SUPPORTING INFORMATION

Mixed Valence Copper-sulfur Clusters of Highest Nuclearity: A Cu $\mathbf{C u}_{8}$ Wheel and Cu_{16} Nanoball

Kamran B. Ghiassi, ${ }^{c}$ Marilyn M. Olmstead ${ }^{\text {c }}$ and Apurba K. Patra*a
${ }^{a}$ Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue,
Durgapur 713 209, (India); ${ }^{b}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India; ${ }^{c}$ Department of Chemistry, University of California Davis, CA 95616 (USA)

Table of contents

1	Synthesis procedure of $\mathrm{L1}^{\mathrm{s}-\mathrm{s}}, \quad \mathrm{L2}^{\mathrm{s}-\mathrm{S}}, \quad\left[(\mathrm{L} 1)_{8} \mathrm{Cu}_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ DMF-0.5CH ${ }_{3} \mathrm{OH}\left(1 \cdot \mathrm{DMF} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right), ~\left[(\mathrm{~L} 2)_{12} \mathrm{Cu}_{16}(\mathrm{O})_{6} \mathrm{~S}\right]\left(\mathrm{ClO}_{4}\right)$. $4 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{2} .4 \mathrm{H}_{2} \mathrm{O}\right)$	
2	Figure S1: FTIR spectra of $\mathrm{L1}^{\mathrm{S}-\mathrm{S}}$ in KBr disk.	
3	Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L1}^{\text {S-S }}$ in CDCl_{3} at RT	
4	Figure S3: ESI positive mass spectra of $\mathrm{L1}^{\text {S-S }}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$	
5	Figure S4: FTIR spectra of L2 ${ }^{\text {S-S }}$ in KBr disk	
6	Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L2}^{\text {S-S }}$ in CDCl_{3} at RT	
7	Figure S6: ESI positive mass spectra of $\mathrm{L2}^{\mathrm{S-S}}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$	
8	Figure S7: FTIR spectra of $\mathbf{1 . 8} \mathrm{H}_{2} \mathrm{Oin} \mathrm{KBr}$ disk	
9	Figure S8: ESI positive mass spectra of 1 taken in $\mathrm{CH}_{3} \mathrm{CN}$	
10	Figure S9: FTIR spectra of $\mathbf{2} .4 \mathrm{H}_{2} \mathrm{O}$ in KBr disk	
11	Figure S10: ESI positive mass spectra of $\mathbf{2}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$	
12	Figure S11: Experimental and Simulated Mass distribution of peak at $\mathrm{m} / \mathrm{z}=1680.05$, corresponds to $\left\{\left[(\mathrm{L} 2)_{12} \mathrm{Cu}_{16} \mathrm{O}_{6} \mathrm{~S}\right]+3 \mathrm{H}\right\}^{2+}$,	
13	Figure S12: UV-Vis spectrum of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$.	
14	Figure S13: UV-Vis spectral change during one electron reduction of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$	
15	Figure S14: EPR spectrum of one electron reduced form of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$.	
16	Figure S15: UV-Vis spectra in $\mathrm{CH}_{3} \mathrm{CN}$ of 2	
17	Figure S16: Vis-NIR spectra of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$, DMF and DMSO	
18	Figure S17:Vis-NIR spectra of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$, DMF, DMSO	
19	Figure S18: Structural data of Cu_{A} and Cu_{Z} sites	
20	Figure S19. A view of the cation of the cluster of [Cu_{8} $\left.(\mathrm{L} 1)_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot(\mathrm{DMF}) \cdot 0.5(\mathrm{MeOH}), \mathbf{1}$, as seen approximately down the b axis.	
21	Figure S20. A view of the cluster $\left[\mathrm{Cu}_{16} \mathrm{~S}(\mathrm{~L} 2)_{12} \mathrm{O}_{6}\right]^{+}, \mathbf{2}$, as seen approximately down the crystallographic 3-fold axis, with atom numbering.	
22	Figure S21. The $\left[\mathrm{Cu}_{16} \mathrm{~S}(\mathrm{~L} 2)_{12}\right]^{+}$cluster including carbon atoms but excluding hydrogen and oxygen. Copper atoms are red-orange, sulfur are yellow, nitrogen are blue.	
23	Figure S22. The χ_{M} vs T plots of $\mathbf{1}$ and 2	
24	Crystallographic details of 1-2	

