[4]

Experimental Procedure and Spectrum Data for Trimethylsilyl Alkynes

To a mixture of aryl iodide (20 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2$ (0.2 mmol, 0.01 equiv), and copper(I) iodide (0.4 mmol, 0.02 equiv) in 60 mL of trimethylamine, a solution of trimethylsilyl acetylene (30 mmol, 1.5 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 3 h under argon atmosphere. The reaction mixture was then concentrated, and purified by column chromatography on silica gel to afford the corresponding silyl alkynes. Silyl alkynes **1a-1j** were known in literature.^[6-10]

A survey of cobalt catalysts, ligands, and solvents

Entry	1	Cobalt (mol %)	Ligand (mol %)	2 (x equiv)	Yield (%)
1	10	CoCl ₂ (5)	DPPE (5) ^[a]	2.0	5
2	10	Co(OAc) ₂ •H ₂ O (5)	DPPE (5)	2.0	83
3	10	Co(acac) ₂ (5)	DPPE (5)	2.0	95
4	10	none	DPPE (5)	2.0	No reaction
5	10	Co(acac) ₂ (5)	DCyPE (5) ^[a]	2.0	40
6	10	$Co(acac)_2$ (5)	PPh ₃ (10)	2.0	No reaction
7	10	$Co(acac)_2$ (2)	DPPE (2)	2.0	95
8	10	Co(acac) ₂ (2)	DPPE (2)	1.5	94
9	1 i	Co(acac) ₂ (2)	DPPE (2)	1.5	30 (94:6) ^[b]
10	1 i	Co(acac) ₂ (10)	DPPE (10)	1.5	76 (94:6) ^[b]
11	1 i	Co(acac) ₂ (10)	DPPM (10) ^[a]	1.5	<5 (62:38) ^[b]
12	1 i	Co(acac) ₂ (10)	DPPP(10) ^[a]	1.5	53 (80:20) ^[b]
13	1 i	Co(acac) ₂ (10)	DPPB (10) ^[a]	1.5	No reaction
14	1 i	Co(acac) ₂ (10)	DMPE (10) ^[a]	1.5	No reaction
15	1 i	Co(acac) ₂ (10)	PPh3 (20)	1.5	No reaction
[a]	PPh ₂	$ \begin{bmatrix} PCy_2 & PPh_2 & PPh_2 \\ PCy_2 & PPh_2 & PPh_2 \end{bmatrix} $	PPh ₂ PPh ₂ PMe ₂		
	DPPE	DCyPE DPPM DPPP	DPPB DMPE		

[b] Regioselectivities were determined by NMR analysis.

References

- ¹ T. Miura, M. Murakami, *Org. Lett.*, 2005, **7**, 3339. Also see the corrections: T. Miura, M. Murakami, *Org. Lett.*, 2006, **8**, 1961.
 ² R. C. Larock, M. J. Doty, S. Cacchi, *J. Org. Chem.*, 1993, **58**, 4579.
 ³ K. Kakiuchi, B. Yamaguchi, M. Kinugawa, M. Ue, Y. Tobe, Y. Odaira, *J. Org. Chem.*, 1993,
- **58**, 2797.
- ⁴ M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem., 2015, 80, 11360.
- ⁵ X. Yan, S. Zou, P. Zhao, C. Xi, *Chem. Commun.*, 2014, **50**, 2775.
- ⁶ H. Ueda, M. Yamaguchi, H. Kameya, K. Sugimoto, H. Tokuyama, *Org. Lett.*, 2014, **16**, 4948.
- ⁷ C. Xu, W. Du, Y. Zeng, B. Dai, H. Guo, *Org. Lett.*, 2014, **16**, 948.
- ⁸ S. Marqués-González, M. Parthey, D. S. Yufit, J. A. K. Howard, M. Kaupp, P. J. Low, Organometallics, 2014, 33, 4947.
- ⁹ H. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, *J. Am. Chem. Soc.*, 2014, **136**, 2280.
- ¹⁰ X. Li, F. Yang, Y. Wu, *J. Org. Chem.*, 2013, **78**, 4543.

