Supporting Information

Bu₄NI/tBuOOH Catalyzed, α-Regioselective Cross-Dehydrogenative Coupling of BODIPY with Allylic Alkenes and Ethers

Yang Yu,^a Lijuan Jiao, *^a Jun Wang,^a Hua Wang,^a Changjiang Yu,^a Erhong Hao,^a and

Noël Boens*^b

^{*a*} The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China 241000.

^b Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Leuven, Belgium

* Correspondence authors. E-mail: jiao421@ahnu.edu.cn, noel.boens@kuleuven.be

Contents

1.	General information	. S2
2.	Synthesis and characterization	. S2
3.	Scheme S1	. S11
4.	¹ H NMR, ¹³ C NMR and HRMS spectra for all new compounds	S12
5.	Photophysical properties of selected BODIPYs	.S62

1. General information

Reagents and solvents were used as received from commercial suppliers (Energy Chemicals, Shanghai, China) unless noted otherwise. All reactions were performed in oven-dried or flame-dried glassware unless stated otherwise and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ¹H and ¹³C NMR spectra were recorded on a 300 or 500 MHz NMR spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm for ¹H and 77 ppm for ¹³C) or to internal TMS. High-resolution mass spectra (HRMS) were obtained using APCI-TOF in positive mode. Melting points reported were not corrected.

2. Synthesis and characterization

BODIPYs **2** were synthesized according to literature (*Eur J. Org. Chem.* **2011**, *28*, 5460).

Figure S1. Chemical structure of BODIPYs 2a-i, allylic alkenes and (poly)ethers.

General procedure for the synthesis of BODIPYs 1a-r

To BODIPY **2** (0.50 mmol) and Bu₄NI (0.10 mmol, 37 mg) in a Schlenk tube was added solvent (3.0 mL) and TBHP (70% aqueous solution, 0.36 mL, 2.5 mmol) via a syringe. The reaction mixture was stirred at 90 °C in an oil bath for 12 h. The organic solvent was removed under vacuum to yield the crude product, which was further purified by flash chromatography on silica gel with petroleum ether/ethyl acetate $(100:1\rightarrow9:1, v/v)$ as eluent to provide the corresponding product.

1a was obtained as orange oil in 63% yield (109 mg) from **2a** (134 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 70-73 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H), 7.62-7.48 (m, 5H), 6.89 (d, J = 4.2 Hz, 1H), 6.78 (s, 1H), 6.48 (s, 1H), 6.45 (s, 1H), 5.93 (d, J = 9.7 Hz, 1H), 5.71 (d, J = 9.9 Hz, 1H), 4.18 (s, 1H), 2.29-2.22 (m, 1H), 2.12 (s, 2H), 1.87-1.67 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 143.6, 139.5, 134.2, 132.8, 132.6, 131.7, 129.2, 129.1, 128.1, 127.5, 127.1, 125.7, 118.0, 115.9, 34.6, 28.4, 23.6, 19.8. HRMS calcd. for C₂₁H₁₉BF₂N₂ [M-F]⁺: 329.1620, found 329.1606.

1b was obtained as orange oil in 60% yield (113 mg) from **2b** (150 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.51 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 4.4 Hz, 1H), 6.82 (d, J = 3.9 Hz, 1H), 6.49 (s, 1H), 6.44 (d, J = 4.4 Hz, 1H), 5.93 (d, J = 7.6 Hz, 1H), 5.72 (d, J = 10.1 Hz, 1H), 4.17 (s, 1H), 3.91 (s, 3H), 2.31-2.19 (m, 1H), 2.12 (s, 2H), 1.90-1.78 (m, 1H), 1.77-1.66 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 161.7, 145.0, 140.3, 135.4, 133.9, 132.8, 132.3, 129.3, 128.6, 127.1, 126.6, 119.0, 117.0, 114.0, 55.6, 35.9, 29.6, 24.9, 21.1. HRMS calcd. for C₂₂H₂₁BF₂N₂O [M-F]⁺: 359.1725, found 359.1710.