Syntheses of Ligands L1 ${ }^{\text {s-S }}$, L2 $^{\mathrm{S}-\mathrm{S}}$ and their Copper Complexes:

2,2'-disulfanediylbis(\mathbf{N}-((3-methylthiophen-2-yl)methylene)aniline) (L1 $\left.{ }^{\mathrm{s}-\mathrm{S}}\right)$: A solution of 2,2'-disulfanediyldianiline ($2.0 \mathrm{~g}, 8.06 \mathrm{mmol}$) in 40 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added to a stirred solution of 3-methyl-2-thiophenecarbaldehyde ($2.03 \mathrm{~g}, 16.12 \mathrm{mmol}$) in 40 ml CH 33 OH solution. Then the resulting solution was refluxed for 3 hrs and $\mathrm{CH}_{3} \mathrm{OH}$ was removed using rotary evaporator. The yellow solid of $\mathrm{L1}^{\mathrm{S}-\mathrm{S}}$ was obtained which was recrystallized from $\mathrm{CH}_{3} \mathrm{OH}$ solution. (3.2 g , yield: 85%.). Elemental analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{4}$ (L1 $\left.{ }^{\mathrm{S}-\mathrm{S}}\right)$: C 62.03, H 4.34, N 6.03; Found: C 61.86, H 4.28, N 5.84; IR frequencies (KBr disk, cm^{-1}): 3078(w), 3060(w), 2950(w), 2915(w), 2873(w), 2848(w), 1602($\left.\mathrm{v}_{\text {сл, }} \mathrm{s}\right), 1570(\mathrm{~s})$, 1464(m), 1439(m), 1423(s), 1385(m), 1337(m), 1289(w), 1263(m), 1194(m), 1160(w), 1128(w), 1094(w), 1053(w), 1039(m), 951(w), 933(w), 871(w), 840(m), 764(m), 753(s), 717(m), 710(m), 664(w), 616(w), 595(w), 549(w), 526(w), 484(w), 446(w); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.68(2 \mathrm{H}, \mathrm{s}$, imine-CH), $7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}$, phenyl ring proton), $7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}$, phenyl ring proton), $7.11(4 \mathrm{H}, \mathrm{m}$, phenyl ring proton), $7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}$, thiophene ring proton), $6.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}$, thiophene ring proton), $2.49(6 \mathrm{H}, \mathrm{s}$, methyl proton of thiophene ring); ESI mass: $\mathrm{m} / \mathrm{z}(\%)=464.05$ (100) $\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$.

