Supporting Information

Cu-Catalyzed Iminative Hydroolefination of Unactivated Alkynes En route to 4-Imino-Tetrahydropyridines and 4-Aminopyridines

Ravi Kumar,^{a,b} Rajesh G. Gonnade^c and Maddi Sridhar Reddy*a,^b

^aMedicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India. ^bAcademy of Scientific and Innovative Research, New Delhi 110001, India. Email: <u>msreddy@cdri.res.in</u>. ^cCentre for Materials Characterization, CSIR-NCL, Dr Homi Bhabha Road, Pune-411008, India

Table of Contents

I. General Information and methods.	S2-S3
VI. X-ray crystallographic data.	S3-S5
VII. Characteristic data of final compounds	S5-S18
VIII. Copies of ¹ H, ¹³ C and ³¹ P NMR spectra	S20-S58

I. General Information and methods.

All reagents and solvents were purchased from commercial sources and used without purification. NMR spectra were recorded with a 400 MHz spectrometers for ¹H NMR, 100 MHz for ¹³C NMR, and 161.9 MHz for ³¹P NMR Chemical shifts δ are given in ppm relative to the residual signals of tetramethylsilane in CDCl₃ or deuterated solvent CDCl₃/DMSO-*d*₆ and C₆D₆ for ¹H and ¹³C NMR. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quartet (q), multiplet (m), broad singlet (bs). HRMS were obtained using the electro spray ionization (ESI) technique and a time-of-flight (TOF) analyzer. Column chromatography was performed using silica gel (100-200 mesh) as the stationary phase. All reactions were monitored by thin layer chromatography (TLC). The purity and characterization of these compounds were further established using HR/ESI Mass spectroscopy. Melting points were measured on a capillary melting point apparatus and are uncorrected.

II. General Procedure for the Preparation N-propargyl β-enaminone.

All the N-propargyl β -enaminone (7a-x) were prepared according to the literature procedure.ⁱ

III. General procedure for the synthesis of sulfonyl azide.

All the sulphonyl azide were synthesized according to our previously reported procedure.ⁱ

IV. General procedure for the synthesis of 4-Imino-Tetrahydropyridine (7).

In an oven dried round bottomed flask equipped with a stir bar, added appropriate *N*-propargyl β enaminone (0.5 mmol), sulfonyl azide (0.6 mmol), TEA (1.2 equiv) and CuI (10 mol%) in 4.0 mL CH₂Cl₂ under N₂ environment and stirred at room temp until consumption of starting materials were observed (monitored by tlc). After completion of reaction the resulting mixture was diluted with water, and the reaction mixture was extracted with CH₂Cl₂ (3x10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel (DCM/EtOAc) to yield the products.

V. General procedure for the synthesis of 4-aminopyridines (9).

In an oven dried round bottomed flask equipped with a stir bar, added appropriate *N*-propargyl β enaminone (0.5 mmol), sulfonyl azide (0.6 mmol), TEA (1.2 equiv) and CuI (10 mol%) in 4.0 mL CH₂Cl₂ under N₂ environment and stirred at room temp. until consumption of starting materials were observed (monitored by tlc). After completion of reaction following the work up the crude was again dissolved in CH₂Cl₂ and added 2.2 equiv of DDQ and stirred for 12 h. After completion of the reaction (monitored by tlc) the resulting mixture was passed through a short bed of celite and diluted with water, the reaction mixture was then extracted with CH₂Cl₂ (3x10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel (DCM/EtOAc) to yield the products.

VI. X-ray crystallographic data.

X-ray intensity data measurements of compound **7ta** was carried out on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized (MoK_{α}= 0.71073Å) radiation at 150(2) K. The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames. Data were collected with ω scan width of 0.5° at different settings of φ and 2θ with a frame time of 15 secs keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was

monitored by APEX2 program (Bruker, 2006).ⁱⁱⁱ All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on $F^{2,iv}$ All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms except H atom bound to N atoms which was located in difference Fourier and refined isotropically. An *ORTEP* III^v view of both compounds were drawn with 50% probability displacement ellipsoids and H atoms are shown as small spheres of arbitrary radii.

Crystal data of **7ta** C₂₅H₃₀N₂O₃S, M = 438.57, colorless block, 0.41 x 0.34 x 0.27 mm³, monoclinic, space group $P2_1/n$, a = 15.6911(13) Å, b = 7.8759(7) Å, c = 19.8219(14) Å, $\beta = 106.907(2)^\circ$, V = 2343.7(3) Å³, Z = 4, T = 150(2) K, $2\theta_{max}=50.00^\circ$, D_{calc} (g cm⁻³) = 1.243, F(000) = 936, μ (mm⁻¹) = 0.166, 30275 reflections collected, 4034 unique reflections ($R_{int}=0.0488$), 3356 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.9349$, $T_{max} = 0.9565$, 286 refined parameters, S = 1.098, R1 = 0.0484, wR2 = 0.1176 (all data R= 0.0767, wR2 = 0.1417), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.615$, $\Delta \rho_{min} = -0.560$ (eÅ⁻³).

VII. Characteristic data of final compounds.

(E)-N-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(7*aa*): Beige solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 191 mg (89%); mp 191-193 °C; FT-IR (neat) 3398, 3018, 1646, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.35 (bs, 1H), 7.71 (d, *J* = 7.32 Hz, 2H), 7.52 (t, *J* = 6.8 Hz, 1H), 7.41 (t, *J* = 6.6 Hz, 3H), 7.34 (s, 4H), 7.11-7.06 (m, 4H), 3.69 (s, 2H), 3.24 (t, *J* = 7.4, 2H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.9, 172.3, 165.8, 142.0, 140.9, 139.9, 135.0, 132.4, 131.1, 129.3, 129.1, 128.8, 128.7, 128.4, 125.9, 109.5, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₅H₂₃N₂O₃S [M + H] 431.1429 found 431.1426.