1c was obtained as red oil in 54% yield (106 mg) from **2c** (156 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 87-90 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, *J* = 8.6 Hz, 2H), 7.84 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 4.5 Hz, 1H), 6.68 (d, *J* = 4.0 Hz, 1H), 6.51 (d, *J* = 3.7 Hz, 1H), 6.49 (d, *J* = 4.5 Hz, 1H), 5.95 (d, *J* = 7.6 Hz, 1H), 5.69 (d, *J* = 10.0 Hz, 1H), 4.17 (s, 1H), 2.35-2.19 (m, 1H), 2.13 (s, 2H), 1.87-1.78 (m, 1H), 1.77-1.66 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 149.3,

142.2, 141.6, 140.6, 135.5, 133.6, 132.8, 131.6, 130.1, 128.6, 126.7, 124.0, 120.6, 118.2, 36.4, 29.7, 25.1, 21.3. HRMS calcd. for $C_{21}H_{18}BF_2N_3O_2$ [M-F]⁺: 374.1471, found 374.1463.

1d was obtained as yellow oil in 56% yield (116 mg) from 2d (168 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.55-7.43 (m, 2H), 7.42-7.37 (m, 1H), 6.64 (d, J = 4.5 Hz, 1H), 6.54 (d, J = 3.9 Hz, 1H), 6.44 (d, J = 2.3 Hz, 1H), 6.41 (d, J = 4.4 Hz, 1H), 5.94 (d, J = 7.6 Hz, 1H), 5.73 (d, J = 10.0 Hz, 1H), 4.17 (s, 1H), 2.31-2.24 (m, 1H), 2.11 (s, 2H), 1.90-1.77 (m, 1H), 1.76-1.68 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 141.9, 138.4, 135.8, 135.8, 133.6, 132.0, 131.6, 131.4, 130.0, 128.6, 127.2, 127.0, 120.3, 117.8, 36.4, 29.7, 25.2, 21.4. HRMS calcd. for C₂₁H₁₇BCl₂F₂N₂ [M-F]⁺: 397.0840, found 397.0828.

1e was obtained as yellow oil in 39% yield (76 mg) from 2e (150 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 90-93 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.79 (s, 1H), 7.40 (t, J = 8.1 Hz, 1H), 7.13-7.06 (m, 3H), 6.93 (d, J = 4.0 Hz, 1H), 6.81 (d, J = 2.7 Hz, 1H), 5.93 (d, J = 7.8 Hz, 1H), 5.71 (d, J = 10.0 Hz, 1H), 4.17 (s, 1H), 3.86 (s, 3H), 2.31-2.25 (m, 1H), 2.12 (s, 2H), 1.90-1.78 (m, 1H), 1.78-1.67 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 159.7, 144.9, 141.1, 135.8, 135.7, 134.1, 133.6, 133.3, 129.7, 129.0, 127.3, 123.3, 119.6, 117.5, 116.3, 116.2, 55.83, 36.22, 29.82, 25.17, 21.35. HRMS calcd. for C₂₂H₂₁BF₂N₂O [M-F]⁺: 359.1725, found 359.1719.

If was obtained as yellow oil in 52% yield (94 mg) from 2f (141 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 76-78 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.78 (s, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 6.91 (d, *J* = 3.9 Hz, 1H), 6.79 (d, *J* = 2.8 Hz, 1H), 6.47 (s, 1H), 6.43 (d, *J* = 4.2 Hz, 1H), 5.92 (d, *J* = 8.1 Hz, 1H), 5.71 (d, *J* = 10.0 Hz, 1H), 4.17 (s, 1H), 2.46 (s, 3H), 2.33-2.23 (m, 1H), 2.11 (s, 2H), 1.85-1.76 (m, 1H), 1.76-1.68 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 145.5, 141.1, 140.8, 135.8, 134.2, 133.2, 131.7, 130.9, 129.6, 129.4, 128.9, 127.3, 119.4, 117.4, 36.2, 29.9, 25.2, 21.8, 21.4. HRMS calcd. for C₂₂H₂₁BF₂N₂ [M-F]⁺: 343.1782, found 343.1799.

