Facile Fabrication of Hollow Tubular Mixed Oxides for Selective Catalytic Reduction of NO_x at Low Temperature: A Combined Experimental and Theoretical Study

Xiuyun Wang^a, Zhixin Lan^a, Yi Liu^a, Yongjin Luo^{b*}, Jianjun Chen^a, Lilong Jiang^{a*} and Yong Wang^{c*}

^aNational Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China.

^bCollege of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China.

^cVoiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.

Experimental Section

The preparation of CuMn₂O₄, CoMn₂O₄, NiMn₂O₄, NiCo₂O₄, FeCo₂O₄ and CuCo₂O₄ nanostructures involves two steps. Taking CuCo₂O₄ as an example, 0.4 mmol Cu(NO₃)₂·3H₂O, 0.8 mmol Co(NO₃)₂·6H₂O, 1.44 mmol citric acid (CA) and 1.2 g polyacrylonitrile were dissolved in 19 mL of dimethylformamide solvent. The applied voltage, feeding rate, and distance between the stainless steel needle and collector were 18 kV, 1.0 mL/h and 22 cm, respectively. Then, the obtained PAN@CuCo₂O₄ precursor was calcined at 400 °C for 2 h. By simply changing the heating rate from 0.5 to 10 °C/min, the nanostructures of CuCo₂O₄ can be tuned from hollow tube to 1D solid structure. The obtained catalysts were labeled as CuCo₂O₄-0.5 (0.5 °C/min), CuCo₂O₄ (1 °C/min), CuCo₂O₄-3 (3 °C/min), CuCo₂O₄-5 (5 °C/min) and CuCo₂O₄-solid (10 °C/min), respectively. The synthesis process of other mixed metal oxides with hollow tubular structure or 1D solid nanowire, such as NiCo₂O₄, FeCo₂O₄, CuMn₂O₄, CoMn₂O₄ and NiMn₂O₄ is similar to that of CuCo₂O₄ except for using different raw materials of nitrate.

Catalytic activity tests

SCR activity measurement was performed in a fixed-bed stainless steel reactor (inner diameter = 8 mm). Before each test, 0.2 g of sample was pretreated by 5 vol% H_2/Ar at 400 °C for 2 h. After cooled to test temperature, the feed gas (335 ppm NO, 340 ppm NH₃ and 2 vol% O₂ balanced with Ar) was introduced using mass-flow

controllers, and the total flow rate was kept at 600 mL/min. and the gas hourly space velocity (GHSV) is 150, 000 h⁻¹. Besides, hollow tubular CuCo₂O₄ was also tested in a wide GHSV including 200,000, 250,000, 300,000 and 400,000h⁻¹). Resistance against H₂O was examined through introducing 7 vol% H₂O into feed gas at 250 °C. SO₂ poisoning experiment was carried out by exposing samples to feed gas containing additional 100 ppm SO₂ at 250 °C. Stability tests of hollow tubular CuCo₂O₄ and CuCo₂O₄-solid were performed at 400 °C for 30 h. The outlet NO_x concentration was monitored by an on-line chemiluminescence NO-NO₂-NO_x analyzer (Model 42i-HL, Thermo Scientific). The outlet N₂O was analyzed using an FTIR spectrometer (Nicolet Nexus 6700) with a heated, multiple-path gas cell. NO_x conversion under steady-state conditions for 1 h was calculated according to the following equation.

NO_x conversion (%) = (NO_{x inlet} - NO_{x outlet})/ NO_{x inlet} $\times 100\%$

Transient response method (TRM) of hollow tubular $CuCo_2O_4$ was carried out at 150 °C according to literature methods [1, 2]. A 0.1 g sample was firstly pretreated in air flow (30 mL/min) at 400 °C for 0.5 h. After cooling to 150 °C, 250 ppm NO was introduced and the reactor was maintained at steady state for 30 min, then a feed gas of 250 ppm NO, 1 vol% O_2 and 250 ppm NH₃ balanced by Ar were introduced in the next step. The outlet gas concentrations were continuously monitored by a mass spectrometer and UV analyzer.