(E)-N-(5-benzoyl-6-(p-tolyl)-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(7ba): Beige solid; R_f = 0.36 (40% EtOAc/DCM); Yield = 189 mg (85%); mp 206-208 °C; FT-IR (neat) 3371, 2924, 1656, 1401, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.32 (bs, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.16-7.04 (m, 6H), 3.67 (s, 2H), 3.22 (t, *J* = 7.8 Hz, 2H), 2.31 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 196.0, 172.2, 165.8, 141.9, 141.2, 140.9, 139.9, 132.4, 132.1,

129.4, 129.3, 129.2, 128.8, 128.4, 125.9, 109.4, 39.2, 28.4, 21.3, 21.3 ppm; HRMS (ESI) calcd for C₂₆H₂₅N₂O₃S [M + H] 445.1586 found 445.1580.

(*E*)-*N*-(5-benzoyl-6-(4-(tert-butyl)phenyl)-2,3-dihydro-pyridin-4(1H)-ylidene)-4-methylbenzene sulfonamide (7ca): Beige solid; $R_f = 0.36$ (40% EtOAc/DCM); Yield = 211 mg (87%); mp 127-129 °C; FT-IR (neat) 3390, 3019, 1645, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.30 (bs, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 6.8 Hz, 1H), 7.44-7.37 (m, 4H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 3.68 (s, 3H), 3.23 (t, *J* = 7.3 Hz, 3H), 2.31 (s, 3H), 1.23 (s, 9H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 196.1, 172.2, 165.9, 154.1, 141.9, 140.9, 140.1, 132.3, 132.2, 129.2, 129.1, 128.8, 128.3, 125.9, 125.7, 109.4, 39.2, 35.0, 31.3, 28.3, 21.3 ppm; HRMS (ESI) calcd for C₂₉H₃₁N₂O₃S [M + H] 487.2055 found 487.2054.

(*E*)-*N*-(6-([1,1'-biphenyl]-4-yl)-5-benzoyl-2,3-dihydro-pyridin-4(1H)-ylidene)-4-methylbenzene sulfonamide (7da): Beige solid; $R_f = 0.40$ (40% EtOAc/DCM); Yield = 212 mg (84%); mp 158-160 °C; FT-IR (neat) 3399, 3019, 1650, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.40 (bs, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.9 Hz, 4H), 7.55 (t, *J* = 7.1 Hz, 1H), 7.47-7.36 (m, 7H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 3.71 (s, 2H), 3.26 (t, *J* = 7.7 Hz, 2H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 196.0, 172.3, 165.5, 142.7, 142.0, 140.9, 140.1, 139.2, 133.9, 132.4, 129.5, 129.3, 129.2, 128.8, 128.6, 127.2, 126.9, 125.9, 109.5, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₃₁H₂₇N₂O₃S [M + H] 507.1742 found 507.1739.

(E)-N-(5-benzoyl-6-(4-fluorophenyl)-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzene

sulfonamide (7ea): Beige solid; R_f = 0.38 (40% EtOAc/DCM); Yield = 152 mg (68%); mp 200-202 °C; FT-IR (neat) 3386, 3017, 1646, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.38 (bs, 1H), 7.70 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.42-7.39 (m, 4H), 7.21 (t, *J* =

8.8 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 3.69 (t, J = 6.6 Hz, 2H), 3.24 (t, J = 7.8 Hz, 2H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 195.9, 172.3, 164.8, 162.5 142.0, 140.8, 140.0, 132.4, 131.4, 131.0 (d, J = 8.9 Hz,), 129.3, 129.1, 128.8, 125.9, 115.9 (d, J = 21.8 Hz), 109.6, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₅H₂₂N₂O₃SF [M + H] 449.1335 found 449.1345.

(E)-N-(5-benzoyl-6-(3,4-dichlorophenyl)-2,3-dihydro-pyridin-4(1H)-ylidene)-4-methylbenzene sulfonamide (7fa): Brown solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 170 mg (68%); mp 106-108 °C; FT-IR (neat) 3399, 3016, 1644, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.48 (bs, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.55-7.47 (m, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 2H), 7.04 (d, *J* = 7.7 Hz, 2H), 3.70 (s, 2H), 3.24 (t, *J* = 7.8 Hz, 2H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.7, 172.4, 163.3, 142.1, 140.6, 140.1, 135.5, 133.7, 132.4, 131.5, 131.0, 130.7, 129.3, 129.1, 128.8, 128.7, 125.9, 109.8, 39.4, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₅H₂₁N₂O₃SCl₂ [M + H] 499.0650 found 499.0646.

(E)-N-(5-benzoyl-6-(4-methoxyphenyl)-2,3-dihydro-pyridin-4(1H)-ylidene)-4-methylbenzene

sulfonamide (7ga): Beige solid; R_f = 0.28 (40% EtOAc/DCM); Yield = 186 mg (81%); mp 175-177 °C; FT-IR (neat) 3398, 3016, 1644, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.28-7.27 (m, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.75 (d, *J* = 7.6 Hz, 2H), 6.53 (bs, 1H), 3.74 (s, 3H), 3.68 (s, 2H), 3.38 (s, 2H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 171.6, 164.7, 162.0, 141.9, 139.8, 131.9, 129.6, 129.1, 128.8, 128.3, 126.6, 126.1, 114.3, 110.3, 55.4, 39.6, 28.7, 21.4 ppm; HRMS (ESI) calcd for C₂₆H₂₅N₂O₄S [M + H] 461.1535 found 461.1527.