2,2'-disulfanediylbis(N-((3-methylthiophen-2-yl)methylene)ethanamine) (L2 $\left.{ }^{\mathrm{S}-\mathrm{S}}\right)$: To a stirred solution of 2,2'-diaminodiethyl disulfidedihydrochloride ($0.37 \mathrm{~g}, 1.64 \mathrm{mmol}$) in 15 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added triethylamine ($0.332 \mathrm{~g}, 3.28 \mathrm{mmol}$) and the solution was stirred for 30 mints. Then the resulting solution was added to a stirred solution of 3-methyl-2-thiophenecarbaldehyde (0.413 g , 3.28 mmol) in 10 ml CH 33 OH solution and refluxed for 6 hrs . Then $\mathrm{CH}_{3} \mathrm{OH}$ was removed using rotary evaporator. The resulting residue was dissolved in 30 ml of chloroform, washed with 100 ml (2 times) of water, brine water $(100 \mathrm{ml})$ and again with 100 ml water. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and chloroform was removed using rotary evaporator, resulting yellow oil. (0.96 g, yield: 79%). Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{4}$ (L2 ${ }^{\mathrm{S}-\mathrm{S}}$): C 52.14 , H 5.47, N 7.60; Found: C 51.98, H 5.58, N 7.49; IR frequencies (KBr disk, cm^{-1}): 3099(w), $3063(\mathrm{w}), 2989(\mathrm{~m}), 2931(\mathrm{~m}), 2828(\mathrm{~s}), 1626\left(\mathrm{v}_{\mathrm{cN}}, \mathrm{s}\right), 1554(\mathrm{w}), 1431(\mathrm{~m}), 1384(\mathrm{w}), 1334(\mathrm{~m})$, 1252(w), 1190(s), 1099(s), 1060(s), 972(m), 932(m), 901(m), 844(w), 809(w), 722(m), 606(w); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(2 \mathrm{H}, \mathrm{s}$, imine-CH), $7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}$, thiophene ring proton), $6.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}$, thiophene ring proton), $3.87(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, methylene proton of $\left.-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 3.02\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}\right.$, methylene proton of $\left.-\mathrm{S}_{-}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 2.38(6 \mathrm{H}, \mathrm{s}$, methyl proton of thiophene ring); ESI mass: $\mathrm{m} / \mathrm{z}(\%)=369.04(100)\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$.
$\left[(\mathrm{L} 1)_{8} \mathrm{Cu}_{\mathbf{8}}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{DMF} \cdot \mathbf{0 . 5} \mathrm{CH}_{\mathbf{3}} \mathrm{OH}$ (1-DMF$\left.\cdot \mathbf{0 . 5 C H} \mathbf{3} \mathbf{O H}\right)$: To a degased solution of ligand L1 ${ }^{\mathrm{S}-\mathrm{S}}(0.298 \mathrm{~g}, 0.64 \mathrm{mmol})$ in 30 ml dry $\mathrm{CH}_{3} \mathrm{OH}$ was added solid $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}(0.419 \mathrm{~g}$, 1.28 mmol), resulting a dark reddish purple solution. The solution was refluxed for 1 hr . After cooling, the purple precipitate was collected by filtration. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the DMF
solution of purple precipitate afforded dark crystals of $1 \cdot \mathrm{DMF} \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}$. (0.330 g , yield: 76% based on Cu). Elemental analysis calculated for $\mathrm{C}_{99.5} \mathrm{H}_{87} \mathrm{~N}_{9} \mathrm{O}_{9.5} \mathrm{~S}_{16} \mathrm{Cl}_{2} \mathrm{Cu}_{8}\left(1 \cdot \mathrm{DMF} \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$: C 45.04, H 3.31, N 4.75; Found: C 44.91, H 3.19, N 4.61; IR frequencies (KBr disk, cm^{-1}): $3442\left(v_{\text {ОН, }}, \mathrm{s}\right), 3047(\mathrm{w}), 2956(\mathrm{w}), 2925(\mathrm{~m}), 2850(\mathrm{w}), 1654\left(\mathrm{~m}, \mathrm{v}_{\mathrm{c}=0}\right.$ of DMF), $1581\left(\mathrm{v}_{\mathrm{c}=\mathrm{N}}, \mathrm{s}\right), 1549(\mathrm{~s})$, 1504(w), 1457(w), 1410(w), 1388(w), 1343(m), 1268(w), 1191(w), 1157(w), 1081(v $\left.\mathrm{v}_{\text {clo4 }}, \mathrm{s}\right)$, 952(w), 844(w), 771(w), 742(m), 658(w), 623($\left.\mathrm{v}_{\text {cio4 }, ~} \mathrm{~m}\right), 549(\mathrm{w}), 486(\mathrm{w})$; ESI mass: $\mathrm{m} / \mathrm{z}(\%)=$ 1182.81 (92) $\left[(\mathrm{L} 1)_{8} \mathrm{Cu}_{8}\right]^{2+}, 823.93$ (46) $\left[2 \mathrm{Cu}+3\left(\mathrm{~L}^{-}\right)\right]^{+}, 526.97$ (100) $\left[\mathrm{Cu}+2\left(\mathrm{~L}^{-}\right)-\mathrm{H}\right]^{+}$; Molar conductance, Λ_{M} in $\mathrm{CH}_{3} \mathrm{CN}=240 \Omega^{-1} \mathrm{~cm}^{2}$ mol ${ }^{1-}$; UV/Vis in $\mathrm{CH}_{3} \mathrm{CN}$: 269(77250), 314(88875), 350(sh, 63320), 500(11170), 850(3104); Vis/NIR in $\mathrm{CH}_{3} \mathrm{CN}$: 500(11820), 850(2510), 1175(8310), 1700(21930); Vis/NIR in DMF: 500(12170), 850(2565), 1175(8560), 1700(22485); Vis/NIR in DMSO: 500(11945), 850(2525), 1175(8450), 1700(21955).

