Supporting information

Molecular Engineering for Efficient and Selective Iron Porphyrin Catalysts for Electrochemical Reduction of CO₂ to CO

Ram B. Ambre,^a Quentin Daniel,^a Ting Fan,^b Hong Chen,^a Biaobiao Zhang,^a Lei Wang,^a Mårten S. G. Ahlquist^b, Lele Duan*^a and Licheng Sun*^{a,c}

No	Table of content	Page
1	Experimental Section	S2
2	Figure S1. Bulk electrolysis H cell	S3
3	Synthesis and characterization of Fe-pE, Fe-mE, and Fe-oE	S4
4	Figure S2. CVs of αβαβ-Fe-oE, ααββ-Fe-oE, αααβ-Fe-oE, and αααα-Fe-oE	S9
5	Figure S3. CVs of Fe-pE, Fe-mE, Fe-oE, and FeTPP in CO ₂ saturated electrolyte	S10
6	Figure S4. CVs of Fe-pE in argon, CO ₂ , 0.5 M, 1 M, 2 M, 3 M, and 5 M H ₂ O added	
	in CO ₂ saturated electrolyte	S10
7	Figure S5. CVs of Fe-mE in argon, CO ₂ , 0.5 M, 1 M, 2 M, 3 M, and 5 M H ₂ O	
	added in CO ₂ saturated electrolyte	S11
8	Figure S6. CVs of Fe- <i>o</i> E in argon, CO ₂ , 0.5 M, 1 M, 2 M, 3 M, and 5 M H ₂ O added	
	in CO ₂ saturated electrolyte	S11
9	Figure S7. Current-time profile of Fe-<i>p</i>E , Fe-<i>m</i>E , and Fe-<i>o</i>E during 2 h of bulk	
	electrolysis	S12
10	Figure S8. GC traces of Fe-pE, Fe-mE, Fe-oE, and FeTPP	S12
11	Figure S9. CVs of Fe- <i>o</i> E in CO ₂ saturated electrolyte, CO ₂ saturated electrolyte + 2	
	M H ₂ O, used electrode + CO ₂ saturated fresh electrolyte (no catalyst), and used	
	electrode + CO ₂ saturated fresh electrolyte (no catalyst) + 2 M H ₂ O	S13
12	Table S1. Redox potential, TON and TOF of Fe-pE , Fe-mE , Fe-oE , and FeTPP	S13
13	Table S2. Faradaic efficiency, TON and TOF of Fe-pE, Fe-mE, Fe-oE, and FeTPP	S13
14	Computational Section	S14
15	1 H and 13 C NMR traces of p E	S21
16	¹ H and ¹³ C NMR traces of <i>m</i> E	S22
17	¹ H and ¹³ C NMR traces of <i>o</i> E	S23

^a Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden,

^b Division of Theoretical Chemistry & Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.

^c State Key Laboratory of Fine Chemicals, DUT–KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116012, P. R. China.

Experimental Section:

Materials.

Dimethylformamide (anhydrous 99.8%) and deionized water used in electrochemical measurements were purchased from Sigma Aldrich. All of the chemicals used in synthesis were purchased from Acros Organics, Alfa Aesar, or Sigma Aldrich and used without further purification. Synthesized porphyrins were characterized by UV-Vis spectroscopy, ATR-FTIR, NMR spectroscopy, Elemental analysis, and HRMS. Analytical TLC was performed on silica-gel plates (Merck) and flash chromatography was performed on silica gel (40-63 μ m, Merck). ¹H NMR spectra were recorded on a Bruker 500 MHz spectrometer in CDCl₃ (δ = 7.26 ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ = 77.0 ppm). Chemical shifts and Coupling constants (J) are reported in ppm and Hz respectively. HRMS measurements were performed on a Finnigan LCQ Advantage MAX mass spectrometer. UV-Vis absorption spectra of synthesized porphyrins were recorded on a Lambda 750 UV-Vis spectrophotometer in CH₂Cl₂ as solvent. Fourier transform infrared (FT-IR) spectra were measured with a NicoletTM iSTM10 FT-IR Spectrometer, with an attenuated total reflection (ATR) system equipped with a diamond glass.

Cyclic Voltammetry.

The CV measurements were performed on Autolab potential station with a GPES electrochemical interface 4.9 (Eco Chemie) in dry DMF containing 1 mM of catalyst and 0.1 M recrystallized tetrabutylammoniunhexafluorophosphate (TBAPF₆) as a supporting electrolyte. The cell assembly consists of a glassy carbon (diameter 3mm) as a working electrode, Ag/AgNO₃ (0.01 M in CH₃CN) as a reference electrode, and platinum wire as a counter electrode, respectively. A ferrocene/ferrocenium redox couple was used as an internal reference. The cyclovoltammetric scan rates was fixed at 100 mV/s. The electrolysis solution was purged with argon or CO₂ for 10 minutes, prior to measurement. All potentials reported herein are converted to their corresponding values versus NHE using an internal reference of ferrocene/ferrocenium (0.71 V vs. NHE in DMF).

Electrolysis.

Electrolysis were performed on Autolab potential station with a GPES electrochemical interface 4.9 (Eco Chemie). The experiments were carried out in H cell (Figure S1) with a glassy carbon

(area 1 cm²) as working electrode, Ag/AgNO₃ (0.01 M in CH₃CN) as the reference electrode, and platinum mesh as counter electrode, respectively. The working compartment contains 1 mM catalyst dissolved in 10 ml electrolyte (0.1 M TBAPF₆ in DMF) and 2 M H₂O as proton source whereas the counter compartment contains 2 M Tetrabutylammonium acetate dissolved in 10 ml electrolyte. The working and counter compartment is separated by glass frit. The electrolysis solution was purged with CO₂ for 10 minutes, prior to electrolysis measurement and stirring is contentiously on during 2 h of electrolysis experiment.

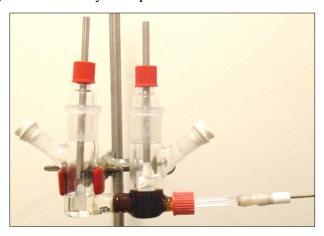


Figure S1. Bulk electrolysis H cell.

Gas detection.

Gas chromatography analysis of evolved gases in the bulk electrolysis was performed with a Shimadzu GC 2014 equipped with a thermal conductivity detector. The quantification of the gas products CO and H_2 was performed by the chromatography analysis of the gas evolved in the headspace. The calibration curves for CO and H_2 were determined separately by injecting known quantities of the gas. The carrier gas was helium flowing at constant pressure with a flow of 30 mL/min. Injection of gaseous sample (250 μ L) was performed by using gas-tight Hamilton syringe. The retention time for H_2 and CO is 0.8 minutes and 5.2 minutes respectively.

