Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

- Synthesis of **5**
- Synthesis of **6** and other Ln analogues
- Table of ligand:metal ion ratios leading to different cluster topologies
- Figure showing the capping behaviour and preservation upon moving from **3** and **4** to **5** and **6** respectively.
- Animations to clearly show the topologies in **5** and **6** (attached in SI as separate files)
- Figures relating to extended structures of **5** and **6**
- Figure of variable-temperature-and-variable-field (VTVB) magnetisation data for 5 and 6

Synthesis of $[Mn_6^{III}Mn_4^{II}(L1-8H)_2(\mu_3-O)_2(\mu_3-OH)_2(\mu-CH_3O)_4(H_2O)_4(dmf)_8](dmf)_4$, 5: L₁ (175 mg, 0.135 mmol) and MnCl₂·4H₂O (214 mg, 1.08 mmol) were suspended in a 1:1 DMF/MeOH mixture (20 mL) and stirred for 10 minutes. Following this Et₃N (0.2 mL, XS) was added and the resulting purple solution was stirred for additional 2 hours before being filtered. The mother liquor was allowed to slowly evaporate, affording single crystals suitable for *X*-ray diffraction studies. Yield: 140 mg (24 %). Elemental Analysis (%) calculated for **18**, C₂₁₆H₃₁₀Mn₁₀N₁₂O₄₀: C, 60.84%; H, 7.33%; N, 3.94%. Found: C, 60.68%; H, 7.26%; N, 3.77%.

Synthesis of $[Mn^{II}_{6}Mn^{II}_{2}Gd^{III}_{2}(L_{1}-8H)_{2}(\mu_{4}-O)_{2}(\mu_{3}-OH)_{2}(\mu_{-}OCH_{3})_{2}(\mu_{-}OH)_{2}(MeOH)_{4}(dmf)_{8}](NO_{3})_{2}(H_{2}O)_{2},$ 6: L₁ (50 mg, 0.039 mmol), Mn(NO₃)₂·6H₂O (60 mg, 0.234 mmol), Gd(NO₃)₃·6H₂O (35 mg, 0.078 mmol) were suspended in a 1:1 DMF/MeOH mixture (20 mL) and stirred for 10 minutes. Following this Et₃N (0.05 mL, XS) was added and the resulting purple solution stirred for additional 2 hours before being filtered. The mother liquor was exposed to vapour diffusion with diethyl ether in a closed vessel, resulting in the growth of dark purple crystals suitable for X-ray diffraction studies. Yield: 34 mg (20 %). Elemental Analysis (%) calculated for (**6Gd**), C₂₀₆H₂₈₀Mn₈Gd₂N₁₀O₄₄: C, 56.82%; H, 6.48%; N, 3.22%. Found: C, 56.59%; H, 6.21%; N, 2.98%. Mn^{III}₆Mn^{II}₂Dy^{III}₂: BisTBC[4] (50 mg, 0.039 mmol) and Mn(NO₃)₂·xH₂O (41.4 mg, 0.234 mmol), Dy(NO₃)₃·5H₂O (33.8 mg, 0.078 mmol) were suspended in a 1:1 DMF/MeOH mixture (20 mL) and stirred for 10 minutes. Et₃N (0.05 mL) was added and the resulting purple solution was stirred for additional 2 h and filtered. Yield: 23 mg (13 %). Elemental Analysis (%) calculated for 6Dy, C₂₀₆H₂₈₀Mn₈Dy₂N₁₀O₄₄: C, 56.68%; H, 6.46%; N, 3.21%. Found: C, 56.41%; H, 6.22%; N, 2.96%. Mn^{III}₆Mn^{II}₂Tb^{III}₂: BisTBC[4] (50 mg, 0.039 mmol) and Mn(NO₃)₂·(41.4 mg, 0.234 mmol), Tb(NO₃)₃·6H₂O (35 mg, 0.078 mmol) were suspended in a 1:1 DMF/MeOH mixture (20 mL) and stirred for 10 minutes. Et₃N (0.05 mL) was added and the resulting purple solution was stirred for additional 2 h and filtered. Yield: 40 mg (24 %). Elemental Analysis (%) calculated for 6Tb, C₂₀₆H₂₈₀Mn₈Tb₂N₁₀O₄₄: C, 56.77%; H, 6.48%; N, 3.21%. Found: C, 56.52%; H, 6.33%; N, 3.01%.

Cluster	Compound	Ligand Ratio	Mn ²⁺ ratio	Gd ³⁺ ratio	Crystallisation
[Mn ₈]	3	1	2	-	MeCN diffusion
[Mn ₆ Gd ₂]	4	1	2	1	Et ₂ O diffusion
[Mn ₁₀]	5	1	8	-	DMF/MeOH
[Mn ₈ Gd ₂]	6	1	6	2	Et ₂ O diffusion

Table S1. ligand:metal ion ratios in reactions that result in different cluster topologies

Figure S1. Cluster topologies in **3** – **6** with capping by bis- $[C[4]Mn^{III}]$ - moieties shown as large purple spheres. **5** and **6** represent 'expansion' of **3** and **4** respectively through the introduction of two central Mn^{III} ions in both cases. Colour code Mn^{II} – pale blue, Mn^{III} – purple, Ln^{III} – green. Note: Animations showing the cluster topologies for 5 and 6 are also included in Supporting Information as separate files.

Figure S3. Extended structure of **5** showing complementary H-bonding interactions between neighbouring clusters. The ^tBu groups of L1s, as well as co-crystallised and some ligated solvent are omitted for clarity.

Figure S2. Extended structure of **6** showing large separation between individual clusters. The ^tBu groups of L1s, as well as both ligated and co-crystallised solvent are omitted for clarity.

Figure S4. Variable-temperature-and-variable-field (VTVB) magnetisation data of 5 - 6 at T = 2 K and B = 0-7 T.