1g was obtained as yellow oil in 43% yield (94 mg) from **2g** (150 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 121-123 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H), 7.73-7.29 (m, 5H), 6.86 (d, J = 4.1 Hz, 1H), 6.74 (d, J = 3.0 Hz, 1H), 6.48 (s, 1H), 6.45 (d, J = 4.3 Hz, 1H), 5.94 (d, J = 8.4 Hz, 1H), 5.70 (d, J = 10.0 Hz, 1H), 4.16 (s, 1H), 2.34-2.26 (m, 1H), 2.11 (s, 2H), 1.85-1.75 (m, 1H), 1.76-1.66 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 170.1, 143.6, 141.5, 137.0, 133.9, 132.9, 132.8, 131.9, 129.8, 129.1, 128.7, 127.1, 125.8, 119.9, 117.7, 36.3, 29.8, 25.2, 21.3. HRMS calcd. for C₂₁H₁₈BClF₂N₂ [M-F]⁺: 363.1266, found 363.1269.

1h was obtained as yellow oil in 45% yield (74 mg) from **2e** (125 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 56-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.02 (s, 1H), 6.84 (d, J = 4.0 Hz, 1H), 6.26 (d, J = 3.9 Hz, 1H), 5.85 (d, J = 9.9 Hz, 1H), 5.72 (d, J = 10.0 Hz, 1H), 4.03 (s, 1H), 2.54 (s, 3H), 2.40 (q, J = 7.6 Hz, 2H), 2.17 (s, 4H), 2.08 (s, 2H), 1.84-1.74 (m, 1H), 1.74-1.62 (m, 2H), 1.07 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.7, 159.6, 139.4, 134.8, 133.9, 133.2, 128.7, 128.6, 127.5, 123.1, 116.1, 35.8, 30.2, 25.3, 21.4, 17.7, 14.7, 13.3, 9.8. HRMS calcd. for C₁₉H₂₃BF₂N₂ [M-F]⁺: 309.1933, found 309.1914.

1i was obtained as orange oil in 60% yield (101 mg) from **2a** (134 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 90-92 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.62-7.48 (m, 5H), 6.88 (d, *J* = 4.4 Hz, 1H), 6.77 (d, *J* = 3.9 Hz, 1H), 6.48 (d, *J* = 3.7 Hz, 1H), 6.36 (d, *J* = 4.4 Hz, 1H), 6.01 (d, *J* = 3.0 Hz, 1H), 5.80 (d, *J* = 3.3 Hz, 1H), 4.60 (s, 1H), 2.62-2.55 (m, 1H), 2.55-2.45 (m, 2H), 2.01-1.89 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 145.1, 141.0, 135.9, 134.4, 134.3, 133.6, 131.6, 130.8, 130.7, 129.9, 129.0, 128.7, 118.6, 117.5, 45.3, 32.9, 32.2. HRMS calcd. for C₂₀H₁₇BF₂N₂ [M-F]⁺: 315.1463, found 315.1441.

1j was obtained as orange oil in 57% yield (104 mg) from **2b** (150 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 93-95 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 4.1 Hz, 1H), 6.81 (d, J = 2.9 Hz, 1H), 6.48 (d, J = 1.3 Hz, 1H), 6.36 (d, J = 4.1 Hz, 1H), 6.00 (d, J = 2.9 Hz, 1H), 5.80 (d, J = 3.2 Hz, 1H), 4.59 (s, 1H), 3.90 (s, 3H), 2.64-2.56(m, 1H), 2.56-2.39 (m, 2H), 2.15-1.84 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 162.0,

145.2, 140.5, 135.8, 134.1, 133.4, 132.6, 131.8, 130.0, 128.8, 126.9, 118.2, 117.3, 114.3, 55.9, 45.2, 32.9, 32.3. HRMS calcd. for $C_{21}H_{19}BF_2N_2O$ [M-F]⁺: 345.1569, found 345.1554.