Synthesis of Fe-*p*E, Fe-*m*E, and Fe-*o*E:

Synthesis of pE and Fe-pE.

$$\begin{array}{c} \text{MeOOC} \\ \text{CHO} \\ \text{(ii)BF}_3 \cdot \text{OEt}_2 \\ \text{(ii)DDQ} \\ \text{CH}_2 \text{CI}_2 \\ \text{MeOOC} \\ \end{array} \begin{array}{c} \text{NH} \\ \text{HN} \\ \text{HN} \\ \text{HN} \\ \text{HN} \\ \text{COOMe} \\ \end{array} \begin{array}{c} \text{FeCI}_2 \\ \text{MeOH:CH}_2 \text{CI}_2 \\ \text{MeOOC} \\ \end{array} \begin{array}{c} \text{COOMe} \\ \text{Fe}\text{-}p\text{E} \\ \end{array}$$

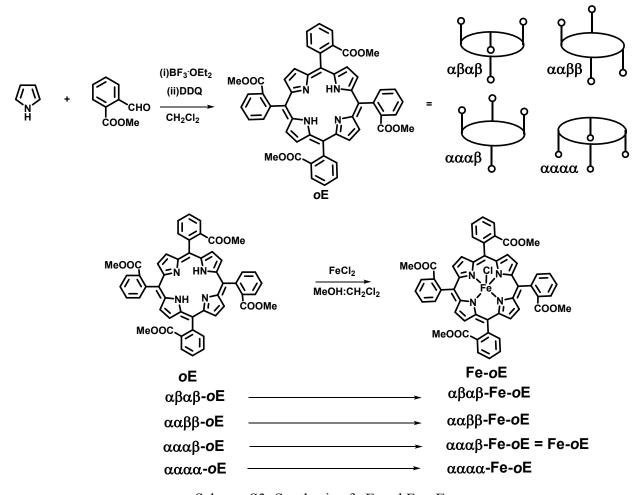
Scheme S1: Synthesis of pE and Fe-pE. column by using 1% methanol in CH_2Cl_2 . The obtained solid was again purified by silica

(pE). 5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)-21H,23H-porphyrin In 500 mL dichloromethane (CH₂Cl₂), methyl 4-formylbenzoate (0.820 gm, 5 mmol), and pyrrole (0.345 mL, 5 mmol) added and degassed with nitrogen for 20 minutes, then BF₃.OEt₂ (0.617 mL, 0.5 mmol) was added via syringe (Scheme S1). The solution was stirred under inert atmosphere in the dark for 1 hour. Then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (1.135 gm, 5 mmol) was added to the reaction mixture and stirred for an additional 1 h. The excess solvent was removed under reduced pressure and the resulting black solid was filtered by short silica gel column by using 1% methanol in CH₂Cl₂. The obtained solid was again purified by silica gel column chromatography by using CH₂Cl₂ as eluent affording pE porphyrin as solid powder in 17% yield (0.719 gm). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.83$ (s, 8H), 8.45 (d, J = 8.1 Hz, 8H), 8.30 (d, J = 8.1 Hz, 8H), 4.12 (s, 12H), -2.79 (s, 2H); 13 C NMR (500 MHz, CDCl₃) δ =167.2, 146.6, 134.5, 131.7, 131.1, 129.7, 127.9, 119.3, 52.43; IR (Neat, cm⁻¹): 3316, 1717, 1606, 1434, 1402, 1309, 1274, 1223, 1110, 1021, 965, 798; λ_{abs} (CH₂Cl₂): 420, 516, 550, 590, 646; HRMS-ESI calcd for C₅₂H₃₈N₄O₈ [M]⁺:846.2690, found 846.2960; EA calcd for C₅₂H₃₈N₄O₈: C 73.75%, H 4.52%, N 6.62%; found C 73.47%, H 4.46%, N 6.59%.

5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)porphyrin-Fe(III) chloride (Fe-pE). In mixture of CH₂Cl₂ and methanol (70 mL:30 mL) pE porphyrin (0.253 gm, 0.3 mmol) was mixed with iron (II) chloride (0.381 gm, 3 mmol) and 50 μ L 2,6-lutidine was added and refluxed at 50°C for 12 h. After completion, reaction mixture cooled down and excess solvent was

evaporated. The resulted solid dissolved in CH_2Cl_2 , washed with aqueous 1 M HCl solution and water. Organic layer was separated, dried and purified by silica gel column chromatography by using 1% methanol in CH_2Cl_2 as eluent affording Fe-pE in 92% yield (0.258 gm). IR (Neat, cm⁻¹): 1722, 1607, 1565, 1434, 1401, 1309, 1273, 1203, 1112, 998, 821; λ_{abs} /nm (CH_2Cl_2), (ϵ /10³ M⁻¹ cm⁻¹): 413 (104), 512 (11), 570 (6); HRMS-ESI calcd for $C_{52}H_{36}FeN_4O_8$ [M]⁺:900.1883, found 900.1873; EA calcd for $C_{52}H_{36}FeN_4O_8$: C 66.72%, H 3.88%, N 5.98%; found C 67.09%, H 4.27%, N 5.98%.

Synthesis of mE and Fe-mE.


Scheme S2: *Synthesis of mE and Fe-mE*.

Synthesis of 5,10,15,20-Tetrakis(3-methoxycarbonylphenyl)-21H,23H-porphyrin (mE). In 500 mL CH₂Cl₂, methyl 3-formylbenzoate (0.820 gm, 5mmol) and pyrrole (0.345mL, 5 mmol) added and degassed with nitrogen for 20 minutes, then BF₃.OEt₂ (0.617 mL, 0.5 mmol) was added via a syringe (Scheme 2). The solution was stirred under inert atmosphere in the dark for 1 h. Then DDQ (1.135 gm, 5 mmol) was added to the reaction mixture and stirred for an additional 1 h. The excess solvent was removed under reduced pressure and the resulting black solid was filtered by short silica gel column by using 1% methanol in CH₂Cl₂. The obtained solid was again purified by silica gel column chromatography by using CH₂Cl₂ as eluent affording *m*E porphyrin as solid powder in 15% yield (0.635 gm). ¹H NMR (500 MHz, CDCl₃) δ = 8.90 (s, 4H), 8.81 (s, 8H), 8.49 (d, J = 7.9 Hz, 4H), 8.41 (d, J = 7.5 Hz, 4H), 7.86 (t, J = 7.6 Hz, 4H), 3.99 (s, 12H), -2.78 (s, 2H); ¹³C NMR (500 MHz, CDCl₃) δ = 167.2, 142.2, 138.4, 134.9, 129.1, 128.9, 126.9, 119.2, 114.2, 52.3; IR (Neat, cm⁻¹): 3323, 1728, 1604, 1582, 1435, 1402, 1286, 1267, 1236, 1105, 964, 802, 756; λ_{abs} (CH₂Cl₂): 419, 515, 549, 593, 650; HRMS-ESI calcd for

 $C_{52}H_{38}FeN_4O_8$ [M]⁺:846.2690, found 846.2708; EA calcd for $C_{52}H_{38}N_4O_8$: C 73.75%, H 4.52%, N 6.62%; found C 73.65%, H 4.30%, N 6.53%.

