Supporting Information

CoO_x modified SnNb₂O₆ Photoelectrode for Highly Efficient Oxygen Evolution from Water

Ryo Niishiro,^{a,b} Yuichi Takano,^b Qingxin Jia,^c Masaharu Yamaguchi,^c Akihide Iwase,^d Yongbo Kuang,^c Tsutomu Minegishi,^c Taro Yamada,^c Kazunari Domen^c and Akihiko Kudo^{d,*}

^aMitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura, Chiba 299-0265, Japan

^bJapan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 2-11-9 Iwamotocho, Chiyoda-ku, Tokyo 101-0032, Japan

^cDepartment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

^dDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Experimental

Characterization

Crystal phases of the obtained powders were confirmed using X-ray diffraction (Rigaku; SmartLab, Cu $K\alpha$). The X-ray diffraction (XRD) patterns were collected from 5° to 70° (2θ) using a step size 0.02°. The source power and current of Cu $K\alpha$ radiation were 40 kV and 30 mA, respectively. Diffuse reflection spectra (DRS) were obtained using a UV-VIS-NIR spectrometer (JASCO; V-670) and were converted from reflectance to absorbance by the Kubelka-Munk method. Photocatalyst powders and phoelectrodes were observed using a scanning electron microscope (Hitachi High-Technologies; SU8020). Focused ion beam (SEIKO Instruments; SMI2050) was used to cut photoelectrodes for the cross-section observation.

Calculations

 $E_{Ag/AgCl}$ was converted to E_{RHE} according the following equation.

$$E_{RHE}[V] = (E_{Ag/AgCl} + 0.199 + 0.059 \times pH)[V]$$
 (eq. S1)

IPCE was determined by the following equation.

$$IPCE[\%] = \frac{J[mA/cm^2] \times 1240[V \times nm]}{P_{mono}[mW/cm^2] \times \lambda[nm]} \times 100$$
 (eq. S2)

Here, P_{mono} , and λ represent intensity and wavelength of incident monochromatic light, respectively.

Fig. S1 H-type cell for photoelectrochemical measurement equipped with an on-line gas chromatography.

Fig. S2 An X-ray diffraction pattern of $SnNb_2O_6$ photocatalyst powder. The inset shows an SEM image of $SnNb_2O_6$ photocatalyst powder.

Fig. S3 XPS spectra of $Sn3d_{5/2}$ of (a, a') non-loaded and (b, b') CoO_x -loaded $SnNb_2O_6$ photoelectrodes (a, b) before and (a', b') after photoelectrochemical measurements.

surface of non-folded and \cos_x folded $\sin x_2 = 0$ photoelectrodes.				
sample	measurement	XPS area		proportion of
		Sn^{2+}	Sn^{4+}	Sn ²⁺
non-loaded SnNb ₂ O ₆	before	53000	33000	0.38
non-loaded SnNb ₂ O ₆	after	55500	14000	0.20
CoO _x -loaded SnNb ₂ O ₆	before	50000	32000	0.39
CoO _x -loaded SnNb ₂ O ₆	after	17500	5000	0.22

Table S1 XPS areas of Sn^{2+} and Sn^{4+} ions and calculated proportions of Sn^{2+} ions at the surface of non-loaded and CoO_x -loaded SnNb_2O_6 photoelectrodes.

[Proportion of Sn²⁺] = [XPS area of Sn²⁺]/([XPS area of Sn²⁺] + [XPS area of Sn⁴⁺])

Fig. S4 Schematic of chemical states of Sn species at the surface of non-loaded and CoO_x -loaded SnNb₂O₆ photoelectrodes before and after photoelectrochemical measurements.

Fig. S5 SEM images of (a) non-loaded, (b) $CoO_{x}(0.5 \text{ wt\%})$ -loaded, and (c) $CoO_{x}(1.0 \text{ wt\%})$ -loaded $SnNb_2O_6$ photocatalysts. The calcination temperature in air for loading of CoO_x cocatalyst was 473 K.

Fig. S6 Effect of calcination temperature in air for loading of a CoO_x cocatalyst on the photoelectrochemical performance of a $CoO_x(0.5wt\%)/SnNb_2O_6$ photoanode. Electrolyte, 0.125 mol L⁻¹ K₂B₄O₇ aqueous solution (pH 9.4); light source, solar simulator (AM 1.5G, 100 mW cm⁻²).

Fig. S7 Time courses of photocurrent of a $CoO_x(0.5wt\%)/SnNb_2O_6$ photoelectrode at 0.0–1.2 V_{RHE}. Electrolyte, 0.125 mol L⁻¹ K₂B₄O₇ aqueous solution (pH 9.4); light source, solar simulator (AM 1.5G, 100 mW cm⁻²).