1k was obtained as red oil in 40% yield (76 mg) from 2c (156 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 126-128 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, J = 8.4 Hz, 2H), 7.84 (s, 1H), 7.72 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 3.6 Hz, 1H), 6.67 (s, 1H), 6.51 (s, 1H), 6.41 (d, J = 3.8 Hz, 1H), 6.03 (s, 1H), 5.79 (d, J = 2.8 Hz, 1H), 4.60 (s, 1H), 2.78-2.44 (m, 3H), 2.04-1.85 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 149.3, 142.2, 141.5, 140.6, 135.6, 134.7, 133.6, 133.0, 131.6, 131.2, 128.5, 124.0, 119.6, 118.2, 45.4, 32.9, 32.2. HRMS calcd. for C₂₀H₁₆BF₂N₃O₂ [M-F]⁺: 360.1319, found 360.1319.

11 was obtained as yellow oil in 52% yield (105 mg) from 2d (168 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 85-87 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.55-7.41 (m, 2H), 7.40-7.37 (m, 1H), 6.64 (d, *J* = 4.5 Hz, 1H), 6.54 (d, *J* = 3.4 Hz, 1H), 6.44 (d, *J* = 3.7 Hz, 1H), 6.34 (d, *J* = 4.6 Hz, 1H), 6.02 (d, *J* = 3.1 Hz, 1H), 5.81 (d, *J* = 2.5 Hz, 1H), 4.60 (s, 1H), 2.63-2.54 (m, 1H), 2.54-2.46 (m, 1H), 2.05-1.91 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 141.9, 138.5, 138.4, 135.8, 134.5, 133.6, 132.0, 131.8, 131.4, 128.9, 128.6, 127.3, 119.5, 117.8, 45.5, 32.9, 32.1. HRMS calcd. for C₂₀H₁₅BCl₂F₂N₂ [M-F]⁺: 383.0684, found 383.0667.

1m was obtained as yellow oil in 40% yield (63 mg) from **2e** (125 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 56-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.02 (s, 1H), 6.83 (d, *J* = 3.9 Hz, 1H), 6.18 (d, *J* = 3.9 Hz, 1H), 5.94 (d, *J* = 5.5 Hz, 1H), 5.80 (d, *J* = 5.5 Hz, 1H), 4.46 (s, 1H), 2.55 (s, 3H), 2.51-2.47 (m, 1H), 2.39 (t, *J* = 7.6 Hz, 2H), 2.17 (s, 3H), 1.91-1.85 (m, 1H), 1.25 (s, 2H), 1.07 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.7, 159.5, 139.5, 134.8, 133.9, 133.3, 133.1, 132.7, 127.8, 123.1, 114.9, 44.9, 32.7, 30.1, 17.7, 14.8, 13.3, 9.8. HRMS calcd. for C₁₈H₂₁BF₂N₂[M-F]⁺: 295.1776, found 295.1777.

1n was obtained as orange oil in 50% yield (88 mg) from **2a** (134 mg, 0.5 mmol) and 2,3-dimethyl-2-butene (3.0 mL). Melting point: 108-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.57-7.49 (m, 5H), 6.86 (d, *J* = 4.3 Hz, 1H), 6.76 (d, *J* = 3.9 Hz,

1H), 6.47 (s, 1H), 6.27 (d, J = 4.3 Hz, 1H), 3.84 (s, 2H), 1.75 (s, 3H), 1.74 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 144.7, 140.9, 136.2, 134.4, 134.2, 133.3, 130.8, 130.6, 128.9, 128.8, 128.7, 123.5, 120.1, 117.4, 34.5, 21.1, 21.0, 19.7. HRMS calcd. for C₂₁H₂₁BF₂N₂ [M-F]⁺: 331.1776, found 331.1757.

10 was obtained as yellow oil in 53% yield (114 mg) from **2a** (134 mg, 0.5 mmol) and norbornene (3.0 mL). Melting point: 65-67 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 1H), 7.63-7.39 (m, 5H), 6.87 (s, 1H), 6.74 (s, 1H), 6.53 (d, J = 2.8 Hz, 1H), 6.45 (s, 1H), 4.40 (d, J = 5.6 Hz, 1H), 3.69 (s, 1H), 3.20 (d, J = 1.1 Hz, 1H), 2.72 (s, 1H), 2.38 (s, 1H), 2.02 (d, J = 8.1 Hz, 1H), 1.40 (s, 2H), 1.26 (s, 2H), 1.07(s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 144.2, 140.2, 135.4, 134.6, 133.9, 132.6, 130.8, 130.6, 128.7, 128.2, 121.3, 117.0, 88.6, 80.7, 47.5, 42.4, 40.1, 35.2, 30.4, 26.7, 23.6. HRMS calcd. for C₂₆H₂₉BF₂N₂O [M-2F]⁺: 395.2404, found 395.2404.