5,10,15,20-Tetrakis(3-methoxycarbonylphenyl)porphyrin-Fe(III) chloride (Fe-mE). In mixture of CH₂Cl₂ and methanol (70 mL:30 mL) mE porphyrin (0.253 gm, 0.3 mmol) was mixed with iron (II) chloride (0.381 gm, 3 mmol) and 50 μ L 2,6-lutidine was added and refluxed at 50°C and for 12 h. After completion reaction mixture cooled down and excess solved was evaporated. The resulted solid was dissolved in CH₂Cl₂ and washed with aqueous 1 M HCl solution and water. Organic layer separated, dried and purified by silica gel column chromatography by using 1% methanol in CH₂Cl₂ as eluent affording Fe-mE in 87% yield (0.244 gm). IR (Neat, cm⁻¹): 1722, 1601, 1435, 1282, 1238, 1215, 1108, 1003, 973, 801; λ_{abs} /nm (CH₂Cl₂), (ϵ /10³ M⁻¹ cm⁻¹): 414 (108), 510 (12), 570 (7); HRMS-ESI calcd for C₅₂H₃₆FeN₄O₈ [M]⁺:900.1883, found 900.1891; EA calcd for C₅₂H₃₆FeN₄O₈: C 66.98%, H 3.80%, N 5.98%; found C 66.72%, H 3.88%, N 6.19%.

Synthesis of oE and Fe-oE.

Scheme S3: Synthesis of oE and Fe-oE.

Synthesis of 5,10,15,20-Tetrakis(2-methoxycarbonylphenyl)-21H,23H-porphyrin (oE). In 500 mL CH₂Cl₂, methyl 2-formylbenzoate (0.820 gm, 5mmol) and pyrrole (0.345mL, 5 mmol) added and degassed with nitrogen for 20 minutes, then BF₃.OEt₂ (0.617 mL, 0.5 mmol) was added via a syringe. The solution was stirred under inert atmosphere in the dark for 1 h. Then DDQ (1.135 gm, 5 mmol) was added to the reaction and reaction mixture and stirred for an additional 1 h. The excess solvent was removed under reduced pressure and resulted black solid was filtered by short silica gel column by using 1% methanol in CH₂Cl₂. The obtained solid was again purified by silica gel column chromatography by using Hexane:CH₂Cl₂ (1:1/v:v) to CH₂Cl₂ as eluent afforded four atropisomers. In an order of elution they were named as αβαβ-οΕ, ααββ-οΕ αααβ-οΕ and αααα-οΕ (Scheme S3).

αβαβ-οE: Yield 3.4% (0.142 gm), ¹H NMR (500 MHz, CDCl₃) δ = 8.58 (s, 8H), 8.38-8.36 (m, 4H), 8.21-8.36 (m, 4H), 8.21-8.19 (m, 4H), 7.87-7.80 (m, 8H), 2.88 (s, 12H), -2.42 (s, 2H); ¹³C NMR (500 MHz, CDCl₃) δ = 167.8, 142.7, 136.0, 134.0, 130.8, 129.6, 129.5, 128.2, 118.7, 114.2, 51.6; IR (Neat, cm⁻¹): 3317, 1725, 1595, 1432, 1289, 1255, 1186, 1128, 1082, 983, 797, 733; λ_{abs} (CH₂Cl₂):422, 518, 552, 598, 653; HRMS-ESI calcd for C₅₂H₃₈N₄O₈ [M]⁺:846.2690, found 846.2700; EA calcd for C₅₂H₃₈N₄O₈: C 73.75%, H 4.52%, N 6.62%; found C 73.52%, H 4.44%, N 6.54%.

*ααββ-ο*E: Yield 4.0% (0.168 gm), ¹H NMR (500 MHz, CDCl₃) δ = 8.63 (s, 8H), 8.58 (s, 4H), 8.38-8.36 (m, 4H), 8.17-8.15 (m, 4H), 7.88-7.80 (m, 8H), 2.71 (s, 12H), -2.44 (s, 2H); ¹³C NMR (500 MHz, CDCl₃) δ = 167. 8, 142.2, 138.6, 135.8, 134.1, 130.2, 129.4, 128.1, 118.7, 51.2; IR (Neat, cm⁻¹): 3317, 1718, 1596, 1572, 1467, 1437, 1287, 1262, 1157, 1086, 984, 800; λ_{abs} (CH₂Cl₂): 422, 518, 554, 599, 656; HRMS-ESI calcd for C₅₂H₃₈N₄O₈ [M]⁺:846.2690, found 846.2666; EA calcd for C₅₂H₃₈N₄O₈: C 73.75%, H 4.52%, N 6.62%; found C 73.63%, H 4.67%, N 6.59%.

αααβ-*o***E**: Yield 6.4% (0.640 gm), ¹H NMR (500 MHz, CDCl₃) δ = 8.65-8.63 (m, 8H), 8.42-8.39 (m, 4H), 8.19-8.17 (m, 4H), 7.90-7.82 (m, 8H), 2.92 (s, 6H), 2.81 (s, 3H), 2.64 (s, 3H), -2.39 (s, 2H); ¹³C NMR (500 MHz, CDCl₃) δ = 167.8, 142.2, 138.6, 135.8, 134.1, 130.2, 129.5, 129.4, 128.1, 118.7, 51.2; IR (Neat, cm⁻¹): 3317, 1728, 1716, 1595, 1445, 12889 1255, 1128, 1082, 969, 797, 738; λ_{abs} (CH₂Cl₂): 422, 518, 554, 599, 653; HRMS-ESI calcd for C₅₂H₃₈N₄O₈ [M]⁺:846.2690, found 846.2676; EA calcd for C₅₂H₃₈N₄O₈: C 73.75%, H 4.52%, N 6.62%; found C 73.92%, H 4.30%, N 6.90%.