(E)-N-(5-benzoyl-6-butyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(7*ha*): Brown sticky mass; $R_f = 0.36$ (40% EtOAc/DCM); Yield = 133 mg (65%); FT-IR (neat) 3375, 3021, 1649, 1397, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.24 (bs, 1H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 6.6 Hz, 1H), 7.43 (t, *J* = 7.0 Hz, 2H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.98 (d, *J* = 7.5 Hz, 2H), 3.54 (s, 2H), 3.07 (t, *J* = 7.3 Hz, 2H), 2.35-2.32 (m, 2H), 2.29 (s, 3H), 1.42-1.40 (m, 2H), 1.24-1.22 (m, 2H), 0.77 (t, 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 196.3, 171.9, 169.5, 141.8, 140.9, 140.0, 132.4, 129.2, 128.9, 128.7, 125.8, 108.5, 38.9, 32.5, 30.3, 28.2, 22.2, 21.3, 13.9 ppm; HRMS (ESI) calcd for C₂₃H₂₇N₂O₃S [M + H] 411.1742 found 411.1721.

(E)-N-(5-benzoyl-6-hexyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(7ia): Brown sticky mass; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 153 mg (70%); mp 146-148 °C; FT-IR (neat) 3385, 3019, 1647, 1401, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 9.26 (bs, 1H), 7.68 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.4 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 7.9 Hz, 2H), 3.53 (s, 2H), 3.07 (t, J = 7.7 Hz, 2H), 2.37-2.33 (m, 2H), 2.29 (s, 3H), 1.43-1.41 (m, 2H), 1.24-1.15 (m, 6H), 0.78 (t, J = 6.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 196.3, 171.9, 169.5, 141.8, 140.9, 139.9, 132.4, 129.2, 128.9, 128.7, 125.8, 108.5, 38.9, 32.7, 31.1, 28.6, 28.2, 28.1, 22.2, 21.3, 14.2 ppm; HRMS (ESI) calcd for C₂₅H₃₁N₂O₃S [M + H] 439.2055 found 439.2043.

(E)-N-(5-benzoyl-6-cyclopropyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzene

sulfonamide (7ja): Beige solid; R_f = 0.38 (40% EtOAc/DCM); Yield = 160 mg (81%); mp 189-191 °C; FT-IR (neat) 3380, 3015, 1640, 1401, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.36 (bs, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 6.9 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 3.45 (t, *J* = 6.1 Hz, 2H), 3.03 (t, *J* = 7.7 Hz, 2H), 2.30 (s, 3H), 1.75-1.71 (m, 1H), 0.97-0.96 (m, 2H), 0.90-0.88 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 196.6, 171.0, 169.4, 141.8, 141.2, 139.6, 132.7, 129.2, 129.1, 128.9, 125.8, 110.1, 38.9, 28.2, 21.3, 13.9, 9.5 ppm; HRMS (ESI) calcd for C₂₂H₂₃N₂O₃S [M + H] 395.1429 found 395.1420.

(E)-N-(5-benzoyl-6-cyclopentyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzene

sulfonamide (7ka): Beige solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 181 mg (86%); mp 106-108 °C; FT-IR (neat) 3390, 3019, 1647, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.78 (bs, 1H), 7.72 (d, *J* = 7.4 Hz, 2H), 7.58 (t, *J* = 7.1 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 3.53 (t, *J* = 6.2 Hz, 2H), 3.06 (t, *J* = 6.2 Hz, 2H), 2.79-2.71 (m, 1H), 2.30 (s, 3H), 1.76-1.60 (m, 7H), 1.46-1.45 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.7, 171.4, 170.8, 141.9, 139.8, 139.4, 132.2, 129.0, 128.8, 128.3, 125.9, 110.4, 42.3, 39.8, 31.8, 28.6, 25.5, 21.4 ppm; HRMS (ESI) calcd for C₂₄H₂₇N₂O₃S [M + H] 423.1742 found 423.1728.

(E)-N-(5-benzoyl-6-cyclohexyl-2,3-dihydropyridin-4(1H)-ylidene)-4-

methylbenzenesulfonamide (7la): Beige solid; $R_f = 0.36$ (40% EtOAc/DCM); Yield = 185 mg (85%); mp 212-214 °C; FT-IR (neat) 3391, 3019, 1646, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.83 (bs, 1H), 7.70 (d, *J* = 5.9 Hz, 2H), 7.57 (t, *J* = 5.6 Hz, 1H), 7.44 (t, *J* = 5.9 Hz, 2H), 7.08 (d, *J* = 6.4 Hz, 2H), 7.01 (d, *J* = 6.4 Hz, 2H), 3.51 (s, 2H), 3.05 (t, *J* = 6.2 Hz, 2H), 2.39-2.34 (m, 1H), 2.29 (s, 3H), 1.68 (bs, 4H), 1.59-1.57 (m, 1H), 1.48-1.42 (m, 2H), 1.13-1.03 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 172.2, 171.8, 141.9, 139.9, 139.7, 132.1, 128.9, 128.8, 128.3, 125.9, 109.3, 41.1, 39.5, 30.7, 28.5, 25.8, 25.5, 21.4 ppm; HRMS (ESI) calcd for C₂₅H₂₉N₂O₃S [M + H] 437.1899 found 437.1895.