General procedure for the synthesis of BODIPYs 3a-e

To BODIPY **2** (0.50 mmol) and Bu₄NI (0.10 mmol, 37 mg) in a Schlenk tube was added solvent (3.0 mL) and TBHP (70% aqueous solution, 0.36 mL, 2.5 mmol) via a syringe. The reaction mixture was stirred at 90 °C in an oil bath for 24 h. The organic solvent was removed under vacuum to yield the crude product, which was further purified by flash chromatography on silica gel with petroleum ether/ethyl acetate $(100:1\rightarrow9:1, v/v)$ as eluent to provide the corresponding product.

3a was obtained as yellow oil in 35% yield (75 mg) from **2a** (134 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (s, 5H), 6.74 (d, *J* = 4.1 Hz, 2H), 6.36 (d, *J* = 4.2 Hz, 2H), 5.89 (d, *J* = 9.9 Hz, 2H), 5.71 (d, *J* = 9.6 Hz, 2H), 4.15 (s, 2H), 2.29-2.18 (m, 2H), 2.10 (s, 4H), 1.89-1.75 (m, 2H), 1.74-1.63 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 143.5, 134.7, 134.5, 130.8, 130.3, 129.2, 128.6, 128.0, 127.9, 118.0, 36.0, 30.1, 25.2, 21.4. HRMS calcd. for C₂₇H₂₇BF₂N₂ [M-F]⁺: 409.2246, found 409.2259.

3b was obtained as yellow oil in 35% yield (80 mg) from **2b** (150 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 76-78 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H), 6.77 (d, *J* = 3.9 Hz, 2H), 6.35 (d, *J* = 4.1 Hz, 2H), 5.88 (d, *J* = 10.0 Hz, 2H), 5.71 (d, *J* = 9.9 Hz, 2H), 4.14 (s, 2H), 3.89 (s, 3H),

2.30-2.18 (m, 2H), 2.09 (s, 4H), 1.89-1.75 (m, 2H), 1.74-1.65 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 161.1, 143.1, 134.0, 132.0, 130.1, 128.6, 127.7, 126.7, 117.4, 113.6, 55.4, 35.5, 29.7, 24.8, 21.0. HRMS calcd. for C₂₈H₂₉BF₂N₂O [M-F]⁺: 439.2351, found 439.2359.

3c was obtained as red oil in 33% yield (78 mg) from **2c** (156 mg, 0.5 mmol) and cyclohexene (3.0 mL). Melting point: 106-108 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 6.64 (d, J = 4.2 Hz, 1H), 6.40 (d, J = 4.2 Hz, 1H), 5.91 (d, J = 10.1 Hz, 1H), 5.70 (d, J = 9.9 Hz, 1H), 4.15 (s, 1H), 2.28-2.17 (m, 1H), 2.11 (s, 2H), 1.86-1.77 (m, 1H), 1.78-1.63 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 149.1, 141.0, 139.9, 134.0, 131.6, 130.2, 129.6, 127.5, 123.9, 118.9, 36.1, 30.0, 25.2, 21.4. HRMS calcd. for C₂₇H₂₆BF₂N₃O₂ [M-F]⁺: 454.2097, found 454.2076.

3d was obtained as red oil in 35% yield (78 mg) from **2c** (156 mg, 0.5 mmol) and cyclopentene (3.0 mL). Melting point: 109-111 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 4.0 Hz, 2H), 6.32 (d, J = 4.2 Hz, 2H), 5.99 (d, J = 5.5 Hz, 2H), 5.80 (d, J = 5.5 Hz, 2H), 4.58 (s, 2H), 2.68-2.54 (m, 2H), 2.53-2.43 (m, 4H), 1.99-1.89 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 149.1, 141.0, 139.8, 134.0, 131.9, 131.8, 131.6, 130.4, 123.9, 117.8, 45.2, 32.9, 32.5. HRMS calcd. for C₂₅H₂₂BF₂N₃O₂ [M-F]⁺: 426.1784 , found 426.1760.