αααα-οE: Yield 2.8% (0.118 gm), ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (m, 8H), 8.43-8.41 (m, 4H), 8.12-8.10 (m, 4H), 7.89-7.85 (m, 4H), 7.83-7.79 (m, 4H), 2.91 (s, 12H), -2.34 (s, 2H); ¹³C NMR (500 MHz, CDCl₃) δ = 167.9, 142.2, 136.3, 134.2, 130.8, 129.6, 129.5, 128.7, 128.1, 118.8, 51.5; IR (Neat, cm⁻¹): 3319, 1727, 1595, 1572, 1472, 1445, 1433, 1348, 1289, 1257, 1161, 1133, 1085, 968, 797; λ_{abs} (CH₂Cl₂): 422, 518, 554, 599, 653; HRMS-ESI calcd for C₅₂H₃₈N₄O₈ [M]⁺:846.2690, found 846.2665; EA calcd for C₅₂H₃₈N₄O₈: C 73.75%, H 4.52%, N 6.62%; found C 73.56%, H 4.55%, N 6.78%.

5,10,15,20-Tetrakis(3-methoxycarbonylphenyl)porphyrin-Fe(III) chloride (Fe-oE). In mixture of CH₂Cl₂ and methanol (70 mL:30 mL) the respective porphyrin $\alpha\beta\alpha\beta$ -oE, $\alpha\alpha\beta\beta$ -oE

αααβ-oE, or αααα-oE (0.253 gm, 0.3 mmol) was mixed with iron (II) chloride (0.381 gm, 3 mmol) and 50 μL 2,6-lutidine was added and refluxed at 50°C and for 12 h. After completion reaction mixture cooled down and excess solved was evaporated. The resulted solid was dissolved in CH_2Cl_2 and washed with aqueous 1 M HCl solution and water. Organic layer was separated, dried and purified by silica gel column chromatography by using 1% methanol in CH_2Cl_2 as eluent afforded αβαβ-Fe-oE, ααββ-Fe-oE, αααβ-Fe-oE, or αααα-Fe-oE. The free base porphyrin αααβ-oE was obtained in highest yield of all derivatives.

αβαβ-Fe-*o***E**: Yield 87% (0.244 gm), IR (Neat, cm⁻¹): 1716, 1596, 1432, 1333, 1292, 1257, 1204, 1127, 1086, 998, 799; λ_{abs} /nm (CH₂Cl₂), (ε/10³ M⁻¹ cm⁻¹): 421 (104), 512 (13), 578 (6); HRMS-ESI calcd for C₅₂H₃₆FeN₄O₈ [M]⁺:900.1883, found 900.1902; EA calcd for C₅₂H₃₆FeN₄O₈: C 66.72%, H 3.88%, N 5.98%; found C 66.72%, H 4.01%, N 5.90%.

ααββ-Fe-*o***E**: Yield 92% (0.257 gm), IR (Neat, cm⁻¹): 1727, 1677, 1596, 1481, 1332, 1293, 1255, 1204, 1132, 1085, 998, 800; λ_{abs} /nm (CH₂Cl₂), (ε/10³ M⁻¹ cm⁻¹): 421 (111), 513 (14), 577 (6); HRMS-ESI calcd for C₅₂H₃₆FeN₄O₈ [M]⁺:900.1883, found 900.1902; EA calcd for C₅₂H₃₆FeN₄O₈: C 66.72%, H 3.88%, N 5.98%; found C 67.18%, H 4.07%, N 5.88%.

αααβ-Fe-*o***E**: Yield 89% (0.249 gm) IR (Neat, cm⁻¹): 1716, 1596, 1572, 1455, 1333, 1293, 1255, 1204, 1128, 1204, 1128, 1086, 998, 799; λ_{abs} /nm (CH₂Cl₂), (ε/10³ M⁻¹ cm⁻¹): 421 (84), 512 (12), 578 (5); HRMS-ESI calcd for C₅₂H₃₆FeN₄O₈ [M]⁺:900.1883, found 900.1874; EA calcd for C₅₂H₃₆FeN₄O₈: C 66.72%, H 3.88%, N 5.98%; found C 67.08%, H 3.90, N 5.92%.

ααα-Fe- σ E: Yield 90% (0.252), IR (Neat, cm⁻¹): 1718, 1597, 1446, 1332, 1294, 1257, 1204, 1128, 1087, 997, 801; λ_{abs} /nm (CH₂Cl₂), (ε/10³ M⁻¹ cm⁻¹): 421 (101), 512 (13), 578 (6); HRMS-ESI calcd for C₅₂H₃₆FeN₄O₈ [M]⁺:900.1883, found 900.1879. EA calcd for C₅₂H₃₆FeN₄O₈: C 66.72%, H 3.88%, N 5.98%; found C 66.72%, H 3.97%, N 5.82%.

The CV of $\alpha\beta\alpha\beta$ -Fe-oE, $\alpha\alpha\beta\beta$ -Fe-oE, $\alpha\alpha\alpha\beta$ -Fe-oE, and $\alpha\alpha\alpha\alpha$ -Fe-oE measured in CO₂ saturated electrolyte gives similar catalytic activity however $\alpha\alpha\alpha\beta$ -Fe-oE gave slightly higher performance compared to remaining three atropisomers (Figure S2). As all of the four atropisomers gave similar performance we have not tried to explore them in more details. *The third derivative* $\alpha\alpha\alpha\beta$ -Fe-oE is used as Fe-oE and used with same name in the manuscript.

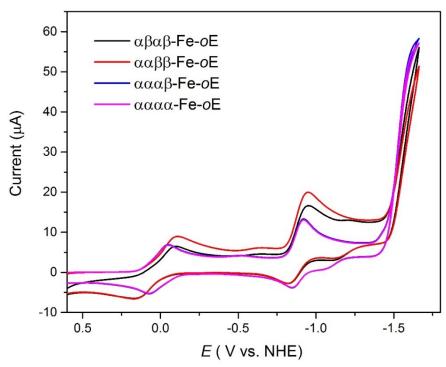


Figure S2. CVs of $\alpha\beta\alpha\beta$ -Fe- σ E, $\alpha\alpha\beta\beta$ -Fe- σ E, $\alpha\alpha\alpha\beta$ -Fe- σ E and $\alpha\alpha\alpha\alpha$ -Fe- σ E in CO₂ saturated electrolyte.

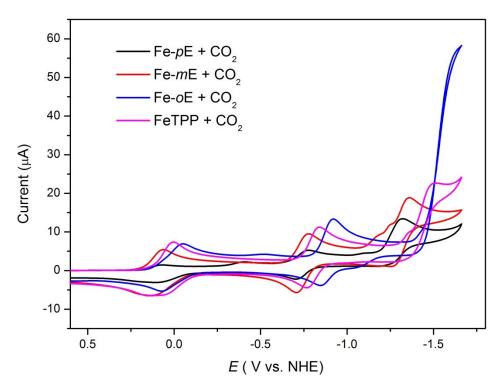


Figure S3. CVs of Fe-pE, Fe-mE, Fe-oE and FeTPP in CO₂ saturated electrolyte.