$\left[(\mathrm{L} 2)_{12} \mathbf{C u}_{16} \mathrm{O}_{6} \mathbf{S}\right]\left(\mathbf{C l O}_{4}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O},\left(\mathbf{2} .4 \mathrm{H}_{2} \mathrm{O}\right)$:

To a degased solution of ligand $\mathrm{L}^{\mathrm{S}-\mathrm{S}}(0.50 \mathrm{~g}, 1.36 \mathrm{mmol})$ in 40 ml dry $\mathrm{CH}_{3} \mathrm{OH}$ was added solid $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}(0.89 \mathrm{~g}, 2.72 \mathrm{mmol})$, resulting a yellowish orange solution. The solution was refluxed for 1 hr . After cooling, the yellow precipitate was collected by filtration. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the DMF solution of yellow precipitate afforded dark brown block crystals of $2.4 \mathrm{H}_{2} \mathrm{O}$. (0.48 g , yield: 80% based on Cu). Elemental analysis calculated for $\mathrm{C}_{96} \mathrm{H}_{128} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{~S}_{25} \mathrm{Cl}_{1} \mathrm{Cu}_{16}\left(\mathbf{2} .4 \mathrm{H}_{2} \mathrm{O}\right)$: C 32.68, H 3.66, N 4.76; Found: C 32.52, H 3.59, N 4.86; IR frequencies (KBr disk, cm^{-1}): 3448($\mathrm{v}_{\text {о }}$, br), $3097(\mathrm{w}), 2920(\mathrm{w}), 2856(\mathrm{w}), 1602\left(\mathrm{v}_{\mathrm{c}-\mathrm{N}, \mathrm{s}} \mathrm{s}\right), 1560(\mathrm{w})$, 1538(w), 1504(w), 1437(w), 1420(m), 1385(w), 1360(w), 1340(w), 1262(m), 1224(w), $1089\left(v_{\text {clo4 }}, \mathrm{s}\right), 993(\mathrm{w}), 930(\mathrm{w}), 830(\mathrm{w}), 802(\mathrm{w}), 730(\mathrm{~m}), 623\left(\mathrm{v}_{\mathrm{cl04}}, \mathrm{~m}\right), 558(\mathrm{w}), 541(\mathrm{w}), 494(\mathrm{w})$, $480\left(v_{\text {cuo },}, \mathrm{w}\right)$; ESI mass: $\mathrm{m} / \mathrm{z}(\%)=1680.05(30)\left\{\left[(\mathrm{L} 2)_{12} \mathrm{Cu}_{16} \mathrm{O}_{6} \mathrm{~S}\right]+3 \mathrm{H}\right\}^{2+}$, 1086.70 (30) $\left[10 \mathrm{Cu}+8\left(\mathrm{~L}^{-}\right)+\left(\mathrm{S}^{2-}\right)+2\left(\mathrm{O}^{2-}\right)\right]^{2+}, 805.79(90)\left[8 \mathrm{Cu}+6\left(\mathrm{~L}^{-}\right)+\left(\mathrm{S}^{2-}\right)+3\left(\mathrm{O}^{2-}\right)-3 \mathrm{H}\right]^{2+}, 462.95(45)\left[\mathrm{Cu}+2\left(\mathrm{~L}^{-}\right.\right.$ $\left.)+\left(\mathrm{S}^{2-}\right)\right]^{+}$; Molar conductance, Λ_{M} in $\mathrm{CH}_{3} \mathrm{CN}=135 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}{ }^{1-}$; UV/Vis in $\mathrm{CH}_{3} \mathrm{CN}$: 269(98665), 355(25580), 455(13440), 760(1220); Vis/NIR in $\mathrm{CH}_{3} \mathrm{CN}: 455(14040), 760(1340)$, 1408(3380) 1460 (1645), 1535(1080); Vis/NIR in DMF: 455(14190), 770(1024), 1430(2905), 1560(1685); Vis/NIR in DMSO: 455(15980), 760(1110),1430(3255), 1560(1840).