3e was obtained as yellow oil in 40% yield (86 mg) from **2a** (134 mg, 0.5 mmol) and 2,3-dimethyl-2-butene (3.0 mL). Melting point: 121-123 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.43 (m, 5H), 6.69 (d, J = 4.2 Hz, 2H), 6.18 (d, J = 4.2 Hz, 2H), 3.83 (s, 4H), 1.75 (s, 12H), 1.73 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 142.7, 135.0, 134.6, 130.8, 130.6, 130.2, 128.5, 128.2, 124.0, 118.3, 34.2, 21.1, 21.0, 19.7. HRMS calcd. for C₂₇H₃₁BF₂N₂ [M-F]⁺: 413.2559, found 413.2553.

General procedure for the synthesis of BODIPYs 5a-g

To BODIPY **2a** (0.50 mmol) and Bu_4NI (0.10 mmol, 37 mg) in a Schlenk tube was added solvent (3.0 mL) and TBHP (70% aqueous solution, 0.36 mL, 2.5 mmol) via a syringe. The reaction mixture was stirred at 90 °C (except for diethyl ether, reflux

temperature) in an oil bath for 12 h. The organic solvent was removed under vacuum to yield the crude product, which was further purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (100:1 \rightarrow 9:1, v/v) as eluent to provide the corresponding product.

5a was obtained as yellow oil in 50% yield (73 mg) from **2a** (134 mg, 0.5 mmol) and diethyl ether (3.0 mL) at refluxing temperature (40 °C oil bath). Melting point: 52-53 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.68-7.38 (m, 5H), 6.94 (d, J = 4.3 Hz, 1H), 6.82 (d, J = 3.4 Hz, 1H), 6.65 (d, J = 4.4 Hz, 1H), 6.50 (d, J = 2.1 Hz, 1H), 5.15-5.06 (m, 1H), 3.61-3.43 (m, 2H), 1.56 (d, J = 6.5 Hz, 3H), 1.33-1.12 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 145.7, 141.6, 135.0, 133.9, 133.8, 132.8, 130.4, 130.3, 129.6, 128.3, 117.6, 116.9, 71.2, 65.1, 22.2, 15.3. HRMS calcd. for C₁₉H₁₉BF₂N₂O [M-OC₂H₅]⁺: 295.1213, found 295.1229.

5b was obtained as yellow oil in 52% yield (102 mg) from **2a** (134 mg, 0.5 mmol) and dibutyl ether (3.0 mL). Melting point: 56-59 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.62-7.49 (m, 5H), 6.93 (d, J = 4.3 Hz, 1H), 6.81 (d, J = 3.8 Hz, 1H), 6.63 (d, J = 4.4 Hz, 1H), 6.49 (d, J = 2.1 Hz, 1H), 4.95 (t, J = 5.3 Hz, 1H), 3.49-3.44 (m, 2H), 1.93-1.73 (m, 2H), 1.75-1.63 (m, 2H), 1.57-1.50 (m, 2H), 1.43-1.37 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 145.5, 141.3, 135.1, 133.9, 133.8, 132.7, 130.4, 129.4, 128.7, 128.3, 117.7, 117.4, 75.1, 69.7, 38.4, 31.9, 29.6, 19.3, 18.9, 13.8. HRMS calcd. for C₂₃H₂₇BF₂N₂O [M-OC₄H₉]⁺: 323.1526, found 323.1554.

5c was obtained as yellow solid in 55% yield (93 mg) from **2a** (134 mg, 0.5 mmol) and tetrahydrofuran (3.0 mL). Melting point: 90-93 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.68-7.41 (m, 5H), 6.91 (d, *J* = 3.6 Hz, 1H), 6.82 (d, *J* = 3.0 Hz, 1H), 6.60 (d, *J* = 3.9 Hz, 1H), 6.49 (s, 1H), 5.49 (t, *J* = 6.4 Hz, 1H), 4.22-4.07 (m, 1H), 4.03-3.88 (m, 1H), 2.72-2.51 (m, 1H), 2.18-1.91 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 145.7, 141.6, 135.6, 133.9, 133.8, 132.7, 130.4, 129.5, 129.3, 128.3, 117.5, 117.1, 74.9, 69.3, 33.9, 26.3. HRMS calcd. for C₁₉H₁₇BF₂N₂O [M-BF₂]⁺: 289.1335, found 289.1336.