Figure S4. CVs of **Fe-pE** in argon, CO₂, 0.5 M, 1 M, 2 M, 3 M, and 5 M H₂O added in CO₂ saturated electrolyte.

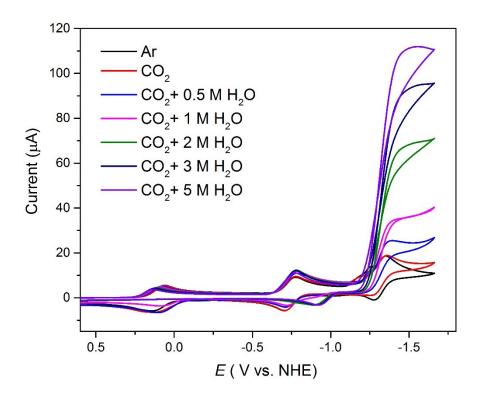


Figure S5. CVs of **Fe-mE** in argon, CO₂, 0.5 M, 1 M, 2 M, 3 M, and 5 M H₂O added in CO₂ saturated electrolyte.

Figure S6. CVs of **Fe-***o***E** in argon, CO₂, 0.5 M, 1 M, 2 M, 3 M, and 5 M H₂O added in CO₂ saturated electrolyte.

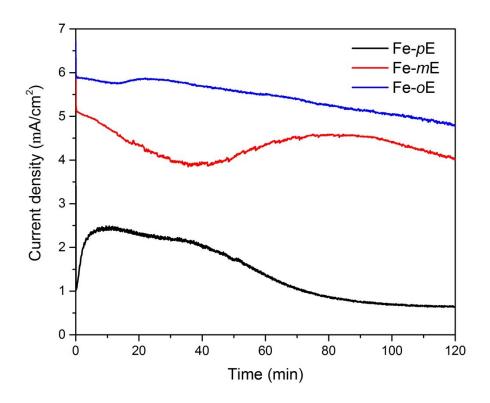


Figure S7. Current-time profile of Fe-pE, Fe-mE, and Fe-oE during 2 h of bulk electrolysis.

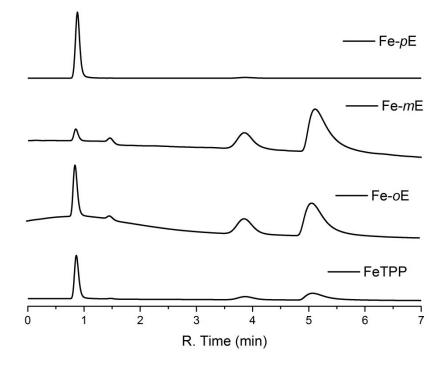


Figure S8. GC traces of **Fe-***p***E**, **Fe-***m***E**, **Fe-***o***E**, and **FeTPP**. The retention time for H₂ and CO is 0.8 and 5.2 minutes respectively.

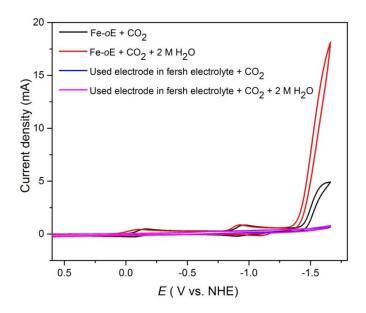


Figure S9. CVs of **Fe-oE** in CO₂ saturated electrolyte, CO₂ saturated electrolyte + 2 M H₂O, used electrode + CO₂ saturated fresh electrolyte (no catalyst), and used electrode + CO₂ saturated fresh electrolyte (no catalyst) + 2 M H₂O.

Table S1. Standard redox potentials of Fe-pE, Fe-mE, Fe-oE, and FeTPP determined by CVs (V vs NHE).

Catalyst	Fe(III)/Fe(II)	Fe(II)/Fe(I)	Fe(I)/Fe(0)
Fe-pE	0.09	-0.74	-1.28
Fe-mE	0.10	-0.74	-1.31
Fe-oE	0.07	-0.88	-1.50
FeTPP	0.07	-0.80	-1.43

Table S2. Faradaic efficiency, TON and TOF of Fe-pE, Fe-mE, Fe-oE, and FeTPP based on CVs and 2 h bulk electrolysis in CO₂ saturated electrolyte + 2 M H₂O added in it.

Catalyst	Charge (C)	FE CO (%)	FE H ₂ (%)	TON CO	TON H ₂	$\log TOF_0$ (S-1) CO
Fe-pE	30.11	0.00	82.90	0.00	13.06	NAª
Fe-mE	31.32	65.36	0.19	10.61	0.03	-7.73
Fe-oE	39.19	97.49	1.77	19.80	0.36	-10.73
FeTPP	39.76	84.83	7.12	17.48	2.04	-9.76

^aData is not included as CO production is not observed.

Computational Section:

All geometries were fully optimized by the DFT calculations using OPBE method with the Gaussian09 software package. The 6-31g* basis set was used for C, H, O and N atoms, while LANL2DZ basis set with effective core potentials (ECP) were used for Fe atom. In addition, polarization functions were added for Fe ($\zeta_f = 2.462$).

TS of Fe^{II} –COOH

Fe	-0.03156 0.10764 -0.34928
N	-0.68564 1.92314 -0.71769
N	-1.87172 -0.57024 -0.32404
N	0.60941 -1.74313 -0.35367
N	1.79893 0.72699 -0.75589
C	2.2566 2.02752 -0.74739
C	3.66664 2.07909 -1.02401
Н	4.26562 2.98266 -1.05601
C	4.06088 0.79975 -1.27637
Н	5.05029 0.44829 -1.54767
C	2.90667 -0.03511 -1.06996
C	2.93351 -1.43312 -1.1336
C	1.85212 -2.21606 -0.71859
C	1.93278 -3.64132 -0.53441
Н	2.80604 -4.24717 -0.74953
C	0.74527 -4.0326 0.00292
Н	0.43362 -5.03092 0.28869
C	-0.07975 -2.85609 0.07581
C	-1.44088 -2.8911 0.3903
C	-2.2847 -1.80476 0.13816
C	-3.7186 -1.86008 0.2239
Н	-4.29239 -2.71012 0.57598
C	-4.18575 -0.66737 -0.24113
Н	-5.21655 -0.34189 -0.33093
C	-3.03412 0.13973 -0.5407