Physical Measurements:

The FTIR spectra of the complexes were recorded on a Thermo Nicolet iS10 spectrometer using KBr pellet in the range $4000-400 \mathrm{~cm}^{-1}$. The electronic spectra were recorded on an Agilent 8453 diode array spectrophotometer. The Vis-NIR spectra were recorded using Perkin Elmer spectrophotometer. Elemental analyses were carried out on a Perkin-Elmer 2400 series-II CHN Analyzer. Electron paramagnetic resonance (EPR) spectra were obtained using Bruker- EMX-1444 EPR spectrometer, ESI Mass spectra were recorded on Waters Q-Tof premier- HAB213 spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL JNM LA 500 or on Bruker DPX-300. Redox potentials were measured using CHI 1120A spectro-electrochemical analyzer. The cyclic voltammograms (CV) were recorded in $\mathrm{CH}_{3} \mathrm{CN}$ using same cell set up. A three electrode cell set up such as platinum, saturated calomel electrode (SCE) and a platinum wire as a working, reference and auxiliary electrode respectively were used. The magnetic susceptibility of 1 and 2 were measured using Vibrating Sample Magnetometer (Cryogenic Inc. (UK) make) Operating at frequency 20.4 Hz .

Figure S1: FTIR spectrum of L1 ${ }^{\text {S-S }}$ in $K B r$ disk, shown in the range $400 \mathrm{~cm}^{-1}-4000 \mathrm{~cm}^{-1}$.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L1}^{\mathrm{S}-\mathrm{S}}$ in CDCl_{3} at RT .

Figure S3: ESI positive mass spectra of $\mathrm{L}^{\mathrm{S}-\mathrm{S}}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$, peak at $\mathrm{m} / \mathrm{z}=465.05$ corresponds to $\left[\mathrm{L}^{\mathrm{S}-\mathrm{S}}+\mathrm{H}^{+}\right]^{+}$

Figure S4: FTIR spectrum of L2 ${ }^{\text {S-S }}$ in KBr disk, shown in the range $400 \mathrm{~cm}^{-1}-4000 \mathrm{~cm}^{-1}$.

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 2}{ }^{\mathbf{S}-\mathrm{s}}$ in CDCl_{3} at RT.

Figure S6: ESI positive mass spectra of $\mathbf{L 2}^{\mathbf{S}-\mathrm{s}}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$, peak at $\mathrm{m} / \mathbf{z}=369.04$ corresponds to $\left[\mathrm{L} 2^{\mathrm{S}-\mathrm{S}}+\mathrm{H}^{+}\right]^{+}$

Figure S7: FTIR spectrum of $\mathbf{1} \cdot \mathrm{DMF} \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}$ in KBr disk, shown in the range $400 \mathrm{~cm}^{-1}-4000$ cm^{-1}.

Figure S8: ESI positive mass spectra of $\mathbf{1}$ taken in $\mathrm{CH}_{3} \mathrm{CN}$, peak at $\mathrm{m} / \mathrm{z}=1182.81,823.93$, 526.97 corresponds to $\left[(\mathrm{L} 1)_{8} \mathrm{Cu}_{8}\right]^{2+},\left[2 \mathrm{Cu}+3\left(\mathrm{~L}^{-}\right)\right]^{+},\left[\mathrm{Cu}+2\left(\mathrm{~L}^{-}\right)-\mathrm{H}\right]^{+}$.

Figure S9: FTIR spectra of $\mathbf{2 . 4} \mathrm{H}_{2} \mathrm{O}$ in KBr disk, shown in the range $400 \mathrm{~cm}^{-1}-4000 \mathrm{~cm}^{-1}$.