5d was obtained as yellow solid in 42% yield (74 mg) from 2a (134 mg, 0.5 mmol)

and 1.4-dioxane (3.0 mL). Melting point: 131-134 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.89 (s, 1H), 7.73-7.43 (m, 5H), 6.92 (d, J = 3.9 Hz, 1H), 6.88 (d, J = 3.3 Hz, 1H), 6.67 (d, J = 3.9 Hz, 1H), 6.53 (s, 1H), 5.29 (d, J = 5.7 Hz, 1H), 4.25 (d, J = 11.4 Hz, 1H), 4.04-3.87 (m, 2H), 3.84-3.65 (m, 2H), 3.48 (t, J = 10.8 Hz, 1H); ¹³C NMR (126) MHz, CDCl₃) δ 157.9, 146.7, 143.3, 135.1, 134.4, 133.7, 132.1, 130.8, 130.6, 130.4, 128.4, 118.4, 117.6, 72.5, 70.7, 66.7, 66.3. HRMS calcd. for C₁₉H₁₇BF₂N₂O₂ $[M-BF_2]^+$: 305.1285, found 305.1297; $[M-BF_2+2H]^+$: 307.1447, found 307.1449. 5e was obtained as yellow oil in 43% yield (114 mg) from 2a (134 mg, 0.5 mmol) and 1,4,7,10,13,16-hexaoxacyclooctadecane (3.0 mL). Melting point: 56-59 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.78 \text{ (s, 1H)}, 7.65-7.31 \text{ (m, 5H)}, 6.85 \text{ (d, } J = 2.6 \text{ Hz}, 1\text{H}), 6.78 \text{ (d, } J = 2.6 \text{ Hz}, 1\text{Hz}),$ J = 4.2 Hz, 1H), 6.70 (d, J = 10.0 Hz, 1H), 6.45 (d, J = 4.3 Hz, 1H), 5.24 (s, 1H), 3.93-3.79 (m, 2H), 4.05-3.23 (m, 20H); 13 C NMR (126 MHz, CDCl₃) δ 161.44, 146.08, 142.34, 135.29, 134.22, 133.74, 132.26, 130.47, 130.35, 130.15, 128.30, 119.02, 117.88, 75.34, 73.25, 70.86, 70.76, 70.74, 70.67, 70.62, 70.57, 70.40, 70.05, 69.51, 69.50. HRMS calcd. for $C_{27}H_{33}BF_2N_2O_6$ [M-2HF+H]⁺: 491.2353, found 491.2365.

3. Scheme S1. Proposed reaction mechanism for the formation of BODIPY 10.

4. NMR and HRMS spectra for all new compounds

¹H NMR spectrum of **1a** in CDCl₃

HRMS for 1a

HRMS for 1b

¹H NMR spectrum of **1c** in CDCl₃

HRMS for 1c

$^1\mathrm{H}$ NMR spectrum of 1d in CDCl_3

HRMS for 1d

¹H NMR spectrum of **1e** in CDCl₃

HRMS for 1e

HRMS for 1f

¹H NMR spectrum of **1g** in CDCl₃

¹³C NMR spectrum of **1g** in CDCl₃

HRMS for 1g

HRMS for 1h

¹H NMR spectrum of **1i** in CDCl₃

HRMS for 1i

¹H NMR spectrum of **1j** in CDCl₃

HRMS for 1j

¹H NMR spectrum of **1k** in CDCl₃

HRMS for 1k

¹H NMR spectrum of **11** in CDCl₃

HRMS for 11

¹H NMR spectrum of **1m** in CDCl₃

HRMS for 1m

¹H NMR spectrum of **1n** in CDCl₃

HRMS for 1n

¹H NMR spectrum of **10** in CDCl₃

HRMS for 10

¹H NMR spectrum of 3a in CDCl₃

HRMS for 3a

1 H NMR spectrum of **3b** in CDCl₃

HRMS for 3b

¹H NMR spectrum of **3c** in CDCl₃

HRMS for 3c

Counts (%) vs. Mass-to-Charge (m/z)