- C -3.10936 1.4908 -0.89249
- C -1.98885 2.32663 -0.92853
- C -2.05762 3.75249 -1.10259
- H -2.95846 4.31718 -1.31702
- C -0.79466 4.23116 -0.92027
- Н -0.45918 5.26157 -0.96393
- C 0.05401 3.09 -0.70572
- C 1.4495 3.16367 -0.63863
- C 6.16853 -3.27255 -3.33583
- C 6.39552 -2.89983 -2.01354
- C 5.37868 -2.34142 -1.21605
- C 4.10229 -2.10996 -1.78444
- C 3.89742 -2.48545 -3.12731
- C 4.90453 -3.06934 -3.8958
- H 7.37615 -3.03791 -1.55902
- Н 2.91771 -2.30042 -3.56917
- Н 4.70237 -3.35164 -4.93074
- C 3.16071 7.12213 -0.97341
- C 2.88532 6.60631 0.29075
- C 2.08577 4.51971 -0.67992
- Н 3.06668 7.19972 1.18649

-6.9086 3.07314 -2.22324

-4.44715 2.05251 -1.25941

 \mathbf{C}

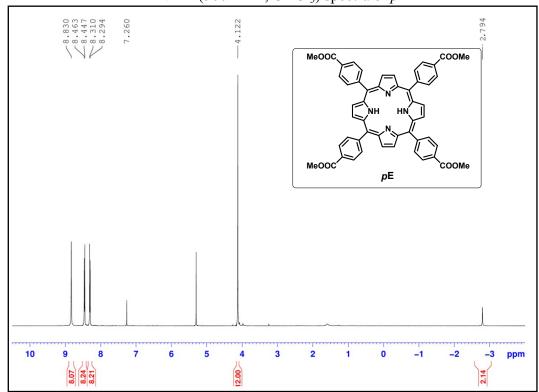
 \mathbf{C}

- C -6.46682 3.3831 -0.93953
- C -5.25558 2.87513 -0.43424
- C -4.9105 1.75827 -2.55586
- C -6.12462 2.2503 -3.03667
- Н -7.05483 4.03012 -0.28924
- Н -4.28688 1.13198 -3.1946
- Н -6.45006 1.9978 -4.04764
- C -3.08185 -6.39127 2.30918
- C -2.29942 -5.47072 3.01066
- C -1.77153 -4.34912 2.36422

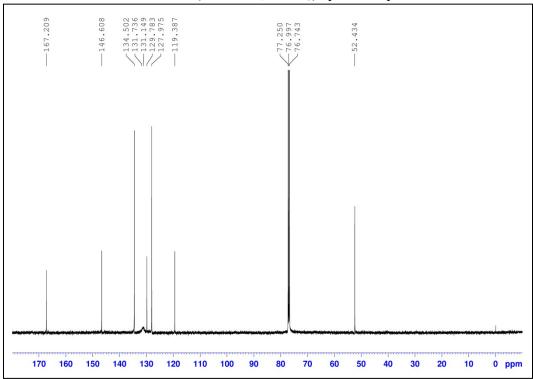
```
\mathbf{C}
            -2.00729 -4.13633 0.99415
C
            -2.79603 -5.07365 0.27882
C
            -3.33358 -6.18585 0.953
             -2.09208 -5.60675 4.0734
Η
             -3.93968 -6.89895 0.39558
Η
             6.97292 -3.7176 -3.92422
Η
             -3.49619 -7.26756 2.81176
Η
Η
             -7.85708 3.47261 -2.58624
Η
             3.57418 8.12701 -1.07583
\mathbf{C}
             2.36022 5.06384 -1.94925
             2.13232 4.46116 -2.82908
Η
\mathbf{C}
             2.36726 5.30966 0.46157
             2.90023 6.34175 -2.10313
\mathbf{C}
             3.10562 6.72733 -3.10364
Η
\mathbf{C}
             -0.17909 0.37832 1.31185
O
             -0.58715  0.63952  2.37425
             -4.94003 3.29144 0.97536
C
             -4.09405 2.45118 1.589
O
            -3.72619 2.80691 2.92473
\mathbf{C}
Η
             -3.27208 3.80575 2.94692
Η
             -4.6052 2.79657 3.58304
Η
             -3.00011 2.05001 3.23135
0
             -5.43585 4.2744 1.50674
             0.80285 -2.58481 4.27046
Η
             -0.18727 -2.59818 4.57034
O
Η
             -0.44705 -1.69025 4.35344
\mathbf{C}
             5.7962 -2.04676 0.20211
O
             6.93986 -1.72306 0.49039
O
             4.81254 -2.25531 1.08033
\mathbf{C}
             5.15661 -2.09128 2.47362
Η
             5.96956 -2.78415 2.73099
Η
             5.49256 -1.0624 2.6543
Η
             4.22602 -2.30664 3.02934
```

```
\mathbf{C}
            2.15776 4.89522 1.89498
O
            1.97762 5.70279 2.79562
             2.25086 3.57367 2.05735
O
C
             2.11277 3.07541 3.40038
Η
             2.21679 1.98586 3.31321
             2.89164 3.51362 4.0392
Η
            1.12783 3.34776 3.80101
Η
             2.19519 -1.13974 3.10891
Η
O
             2.24142 -2.4507 3.61787
             2.0498 -2.96319 2.81662
Η
             2.20751 -0.12874 2.68555
O
Η
             2.74105 -0.22668 1.88713
\mathbf{C}
            -3.02503 -4.93517 -1.19141
            -2.24634 -4.46895 -2.00153
O
O
            -4.24899 -5.43 -1.54421
\mathbf{C}
            -4.52833 -5.36462 -2.93954
            -5.53069 -5.79185 -3.05717
Η
            -4.51347 -4.3251 -3.29421
Η
            -3.79687 -5.94347 -3.52047
Η
            -1.17674 -3.63498 2.95442
Η
```