(*E*)-*N*-(5-benzoyl-6-((benzyloxy)methyl)-2,3-dihydro-pyridin-4(1H)-ylidene)-4-methylbenzene sulfonamide (7ma): Off white solid; $R_f = 0.40$ (40% EtOAc/DCM); Yield = 213 mg (90%); mp 149-151 °C; FT-IR (neat) 3384, 3019, 1637, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 9.27 (bs, 1H), 7.63 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.30 (s, 5H), 7.05 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 4.55 (s, 2H), 4.41 (s, 2H), 3.61 (t, J = 6.2 Hz, 2H), 3.13 (t, J = 7.8 Hz, 2H), 2.29 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 195.2, 171.9, 166.1, 141.9, 140.8, 140.4, 137.6, 132.1, 129.2, 129.0, 128.7, 128.5, 128.3, 128.2, 125.8, 106.5, 72.9, 67.5, 39.1, 28.5, 21.3 ppm; HRMS (ESI) calcd for C₂₇H₂₇N₂O₄S [M + H] 475.1692 found 475.1695.

(E) - N - (5 - (4 - is opropylben zoyl) - 6 - phenyl - 2, 3 - dihydro-pyridin - 4(1H) - ylidene) - 4 - methylben zene

sulfonamide (7na): Beige solid; R_f = 0.38 (40% EtOAc/DCM); Yield = 186 mg (79%); mp 107-109 °C; FT-IR (neat) 3390, 3019, 1645, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.31 (bs, 1H), 7.65 (d, *J* = 7.9 Hz, 2H), 7.40 (s, 1H), 7.35-7.34 (m, 4H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.07 (s, 4H), 3.69 (s, 2H), 3.24 (t, *J* = 7.6 Hz, 2H), 2.99-2.92 (m, 1H), 2.29 (s, 3H), 1.23 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (100 MHz, , DMSO-*d*₆): δ 195.5, 172.1, 165.7, 153.2, 141.9, 140.9, 137.8, 135.1, 131.2, 129.5, 129.2, 128.8, 128.4, 126.7, 125.9, 109.7, 39.3, 33.9, 28.3, 24.0, 21.3 ppm; HRMS (ESI) calcd for C₂₈H₂₉N₂O₅S [M + H] 473.1899 found 473.1894.

(E)-N-(5-(benzo[d][1,3]dioxole-5-carbonyl)-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-

methylbenzenesulfonamide (70a): Beige solid; $R_f = 0.32$ (40% EtOAc/DCM); Yield = 171 mg (72%); mp 180-182 °C; FT-IR (neat) 3391, 3019, 1644, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 9.26 (bs, 1H), 7.41-7.31 (m, 7H), 7.25 (d, J = 8.1 Hz, 2H), 7.20-7.14 (m, 3H), 6.86 (d, J = 8.1 Hz, 1H), 6.09 (s, 2H), 3.67 (s, 2H), 3.21 (t, J = 7.7 Hz, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 194.1, 171.9, 165.4, 150.9, 147.8, 142.1, 140.9, 134.9, 134.7,

131.1, 129.3, 128.8, 128.4, 126.0, 125.4, 109.6, 108.7, 108.2, 102.2, 39.32, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₆H₂₃N₂O₅S [M + H] 475.1382 found 472.1380.

(E)-4-methyl-N-(5-(3-nitrobenzoyl)-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)benzene

sulfonamide (7pa): Beige solid; $R_f = 0.34$ (40% EtOAc/DCM); Yield = 183 mg (77%); mp 197-199 °C; FT-IR (neat) 3391, 3019, 1646, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.65 (bs, 1H), 8.17 (d, *J* = 7.5 Hz, 1H), 8.11 (s, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.44-7.36 (m, 5H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 3.72 (s, 2H), 3.28 (t, *J* = 7.4 Hz, 2H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 193.9, 171.9, 167.5, 148.5, 148.0, 142.2, 142.1, 140.1, 134.9, 134.8, 131.3, 130.3, 129.2, 128.9, 128.5, 125.9, 122.7, 108.3, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₅H₂₂N₃O₅S [M + H] 476.1280 found 476.1281.

(E)-N-(5-(2-naphthoyl)-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzene

sulfonamide (7qa): Beige solid; R_f = 0.36 (40% EtOAc/DCM); Yield = 144 mg (69%); mp 196-198 °C; FT-IR (neat) 3392, 3020, 1650, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.41 (bs, 1H), 8.28 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.76-7.74 (m, 1H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.41-7.38 (m, 3H), 7.5-7.31 (m, 2H), 6.91 (d, *J* = 8.1 Hz, 2H), 6.68 (d, *J* = 8.1 Hz, 2H), 3.74 (t, *J* = 6.5 Hz, 2H), 3.29 (t, *J* = 7.9 Hz, 2H), 2.13 (s, 3H) ppm; ¹³C NMR (100 MHz, , DMSO-*d*₆): δ 195.9, 172.2, 166.1, 141.7, 140.5, 137.7, 135.1, 132.9, 131.1, 130.0, 129.9, 128.9, 128.5, 128.3, 127.9, 126.8, 125.7, 125.5, 109.7, 39.4, 28.3, 21.3 ppm; HRMS (ESI) calcd for C₂₉H₂₅N₂O₅S [M + H] 481.1586 found 481.1595.

(E)-4-methyl-N-(6-phenyl-5-(thiophene-2-carbonyl)-2,3-dihydropyridin-4(1H)-

ylidene)benzenesulfonamide (7ra): Beige solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 161 mg (74%); mp 200-202 °C; FT-IR (neat) 3400, 3019, 1644, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz,

DMSO- d_6): δ 9.26 (bs, 1H), 7.82 (d, J = 3.8 Hz, 1H), 7.61 (d, J = 2.8 Hz, 1H), 7.43-7.34 (m, 7H), 7.21 (d, J = 6.4 Hz, 2H), 7.07 (t, J = 3.4 Hz, 1H), 3.69-3.66 (m, 2H), 3.21 (t, J = 6.4 Hz, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 187.8, 172.3, 164.5, 146.8, 142.2, 141.0, 134.7, 134.2, 134.0, 131.3, 129.5, 128.9, 128.6, 128.5, 126.1, 109.9, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₃H₂₁N₂O₃S₂ [M + H] 437.0994 found 437.0981.