¹H NMR spectrum of **3d** in CDCl₃

HRMS for 3d

¹H NMR spectrum of **3e** in CDCl₃

HRMS for 5a

¹H NMR spectrum of **5b** in CDCl₃

HRMS for **5b**

¹H NMR spectrum of **5c** in CDCl₃

¹H NMR spectrum of **5d** in CDCl₃

HRMS for 5d

HRMS for 5e

5. Photophysical properties of selected BODIPYs

UV-vis absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2450 and Edinburgh FS5 spectrometers). All measurements were made at 25 °C, using 5×10 mm cuvettes. Relative fluorescence quantum efficiencies of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various organic solvents with fluorescein ($\Phi_r = 0.90$ in 0.1 N NaOH aqueous solution). Non-degassed, spectroscopic grade solvents and 10 mm optical path length quartz cuvettes were used. Dilute solutions ($0.01 < A(\lambda_{ex}) < 0.05$) were used to minimize the inner-filter effects. Quantum yields Φ_x were determined according to equation (S1):

$$\Phi_{x} = \Phi_{r} \times \frac{F_{x}}{F_{r}} \times \frac{1 - 10^{-A_{r}(\lambda_{ex})}}{1 - 10^{-A_{x}(\lambda_{ex})}} \times \frac{n_{x}^{2}}{n_{r}^{2}}$$
(S1)

where the subscripts x and r refer respectively to the BODIPY sample x and reference (standard) fluorophore r with known quantum yield Φ_r in a specific solvent; F stands for the spectrally corrected, integrated fluorescence spectra; $A(\lambda_{ex})$ denotes the absorbance at the used excitation wavelength λ_{ex} and n represents the refractive index of the solvent (in principle at the average emission wavelength).

Table S1: Photophysical properties of selected BODIPYs in different solvents at room temperature

Ph	Ph	Ph I	Ph
∕∕N, N </td <td></td> <td></td> <td></td>			
⊢ ⊢ 2a	1a	3a 刘	5c 0

dyes	solvent	$\lambda_{abs}(max)$ [nm]	$\log \epsilon^a$	$\lambda_{em}(max)$ [nm]	Φ^{b}	Stokes-shift [cm ⁻¹]
$2a^{c}$	CH_2Cl_2	500	4.52	527	0.03	1025
	hexane	505	4.84	524	0.11 ± 0.01	718
1.	toluene	508	4.80	529	0.21 ± 0.02	781
1a	CH_2Cl_2	506	4.74	526	0.13 ± 0.01	751
	MeOH	503	4.79	522	0.07 ± 0.01	724
	hexane	516	4.46	530	0.91 ± 0.07	512
39	toluene	518	4.49	533	0.93 ± 0.08	543
Ja	CH_2Cl_2	516	4.47	533	0.64 ± 0.05	618
	MeOH	513	4.48	527	0.49 ± 0.05	518
	hexane	505	4.70	524	0.09 ± 0.01	718
50	toluene	508	4.57	528	0.16 ± 0.02	746
50	CH_2Cl_2	506	4.66	525	0.11 ± 0.01	715
	MeOH	503	4.63	522	0.07 ± 0.01	724

^a Molar absorption coefficient at $\lambda_{abs}(max)$. ^b Fluorescence quantum yield was calculated using fluorescein ($\Phi = 0.90$ in 0.1 N NaOH aqueous solution) as standard. ^c Data from ref (*Eur J. Org. Chem.* **2011**, *28*, 5460–5468).

Figure S2. Absorption (left) and fluorescence emission (right) spectra of **1a** recorded in different solvents (excitation at 470 nm).

Figure S3. Absorption (left) and fluorescence emission (right) spectra of **3a** recorded in different solvents (excitation at 470 nm).

Figure S4. Absorption (left) and fluorescence emission (right) spectra of **5c** recorded in different solvents (excitation at 470 nm).