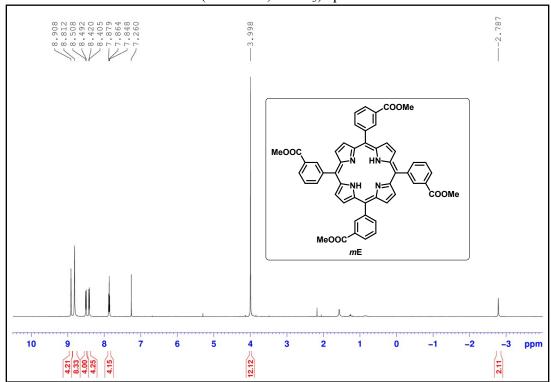
TS of Fe^I-COOH

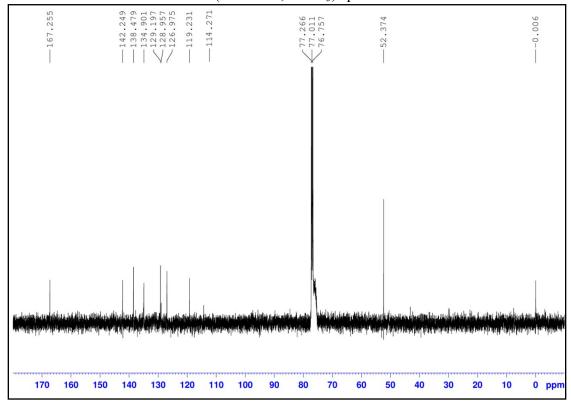

Fe	-0.1236 -0.0646 -0.34864
N	-2.05814 -0.1976 -0.72735
N	0.01562 -2.02836 -0.36467
N	1.84669 0.03898 -0.38914
N	-0.19767 1.89073 -0.73322
C	-1.3336 2.68491 -0.72675
C	-0.99736 4.05708 -0.96754
Н	-1.70436 4.87974 -0.99977
C	0.34986 4.09705 -1.18955
Н	0.95795 4.9617 -1.43237
C	0.84022 2.75683 -1.00785
C	2.19502 2.39121 -1.09128

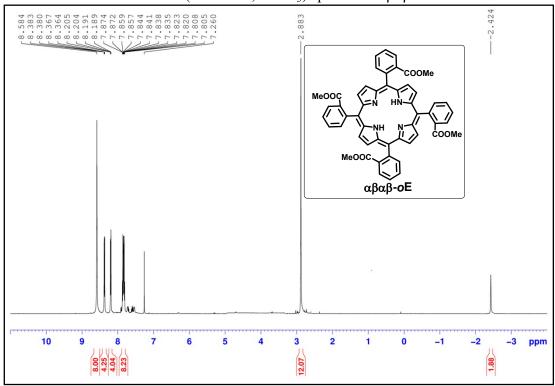
```
\mathbf{C}
              2.64468 1.11135 -0.71944
C
              4.03201 0.79474 -0.52092
              4.85613 1.47984 -0.69029
Η
C
              4.07838 -0.47392 -0.01167
              4.95187 -1.04743 0.28112
Η
C
              2.72642 -0.94275 0.03658
\mathbf{C}
              2.36619 -2.25517 0.35547
C
              1.09098 -2.7655 0.11332
\mathbf{C}
              0.74758 -4.1514 0.21375
Η
              1.41546 -4.9359 0.55371
\mathbf{C}
             -0.53407 -4.27181 -0.24188
Η
             -1.13711 -5.17105 -0.31126
\mathbf{C}
             -0.98822 -2.94658 -0.57267
C
             -2.31373 -2.65358 -0.93911
C
             -2.80834 -1.3324 -0.95515
\mathbf{C}
             -4.18469 -0.98848 -1.16834
             -4.97734 -1.6879 -1.41132
Η
\mathbf{C}
             -4.29192 0.36341 -0.98619
Η
             -5.18416 0.97648 -1.05877
C
             -2.96995 0.8504 -0.73469
C
             -2.64336 2.21049 -0.66314
\mathbf{C}
              4.87464 5.09218 -3.15255
C
              4.46405 5.41615 -1.86277
\mathbf{C}
              3.65339 4.55091 -1.10087
C
              3.18246 3.34065 -1.68051
\mathbf{C}
              3.63174 3.02815 -2.98211
C
              4.46598 3.87428 -3.71138
              4.77401 6.3529 -1.39899
Η
Η
              3.27778 2.09828 -3.42896
Η
              4.77417 3.59523 -4.72178
\mathbf{C}
             -5.97905 4.9257 -1.15085
C
             -5.59691 4.54921 0.1335
\mathbf{C}
             -3.77228 3.19104 -0.75231
Η
             -6.14542 4.90319 1.00632
\mathbf{C}
             -4.86176 -5.85241 -2.35986
```

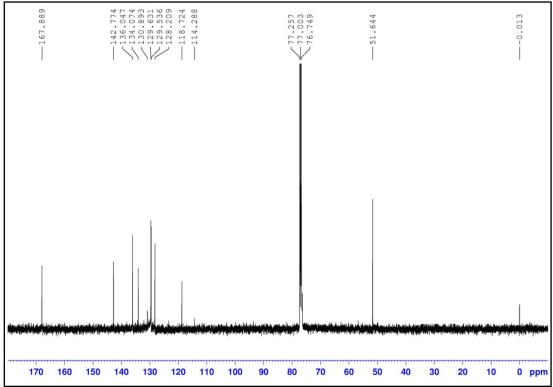

```
\mathbf{C}
             -5.18474 -5.22242 -1.16477
C
             -4.36426 -4.22091 -0.60126
C
             -3.19761 -3.78967 -1.30801
C
             -2.87699 -4.47686 -2.49963
C
             -3.68009 -5.48733 -3.02613
Η
             -6.08256 -5.50095 -0.61249
Η
             -1.98122 -4.16165 -3.03654
Η
             -3.40079 -5.96814 -3.96661
\mathbf{C}
             5.25628 -4.62735 2.52309
C
             4.36216 -3.77186 3.17572
\mathbf{C}
             3.44448 -3.02291 2.43378
C
             3.38483 -3.1168 1.03187
\mathbf{C}
             4.31695 -3.96063 0.366
C
             5.24112 -4.70596 1.13345
Η
             4.37143 -3.66576 4.26179
             5.9485 -5.35509 0.61931
Η
             5.51062 5.77937 -3.71517
Η
             5.97424 -5.22265 3.09254
Η
Η
             -5.51623 -6.62577 -2.76838
Η
             -6.83246 5.59251 -1.29421
C
             -4.18302 3.57798 -2.04193
Η
             -3.63462 3.17459 -2.89366
C
             -4.49263 3.7016 0.35824
C
             -5.26188 4.44126 -2.25053
Η
             -5.54551 4.72267 -3.26719
\mathbf{C}
             -0.43602 -0.17839 1.31096
O
             -0.83943 -0.58108 2.33522
\mathbf{C}
             -4.80019 -3.75535 0.74761
O
             -3.82134 -3.1278 1.42633
\mathbf{C}
             -4.1716 -2.63376 2.71406
             -5.03665 -1.95994 2.65288
Η
             -4.41184 -3.45962 3.39979
Η
             -3.28791 -2.08951 3.05904
Η
O
             -5.91638 -3.96485 1.21739
Н
             2.36166 0.00559 4.52786
```