(*E*)-4-methyl-N-(5-nicotinoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)benzenesulfonamide (7sa): Orange solid; $R_f = 0.30$ (50% EtOAc/DCM); Yield = 136 mg (63%); mp 204-206 °C; FT-IR (neat) 3399, 3020, 1648, 1403, 1218 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.56 (s, 1H), 8.78 (bs, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.43-7.35 (m, 7H), 7.15-7.09 (m, 4H), 3.71 (t, *J* = 6.2 Hz, 2H), 3.27 (t, *J* = 7.8 Hz, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, , DMSO-*d*₆): δ 194.6, 172.4, 166.9, 152.2, 150.2, 142.2, 140.5, 136.1, 134.9, 131.2, 130.6, 129.4, 128.9, 128.5, 126.2, 125.9, 108.9, 39.3, 28.2, 21.3 ppm; HRMS (ESI) calcd for C₂₄H₂₂N₃O₃S [M + H] 432.1382 found 432.1380.

(E)-N-(5-heptanoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(*7ta*): White solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 175 mg (80%); mp 191-193 °C; FT-IR (neat) 3378, 3016, 1642, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.44 (bs, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 7.3 Hz, 2H), 3.56 (t, *J* = 6.4 Hz, 2H), 3.16 (t, *J* = 7.8 Hz, 2H), 2.38 (s, 3H), 1.23-1.09 (m, 5H), 1.02-0.90 (m, 5H), 0.79 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 203.1, 171.3, 166.9, 142.4, 141.1, 135.8, 130.9, 129.7, 128.7, 128.4, 126.4, 112.4, 44.3, 39.0, 31.6, 28.8, 28.8, 24.6, 22.5, 21.4, 14.3 ppm; HRMS (ESI) calcd for C₂₅H₃₁N₂O₃S [M + H] 439.2055 found 439.2036.

(E)-N-(5-butyryl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide

(7*ua*): White solid; $R_f = 0.34$ (40% EtOAc/DCM); Yield = 162 mg (82%); mp 206-208 °C; FT-IR (neat) 3389, 3019, 1646, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.42 (bs, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.43-7.36 (m, 4H), 7.32 (d, *J* = 7.1 Hz, 2H), 3.56-3.53 (m, 2H), 3.15 (t, *J* = 7.9 Hz, 2H), 2.53-2.49 (m, 2H), 2.38 (s, 3H), 1.28-1.22 (m, 2H), 0.58 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 203.0, 171.4, 167.0, 142.5, 141.0, 135.7, 130.9, 129.7, 128.7, 128.4, 126.3, 112.3, 46.3, 39.0, 28.7, 21.4, 17.9, 13.9 ppm; HRMS (ESI) calcd for C₂₂H₂₅N₂O₃S [M + H] 397.1586 found 397.1581.

(*E*)-*N*-(5-isobutyryl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-methylbenzenesulfonamide (7va): White solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 151 mg (76%); mp 128-130 °C; FT-IR (neat) 3388, 3019, 1648, 1403, 1214 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.37 (bs, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.49-7.46 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.38-7.33 (m, 4H), 3.56 (t, *J* = 7.6 Hz, 2H), 3.16 (t, *J* = 7.9 Hz, 2H), 2.99-2.89 (m, 1H), 2.38 (s, 3H), 0.73 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 206.8, 171.6, 166.5, 142.5, 140.9, 135.6, 130.9, 129.7, 128.6, 128.5, 126.3, 111.7, 39.1, 28.5, 21.4, 19.0 ppm; HRMS (ESI) calcd for C₂₂H₂₅N₂O₅S [M + H] 397.1586 found 397.1587.

(*E*)-4-methyl-N-(5-(3-methylbutanoyl)-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)benzene sulfonamide (7wa): White solid; R_f = 0.40 (40% EtOAc/DCM); Yield = 154 mg (75%); mp 137-139 °C; FT-IR (neat) 3390, 3019, 1645, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.44 (bs, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.49-7.46 (m, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 7.2 Hz, 2H), 3.54 (t, *J* = 6.5 Hz, 2H), 3.15 (t, *J* = 7.8 Hz, 2H), 2.47 (d, *J* = 6.8 Hz, 2H), 2.38 (s, 3H), 1.82-1.74 (m, 1H), 0.8 (d, *J* = 6.6 Hz, 6H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 201.9, 171.3, 167.1, 142.4, 141.1, 135.8, 130.9, 129.7, 128.7, 128.5, 126.4, 112.4, 53.1, 38.9, 28.9, 24.1, 22.7, 21.4 ppm; HRMS (ESI) calcd for $C_{23}H_{27}N_2O_3S$ [M + H] 411.1742 found 411.1743.