Catalyst characterization

X-ray diffraction (XRD) patterns were recorded on a RIGAKU-Miniflex II X-ray diffractometer with Cu K_a radiation ($\lambda = 1.5406$ Å). N₂ physisorption measurement was performed on an ASAP 2020 apparatus, the sample was degassed in vacuo at 180 °C at least 6 h before the measurement. Field Emission Scanning Electron Microscope (FESEM) was performed on JSM6700-F. Transmission Electron Microscope (TEM) and high-resolution transmission electron microscopy (HRTEM) measurements were carried out on a JEM-2010 microscope operating at 200 kV in the mode of bright field. X-ray photoelectron spectroscopy (XPS) analysis was performed on Physical Electronics Quantum 2000, equipped with a monochromatic Al-K_a source (K_a = 1,486.6 eV) as a radiation source at 300 W under UHV. Catalyst charging during the measurement was compensated by an electron flood gun. High-resolution spectra were acquired with a pass energy of 20 eV. The area of analysis was 700 × 300 µm in size, and each sample was analyzed at a 90° takeoff angle with a depth of 3-4 nm.

 H_2 temperature-programmed reduction (H₂-TPR) was performed on AutoChem II 2920 equipped with a TCD detector, in which the sample was pretreated under air flow (30 mL/min) at 400 °C for 0.5 h, followed by purging with Ar (30 mL/min) at the same temperature for 0.5 h, and then cooled down to 50 °C. H₂-TPR was started from 50 to 800 °C under 10 vol% H₂/Ar.

Oxygen temperature-programmed desorption (O₂-TPD) was conducted on an AutoChem 2920 equipped with a TCD detector. The adsorption of O₂ was performed in a 4% O₂ /He gas flow for 1 h at 150 °C. Afterward, the sample was heated to 900 °C at a heating rate of 1 °C/min in a pure He gas flow. O₂-TPD quadruple mass spectroscopy (Q-MS) was used to analyze evolving gases. The signals for O₂ (m/z = 32), H₂O (m/z= 18), and CO₂ (m/z=44) were monitored by using a QIC20 bench top gas analysis system connected to an AutoChemII 2920 outlet.

Ammonia temperature-programmed desorption (NH₃-TPD) was also conducted on the AutoChem 2920 equipped with a TCD detector. 0.1 g of sample was pretreated in Ar at 350 °C for 1h. After cooled to 50 °C, the sample was exposed to 1.0 vol% NH₃/Ar for 0.5 h, followed by a Ar purge at 100 °C to remove physisorbed ammonia. Finally, NH₃-TPD was measured from 50 to 1000 °C.

In situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) was recorded on a Nicolet Nexus FT-IR spectrometer in the range of 650-4000 cm⁻¹ with 32 scans at a resolution of 4 cm⁻¹. Prior to each experiment, the sample was pretreated at 350 °C for 0.5 h in a gas flow of N₂ to remove any adsorbed impurities, and then cooled down to 50 °C. The background spectrum was collected under N₂ and automatically subtracted from the sample spectra. Afterward, NH₃ (500 ppm balanced with Ar) was introduced to the cell in a flow rate of 30 mL/min at 100°C for 1 h to ensure complete absorption saturation. After physisorbed ammonia was removed by flushing wafer with N₂ at 100 °C for 3 h, DRIFTS spectra were recorded at 50-350 °C. After NH₃ adsorption, the catalyst was pretreated at 200 °C under an N₂ flow with 20 mL/min for 1 h, subsequently 500 ppm of NO + 5 vol % O₂/Ar (20 mL/min) were introduced to investigate the reactivity of pre-adsorbed NH₃ with NO + O₂ species.

All spin-polarized DFT calculations were carried out using the Vienna ab Initio Simulation Program (VASP) with the gradient-corrected PW91 exchange-correction function. For valence electrons, a tight convergence of the plane-wave expansion was obtained with a kinetic energy cutoff of 500 eV, and the ionic cores were described with the projector augmented-wave (PAW) method. The Brillouin zone of the Monkhorst–Pack grid was set at $2 \times 2 \times 1$. For energy calculation, the electronic energy was converged to 10^{-5} eV, and the positions of the atoms were allowed to relax until all forces were smaller than 0.02 eV/Å. The O₂ adsorption ability is defined by using adsorption energy term (E_{ads}), which is calculated according to $E_{ads} = E_{(surface+gas)} - E_{surface} - E_{gas}$. $E_{(surface+gas)}$, $E_{surface}$ and E_{gas} are the total energy of the optimized adsorbate surface system, energy of the naked surface and energy of a gas molecule, respectively. The energy of oxygen vacancy formation (E_v) was calculated according to $E_v = E_{oxygen vacancy system} + 1/2E_{O2} - E_{full system}$, this formula assumes that the oxygen atoms leaving the surface combine to form the oxygen molecule. E_{oxygen vacancy} system, E_{O2}, and E_{full system} are the energy of the oxygen vacancy system, energy of an oxygen molecule, and energy of the full system, respectively.