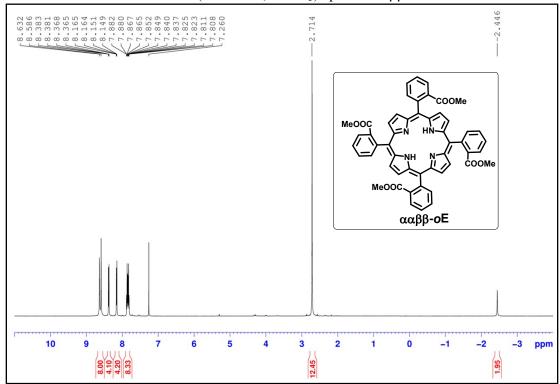
O 2.03475 -0.90625 4.87072 Η 1.15201 -0.92495 4.47146 C 3.41016 5.01238 0.3097 O 3.41183 6.19616 0.63071 3.28947 3.99374 1.16639 O C 3.13793 4.33525 2.55619 Η 3.9915 4.94789 2.88115 2.21311 4.90955 2.69915 Η 3.08697 3.37107 3.09434 Η C -4.19489 3.41707 1.80376 O -5.03216 3.53418 2.69265 -2.91799 3.08198 2.00004 O \mathbf{C} -2.51418 2.78479 3.34394 Η -1.44803 2.53229 3.26823 Η -2.68639 3.65863 3.98855 -3.09367 1.93628 3.73194 Η 1.51183 1.62604 3.1305 Η O 2.7327 1.40768 3.78904 Η 3.24283 1.0186 3.06021 0 0.56962 1.83861 2.60726 Η 0.84476 2.25857 1.78264 4.36154 -4.06376 -1.11785 \mathbf{C} 3.46289 -3.8429 -1.90888 0 5.61144 -4.46835 -1.54251 0 C 5.72253 -4.60251 -2.95024 Η 6.75747 -4.91724 -3.13516 Η 5.02255 -5.35537 -3.3421 5.52099 -3.64915 -3.45932 Η 2.784 -2.33228 2.96482 Η

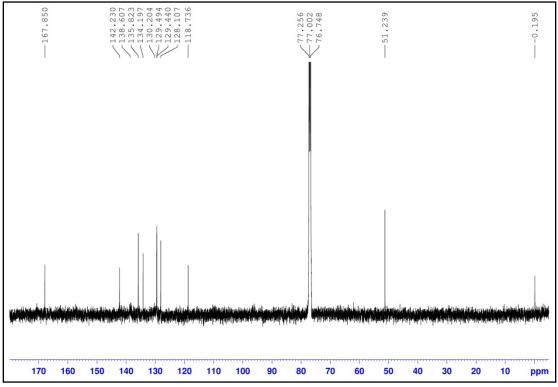

 1 H NMR (500 MHz, CDCl₃) spectra of pE

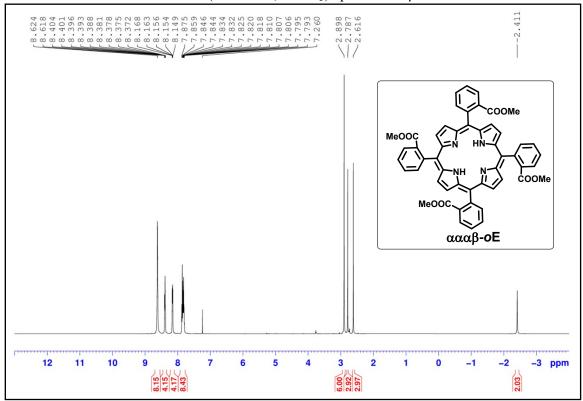

 13 C NMR (500 MHz, CDCl₃) spectra of pE

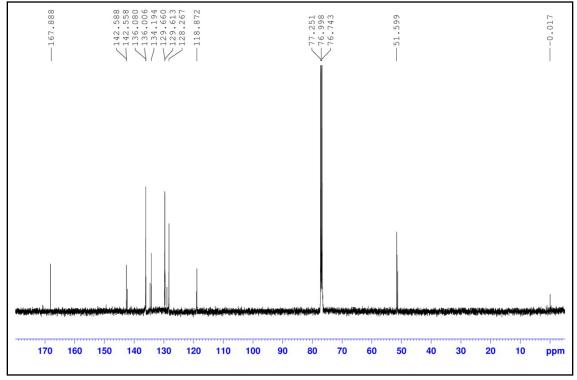

 1 H NMR (500 MHz, CDCl₃) spectra of mE

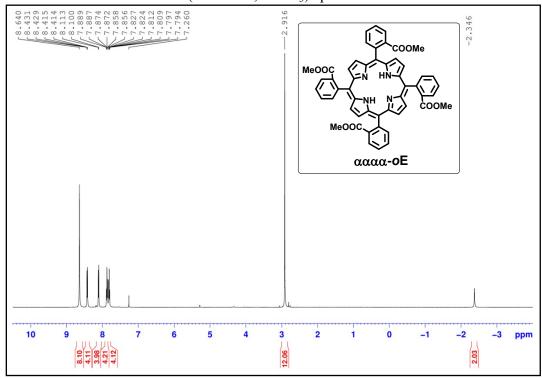

¹³C NMR (500 MHz, CDCl₃) spectra of *m*E

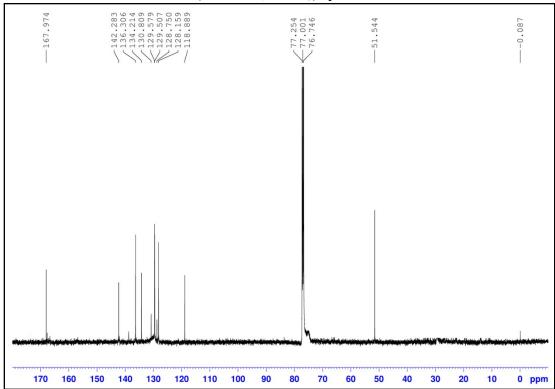

 1 H NMR (500 MHz, CDCl₃) spectra of $\alpha\beta\alpha\beta$ -oE


 13 C NMR (500 MHz, CDCl₃) spectra of $\alpha\beta\alpha\beta$ -oE


¹H NMR (500 MHz, CDCl₃) spectra ααββ-*o*E


¹³C NMR (500 MHz, CDCl₃) spectra ααββ-*o*E


¹H NMR (500 MHz, CDCl₃) spectra αααβ-*o*E


¹³C NMR (500 MHz, CDCl₃) spectra αααβ-*o*E

¹H NMR (500 MHz, CDCl₃) spectra αααα-*o*E

 $^{13}\mathrm{C}$ NMR (500 MHz, CDCl₃) spectra $\alpha\alpha\alpha a-o\mathrm{E}$