(E)-4-methyl-N-(6-phenyl-5-(2-phenylacetyl)-2,3-dihydropyridin-4(1H)-ylidene)benzene

sulfonamide (7xa): Off white solid; R_f = 0.36 (40% EtOAc/DCM); Yield = 158 mg (71%); mp 148-150 °C; FT-IR (neat) 3400, 3019, 1644, 1403, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.49 (bs, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), '7.39 (d, *J* = 8.1 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.20-7.14 (m, 5H), 6.88-6.86 (m, 2H), 3.97 (s, 2H), 3.59-3.54 (m, 2H), 3.20 (t, *J* = 7.9 Hz, 2H), 2.39 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 200.3, 171.7, 167.2, 142.6, 140.9, 136.1, 135.5, 130.9, 130.2, 129.9, 128.6, 128.3, 128.2, 126.6, 126.5, 111.5, 50.3, 39.0, 28.6, 21.4 ppm; HRMS (ESI) calcd for C₂₆H₂₅N₂O₃S [M + H] 445.1586 found 445.1571.

(*E*)-*N*-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)benzenesulfonamide (7ab): Beige solid; $R_f = 0.42$ (40% EtOAc/DCM); Yield = 181 mg (87%); mp 116-118 °C; FT-IR (neat) 3399, 3019, 1644, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.40 (bs, 1H), 7.72-7.67 (m, 2H), 7.61 (t, *J* = 6.6 Hz, 1H), 7.52-7.45 (m, 3H), 7.42-7.39 (m, 3H), 7.35-7.28 (m, 4H), 7.19 (d, *J* = 7.7 Hz, 2H), 3.71 (s, 2H), 3.26 (t, *J* = 7.6 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.9, 172.3, 166.0, 143.6, 140.0, 134.0, 132.4, 131.2, 129.3, 129.2, 128.9, 128.8, 128.7, 128.4, 125.8, 109.5, 39.3, 28.3 ppm; HRMS (ESI) calcd for C₂₄H₂₁N₂O₃S [M + H] 417.1273 found 417.1268.

(E)-N-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-chlorobenzenesulfonamide

(7*ac*): Beige solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 191 mg (85%); mp 207-209 °C; FT-IR (neat) 3391, 3019, 1645, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.50 (bs, 1H), 7.69 (d, *J* = 7.3 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44-7.39 (m, 3H), 7.37-7.34 (m, 6H), 7.17 (d, *J* = 8.5 Hz, 2H), 3.74-3.69 (m, 2H), 3.25 (t, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-

*d*₆): δ 195.8, 172.3, 166.5, 142.5, 140.0, 136.7, 134.9, 132.4, 131.2, 129.3, 128.9, 128.8, 128.7, 128.4, 127.8, 109.6, 39.3, 28.4 ppm; HRMS (ESI) calcd for C₂₄H₂₀N₂O₃SCl [M + H] 451.0883 found 451.0901.

(E)-N-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-fluorobenzenesulfonamide

(7*ad*): Beige solid; $R_f = 0.36$ (40% EtOAc/DCM); Yield = 176 mg (81%); mp 160-162 °C; FT-IR (neat) 3299, 3017, 1649, 1494, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.46 (bs, 1H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.41-7.38 (m, 4H), 7.35 (d, *J* = 4.2 Hz, 3H), 7.25-7.21 (m, 2H), 7.12 (t, *J* = 8.8 Hz, 2H), 3.17 (t, *J* = 6.4 Hz, 2H), 3.25 (t, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.9, 172.2, 166.3, 163.9 (d, *J* = 249.0 Hz), 140.1, 134.9, 132.3, 131.2, 129.2, 129.1, 128.8, 128.7, 128.6, 128.4, 115.9 (d, *J* = 22.2 Hz), 109 .5, 39.4, 28.3 ppm; HRMS (ESI) calcd for C₂₄H₂₀N₂O₃SF [M + H] 435.1179 found 435.1172.

(E)-N-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-(trifluoromethyl)benzene

sulfonamide (7ae): Beige solid; R_f = 0.34 (40% EtOAc/DCM); Yield = 155 mg (64%); mp 207-209 °C; FT-IR (neat) 3392, 3019, 1650, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.58 (bs, 1H), 7.67 (t, *J* = 7.7 Hz, 4H), 7.47-7.39 (m, 4H), 7.36-7.33 (m, 6H), 3.75-3.71 (m, 2H), 3.27 (t, *J* = 6.5 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.9, 172.3, 166.9, 147.1, 139.9, 134.7, 132.3, 131.9, 131.3, 129.0, 128.9, 128.7, 128.4, 126.8, 126.1, 125.3, 109.6, 39.3, 28.5 ppm; HRMS (ESI) calcd for C₂₅H₂₀N₂O₃SF₃ [M + H] 485.1147 found 485.1142.

(E)-N-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)-4-nitrobenzenesulfonamide

(7*af*): Beige solid; $R_f = 0.30$ (40% EtOAc/DCM); Yield = 182 mg (79%); mp 163-165 °C; FT-IR (neat) 3390, 3019, 1645, 1402, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.66 (bs, 1H), 8.10 (d, J = 8.7 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H), 7.50-7.46 (m, 1H), 7.43-7.39 (m, 4H), 7.38-7.35 (m, 5H), 3.75 (s, 2H), 3.28 (t, J = 7.9 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ

195.7, 172.3, 167.1, 149.2, 148.9, 139.9, 134.7, 132.4, 131.3, 129.1, 128.9, 128.8, 128.4, 127.4, 124.3, 109.7, 39.3, 28.6 ppm; HRMS (ESI) calcd for $C_{24}H_{20}N_3O_5S$ [M + H] 462.1124 found 462.1120.