Figure S1 Synthetic route of CuCo₂O₄ with hollow tubular and solid 1D nanostructure.

Figure S2 HRTEM images of (a) CuCo₂O₄-0.5; (b, f, g, h, i, j) CuCo₂O₄ (CuCo₂O₄-1); (c) CuCo₂O₄-3; (d) CuCo₂O₄-5 and (e, k, l, m, n, o) CuCo₂O₄-solid (CuCo₂O₄-10).

HRTEM images {Figure S2 (b, f, g, h, i, j)} show that the spacing distances between two fringes in hollow tubular $CuCo_2O_4$ ($CuCo_2O_4$ -1) are 0.282-0.289 and 0.460 nm, matching with (220) and (111) planes, respectively. For $CuCo_2O_4$ -solid {Figure S2 (e, k, l, m, n, o)}, the lattice spacing of 0.242-0.248 and 0.472 nm correspond to (311) and (111) crystal planes, respectively, while the lattice spacing of 0.230 nm corresponds to (222) plane.

Figure S3 a) N_2 selectivity of hollow tubular $CuCo_2O_4$ and $CuCo_2O_4$ -solid at different temperatures; b) NH₃ conversion in separates NH₃ oxidation reaction of $CuCo_2O_4$. Reaction condition: 40 ppm of NH₃, 2 vol % O₂, Ar as balance gas.

Figure S4 a) Influence of GHSV on NO_x conversion in hollow tubular CuCo₂O₄ at 150 °C; b) Stability of CuCo₂O₄ and CuCo₂O₄-solid at 400 °C;

Figure S5 SEM images of (a) hollow tubular $CuCo_2O_4$ and (b) $CuCo_2O_4$ -solid after NH₃-SCR activity test.

Figure S6 XRD patterns of (1) $CuCo_2O_4$ -solid, (2) hollow tubular $CuCo_2O_4$ and (3) hollow tubular $CuCo_2O_4$ after activity test.

Figure S7 H₂-TPR profiles of hollow tubular CuCo₂O₄ and CuCo₂O₄-solid.

Figure S8 XPS spectra of Cu 2p, Co 2p and O 1s.

Figure S9 O₂-TPD-MS profiles of hollow tubular CuCo₂O₄ and CuCo₂O₄-solid.

Figure S10 NH₃-TPD-MS profiles of hollow tubular CuCo₂O₄ and CuCo₂O₄.solid.

Figure S11 *In situ* DRIFT spectra of NO + O₂ react with pre-adsorbed NH₃ species at 200 °C on CuCo₂O₄ hollow tubular (a) and CuCo₂O₄-solid (c); (b) NH₃ adsorption at different temperatures over CuCo₂O₄-solid.

Figure S12 SEM images of a) $PAN@NiMn_2O_4$; b) $PAN@CuMn_2O_4$; c) $PAN@CoMn_2O_4$; d) $PAN@FeCo_2O_4$; e) $PAN@NiCo_2O_4$ and f) $PAN@CuCo_2O_4$.

Figure S13 SEM images of a) NiMn₂O₄-solid; b) CuMn₂O₄-solid; c) CoMn₂O₄-solid; d) FeCo₂O₄-solid and e) NiCo₂O₄-solid.

Figure S14 TEM images of prepared various mixed oxides nanostructures: (a) $NiCo_2O_4$ with 1D solid structure and hollow tubular structure of (b) $NiCo_2O_4$; (c)

NiMn₂O₄; (d) FeCo₂O₄; (e) CuMn₂O₄ and (f) CoMn₂O₄.

Figure S15 NO_x conversion of $FeCo_2O_4$ and $NiCo_2O_4$ with hollow tubular structures.

Figure S16 N_2 selectivity of FeCo₂O₄ and NiCo₂O₄ with hollow tubular structures.

Figure S17 O_2 adsorption over the a) $CuCo_2O_4$ (220); b) $FeCo_2O_4$ (220) and c) $NiCo_2O_4$ (220) catalyst surface models.