(*E*)-*N*-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)thiophene-2-sulfonamide (7ag): Beige solid; $R_f = 0.36$ (40% EtOAc/DCM); Yield = 152 mg (72%); mp 168-170 °C; FT-IR (neat) 3391, 3019, 1644, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 9.47 (bs, 1H), 7.73-7.71 (m, 3H), 7.48 (t, *J* = 6.9 Hz, 2H), 7.43-7.32 (m, 6H), 7.09 (d, *J* = 2.9 Hz, 1H), 6.96 (t, *J* = 4.2 Hz, 1H), 3.70 (s, 2H), 3.24 (t, *J* = 7.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 195.6, 172.0, 166.2, 145.0, 139.6, 134.8, 132.6, 131.8, 131.2, 130.1, 129.3, 128.8, 128.7, 128.4, 127.2, 109.6, 39.4, 28.0 ppm; HRMS (ESI) calcd for C₂₂H₁₉N₂O₃S₂ [M + H] 423.0837 found 423.0827.

(*E*)-*N*-(5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)methanesulfonamide (7ah): Greenish solid; $R_f = 0.46$ (40% EtOAc/DCM); Yield = 145 mg (82%); mp 110-112 °C; FT-IR (neat) 3392, 3018, 1644, 1403, 1218 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.20 (bs, 1H), 7.70 (d, *J* = 7.4 Hz, 2H), 7.51-7.47 (m, 1H), 7.41 (t, *J* = 7.6 Hz, 3H), 7.37 (d, *J* = 4.0 Hz, 4H), 3.66 (s, 2H), 3.14 (t, *J* = 7.5 Hz, 2H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 195.9, 172.0, 165.4, 140.3, 135.1, 132.2, 131.1, 128.9, 128.8, 128.6, 128.5, 108.8, 42.9, 39.2, 28.3 ppm; HRMS (ESI) calcd for C₁₉H₁₉N₂O₃S [M + H] 355.1116 found 355.1113.

N-(3-benzoyl-2-phenylpyridin-4-yl)-4-methylbenzene-sulfonamide (9a): Yellow solid; $R_f = 0.44$ (40% EtOAc/DCM); Yield = 173 mg (81%); mp 205-207 °C; FT-IR (neat) 3392, 3019, 1650, 1402, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 13.21 (bs, 1H), 8.08 (d, J = 7.1 Hz, 1H), 7.67 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.2 Hz, 1H), 7.47-7.41 (m, 4H), 7.40-7.34 (m, 6H), 7.19 (d, J = 7.9 Hz, 2H), 2.32 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 194.4, 161.6,

147.4, 141.5, 141.4, 139.6, 137.1, 134.0, 132.3, 130.8, 129.4, 129.3, 129.2, 129.0, 127.3, 126.2, 111.9 ppm; HRMS (ESI) calcd for C₂₅H₂₁N₂O₃S [M + H] 429.1273 found 429.1285.

N-(3-(4-isopropylbenzoyl)-2-phenylpyridin-4-yl)-4-methylbenzenesulfonamide (9b): White solid; $R_f = 0.40$ (40% EtOAc/DCM); Yield = 176 mg (75%); mp 198-200 °C; FT-IR (neat) 3392, 3018, 1637, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.18 (bs, 1H), 8.07 (d, *J* = 7.1 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.38-7.37 (m, 6H), 7.35-7.31 (m, 4H), 7.17 (d, *J* = 7.9 Hz, 2H), 2.99-2.93 (m, 1H), 2.32 (s, 3H), 1.23 (d, *J* = 6.9 Hz, 6H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 193.9, 161.8, 154.9, 147.1, 141.4, 139.4, 135.2, 132.3, 131.9, 130.8, 129.6, 129.3, 129.3, 129.0, 127.5, 127.2, 126.2, 111.9, 33.9, 23.9, 21.3 ppm; HRMS (ESI) calcd for $C_{28}H_{27}N_2O_3S$ [M + H] 471.1742 found 471.1734.

N-(3-benzoyl-2-(p-tolyl)pyridin-4-yl)-4-methylbenzene-sulfonamide (9c): White solid; $R_f = 0.41$ (40% EtOAc/DCM); Yield = 172 mg (78%); mp >250 °C; FT-IR (neat) 3394, 3019, 1650, 1405, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.13 (bs, 1H), 8.06 (d, *J* = 7.2 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.19-7.17 (m, 4H), 2.32 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 194.5, 161.8, 147.3, 141.5, 140.7, 139.4, 137.1, 134.0, 129.6, 129.3, 129.2, 129.2, 127.2, 126.2, 111.8, 21.3, 21.2 ppm; HRMS (ESI) calcd for C₂₆H₂₃N₂O₃S [M + H] 443.1429 found 443.1430.

N-(3-butyryl-2-phenylpyridin-4-yl)-4-methylbenzene-sulfonamide (9d): White solid; $R_f = 0.42$ (40% EtOAc/DCM); Yield = 142 mg (72%); mp 194-196 °C; FT-IR (neat) 3392, 3019, 1623, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.10 (bs, 1H), 7.98 (d, *J* = 7.0 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.54-7.48 (m, 3H), 7.46-7.43 (m, 2H), 7.35-7.30 (m, 3H), 2.49 (s, 2H), 2.35 (s, 3H), 1. 39-1.29 (m, 2H), 0.64 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆):

 δ 204.0, 160.7, 146.2, 141.7, 141.5, 139.0, 132.2, 130.9, 130.0, 129.6, 129.5, 129.1, 126.4, 112.0, 45.7, 21.3, 16.7, 13.7 ppm; HRMS (ESI) calcd for C₂₂H₂₃N₂O₃S [M + H] 395.1429 found 395.1425.