Figure S18 The simulated structures of unit cells for (a) $NiCo_2O_4$; (b) $FeCo_2O_4$ and (c) $CuCo_2O_4$.

SEM images (Figure S12) show that the precursors of FeCo₂O₄, NiCo₂O₄, CuMn₂O₄, CoMn₂O₄ and NiMn₂O₄ with 1D nanofibers structures can be successfully synthesized. More importantly, SEM (Figure S13) and TEM images (Figure S14) confirm that CuMn₂O₄, CoMn₂O₄, NiMn₂O₄, FeCo₂O₄ and NiCo₂O₄ with 1D solid and hollow tubular structures could be also tuned by controlling heating rates. These results imply that the present strategy is effective and versatile for preparing 1D solid and hollow tubular mixed transition metal oxides with different compositions. Among them, hollow tubular NiCo₂O₄ and FeCo₂O₄ and FeCo₂O₄ and CuCo₂O₄-solid. NO_x conversion at 100-250 °C follows the order: CuCo₂O₄ > NiCo₂O₄ > FeCo₂O₄ > CuCo₂O₄-solid (Figure 3a and Figure S15). N₂ selectivity (Figure S16) of NiCo₂O₄ and FeCo₂O₄ is more than 95% at 100-400 °C. DFT calculation (Figure S17) was carried out to study the oxygen adsorption energy (*E*_{ads}) on (220) plane over CuCo₂O₄, FeCo₂O₄ and NiCo₂O₄ (220) surface rather than

NiCo₂O₄ (220) or FeCo₂O₄ (220), implying easier formation of oxygen vacancies on CuCo₂O₄ (220). The simulated structure of unit cell (Figure S18) in CuCo₂O₄ displays that Cu occupies the octahedral coordination sites. ^[19, 20] and the oxygenoxygen bond length is changed when Cu is replaced by Ni or Fe. The bond length shortens in NiCo₂O₄ (1.290 Å) and FeCo₂O₄ (1.285 Å) with respect to CuCo₂O₄ (1.437 Å) (Table S3), which is unfavorable for the formation of oxygen vacancies. This observation agrees with the O1s XPS results.

BET surface Pore The amounts of Sample volume NH₃ desorption area (m^2/g) (cm^{3}/g) (mmol/g)CuCo₂O₄-solid 45 1.70 0.18 CuCo₂O₄ 72 0.23 4.34

Table S1 Textural properties and total NH_3 desorption amounts of hollow tubular $CuCo_2O_4$ and $CuCo_2O_4$ -solid.

Table S2 Surface valence state and O_{ads}/(O_{latt} +O_{ads}) molar ratio.

Sample	Surface valence state	$O_{ads}/(O_{latt}+O_{ads})$
		(%)
CuCo ₂ O ₄ -solid	Cu ²⁺ , Cu ⁺ , Co ²⁺ , Co ³⁺	54.94
CuCo ₂ O ₄	Cu ²⁺ , Cu ⁺ , Co ²⁺ , Co ³⁺	63.61
FeCo ₂ O ₄	Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Co ³⁺	51.94
NiCo ₂ O ₄	Ni ²⁺ , Ni ³⁺ , Co ²⁺ , Co ³⁺	55.04

Table S3 The calculated results based on O_2 adsorption over (220) planes in $CuCo_2O_4$, $NiCo_2O_4$ and $FeCo_2O_4$.

Sam	ple	E (eV)	d _{metal-gas atom} (Å)	D ₀₋₀ (Å)
FeCo ₂ O ₄ (220)	E_{ads} -O ₂	-1.60	1.676	1.285
NiCo ₂ O ₄ (220)	E_{ads} -O ₂	-1.69	1.688	1.290
CuCo ₂ O ₄ (220)	$E_{\rm ads}$ -O ₂	-2.21	2.068	1.437

References

[1] B. Thirupathi, P. G. Smirniotis, Nicked-doped Mn/TiO₂ as an Efficient Catalyst for the Low-Temperature SCR of NO with NH₃: Catalytic Evaluation and Characterizations. *J. Catal.* **2012**, *288*, 74-83.

[2] A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, W. Weibel. The Chemistry of the NO/NO₂–NH₃ "fast" SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis. *J. Catal.* **2008**, *256*, 312-322.