N-(3-benzoyl-2-phenylpyridin-4-yl)-4-(trifluoromethyl)benzenesulfonamide (9e): Beige solid; $R_f = 0.38$ (40% EtOAc/DCM); Yield = 183 mg (76%); mp 207-209 °C; FT-IR (neat) 3398, 3019, 1642, 1403, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.43 (bs, 1H), 8.15 (d, *J* = 6.9 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.67-7.57 (m, 5H), 7.48-7.39 (m, 8H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 194.3, 161.6, 147.9 (d, *J* = 34.0 Hz), 139.9, 137.7, 134.0, 132.1, 131.6, 131.3, 130.9, 129.3, (d, *J* = 8.0 Hz), 129.0, 127.6, 126.9, 125.5, 122.7, 112.2 ppm; HRMS (ESI) calcd for C₂₅H₂₀N₂O₃SF₃ [M + H] 483.0990 found 483.0992.

N-(3-benzoyl-2-phenylpyridin-4-yl)methanesulfonamide (9f): White solid; $R_f = 0.44$ (40% EtOAc/DCM); Yield = 128 mg (73%); mp 187-189 °C; FT-IR (neat) 3391, 3019, 1649, 1403, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.06 (bs, 1H), 8.08 (d, *J* = 4.9 Hz, 1H), 7.72 (d, *J* = 7.4 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.46-7.39 (m, 8H), 2.59 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 194.5, 161.6, 147.2, 139.1, 137.2, 133.9, 133.3, 130.7, 129.7, 129.2, 129.2, 129.0, 126.5, 111.9, 41.5 ppm; HRMS (ESI) calcd for C₁₉H₁₇N₂O₃S [M + H] 353.0960 found 353.0953.

(E)-diphenyl (5-benzoyl-6-phenyl-2,3-dihydropyridin-4(1H)-ylidene)phosphoramidate (10aa): Greenish solid; $R_f = 0.28$ (40% EtOAc/DCM); Yield = 71 mg (28%); mp 158-160 °C; FT-IR (neat) 3340, 3019, 1645, 1403, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ 9.16 (bs, 1H), 7.75 (d, J = 7.3 Hz, 2H), 7.52 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 7.3 Hz, 3H), 7.38 (s, 4H), 7.24 (t, J = 6.5 Hz, 4H), 7.11 (t, J = 6.9 Hz, 2H), 6.87 (d, J = 7.4 Hz, 4H), 3.65 (s, 2H), 3.06 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 196.3, 177.5, 165.2, 151.5, 151.4, 139.6, 135.1, 132.6, 131.0, 129.9, 129.3, 128.8, 128.7, 128.4, 124.6, 120.6, 38.6, 28.8 ppm; ³¹P NMR (161.9 MHz, DMSO*d*₆): δ -4.52 ppm; HRMS (ESI) calcd for C₃₀H₂₆N₂O₄P [M + H] 509.1630 found 509.1626.

References:

- (i) Cai, S.; Yang, K.; Wang, D. Z. Org. Lett. 2014, 16, 2606. (b) Wang, G.-W.; Miao, C.-B. Green Chem. 2006, 8, 1080. (c) Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J. P. H.; Kantacha, A. Chem. Commun. 2005, 1037.
- (ii) Kumar, Y. K.; Kumar, G. R.; Reddy, T. J.; Sridhar, B.; Reddy, M. S. Org. Lett., 2015, 17, 2226.
- (iii) Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- (iv) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112. (v) Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

VII. Copies of ¹H, ¹³C and ³¹P NMR spectra.

Fig. 2: ¹³C NMR of 7aa

Fig. 3: ¹H NMR of 7ba

Fig. 4: ¹³C NMR of 7ba

Fig. 5: ¹H NMR of 7ca

Fig. 6: ¹³C NMR of 7ca

Fig. 7: ¹H NMR of 7da

Fig. 8: ¹³C NMR of 7da

Fig. 9: ¹H NMR of 7ea

Fig. 10: ¹³C NMR of 7ea

Fig. 12: ¹³C NMR of 7fa

Fig. 14: ¹³C NMR of 7ga

Fig. 16: ¹³C NMR of 7ha

Fig. 18: ¹³C NMR of 7ia

Fig. 20: ¹³C NMR of 7ja

Fig. 21: ¹H NMR of 7ka

Fig. 22: ¹³C NMR of 7ka

Fig. 23: ¹H NMR of 7la

Fig. 24: ¹³C NMR of 7la

Fig. 26: ¹³C NMR of 7ma

Fig. 28: ¹³C NMR of 7na

Fig. 30: ¹³C NMR of 70a

Fig. 32: ¹³C NMR of 7pa

Fig. 34: ¹³C NMR of 7qa

Fig. 36: ¹³C NMR of 7ra

Fig. 38: ¹³C NMR of 7sa

Fig. 39: ¹H NMR of 7ta

Fig. 40: ¹³C NMR of 7ta

Fig. 42: ¹³C NMR of 7ua

Fig. 44: ¹³C NMR of 7va

Fig. 46: ¹³C NMR of 7wa

Fig. 48: ¹³C NMR of 7xa

Fig. 50: ¹³C NMR of 7ab

Fig. 52: ¹³C NMR of 7ac

Fig. 54: ¹³C NMR of 7ad

Fig. 56: ¹³C NMR of 7ae

Fig. 58: ¹³C NMR of 7af

Fig. 60: ¹³C NMR of 7ag

Fig. 62: ¹³C NMR of 7ah

Fig. 64: ¹³C NMR of 9a

Fig. 66: ¹³C NMR of 9b

Fig. 68: ¹³C NMR of 9c

Fig. 69: ¹H NMR of 9d

Fig. 70: ¹³C NMR of 9d

Fig. 72: ¹³C NMR of 9e

Fig. 74: ¹³C NMR of 9f

Fig. 76: ¹³C NMR of 10

Fig. 77: ³¹P NMR of 10