Figure S10: ESI positive mass spectra of 2 taken in $\mathrm{CH}_{3} \mathrm{CN}$, peak at $\mathrm{m} / \mathrm{z}=1680.05,1086.70$, $805.79,462.95$ corresponds to $\left\{\left[(\mathrm{L} 2)_{12} \mathrm{Cu}_{16} \mathrm{O}_{6} \mathrm{~S}\right]+3 \mathrm{H}\right\}^{2+},\left[10 \mathrm{Cu}+8\left(\mathrm{~L}^{-}\right)+\mathrm{S}^{2-}+2 \mathrm{O}^{2-}\right]^{2+},\left[7 \mathrm{Cu}+6\left(\mathrm{~L}^{-}\right.\right.$ $\left.)+\mathrm{S}^{2-}+2 \mathrm{O}^{2-}-3 \mathrm{H}\right]^{2+},\left[\mathrm{Cu}+2\left(\mathrm{~L}^{-}\right)+\left(\mathrm{S}^{2-}\right)\right]^{+}$.

Figure S11: Experimental (black) and Simulated (green) Mass distribution of peak at $\mathrm{m} / \mathrm{z}=$ 1680.05, corresponds to $\left\{\left[(\mathrm{L} 2)_{12} \mathrm{Cu}_{16} \mathrm{O}_{6} \mathrm{~S}\right]+3 \mathrm{H}\right\}^{2+}$,

Figure S12: UV-Vis spectrum in $\mathrm{CH}_{3} \mathrm{CN}$ of $\mathbf{1}$.

Figure S13: UV-Vis spectral change during one electron reduction of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ (black trace complex 1, red trace one electron reduce form of $\mathbf{1}$). Inset: $[\mathbf{1}]=10^{-4} \mathrm{~mol}$.

Figure S14: EPR spectrum of one electron reduced form of $\mathbf{1}$ (i.e. of $\mathbf{1}^{\text {Red }}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at 120 K .

Figure S15: UV-Vis spectra in $\mathrm{CH}_{3} \mathrm{CN}$ of 2, $[\mathbf{2}]=10^{-4} \mathrm{~mol}$.

Figure S16: UV-Vis spectra of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ (black trace), DMF (red trace), DMSO (green trace).

Figure S17: UV-Vis spectra of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$ (black trace), DMF (red trace), DMSO (green trace).

Cu_{A} Site
Cu_{Z} Site

Figure S18: Bond distances of Cu_{A} and Cu_{Z} site adopted from the following references: 1) Haltia, T.; Brown, K.; Tegoni, M.; Cambillau, C.; Saraste, M.; Mattila, K.; Djinovic-Carugo, K. Biochem. J. 2003, 369, 77. 2) Brown, K.; Djinovic-Carugo, K.; Haltia, T.; Cabrito, I.; Saraste, M.; Moura, J. J. G.; Moura, I.; Tegoni, M.; Cambillau, C. J. Biol. Chem. 2000, 275(52), 41133.

CCDC number for the supplementary crystallographic data of 1 and 2: 1494650 and 1494649 respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Crystal Structure Determination

The $\mathrm{Cu}_{\underline{8}}$ cluster, 1

Crystals of 1 were large purple blocks. Data was collected at 100 K on a Bruker Apex II diffractometer. A multi-scan absorption correction was applied. The structure was solved by direct methods (SHELXS) and refined with SHELXL-2014. Crystallographic data are reported in Table S1.

The structure has some disorder that was treated with restraints. Most notable are the split perchlorate oxygen positions and two solvate DMF's that are evidently not at full occupancy. In addition, a solvate molecule of methanol was assigned occupancy of 0.5 , and no hydrogen atoms were included for this species. A solvent accessible void with a maximum volume of $240 \AA^{3}$ and electron count maximum of $46 \mathrm{e}^{-}$remained after all chemically reasonable solvate species were located. Therefore, the SQUEEZE routine (Spek, 2015) was applied, which resulted in a 0.007 reduction in $R 1$. A few large difference map peaks remain which could not be assigned. Three reflections were omitted which were obscured by the beam stop.

The Cu_{16} cluster, $\mathbf{2}$

A black block of $\left.\left[\mathrm{Cu}_{16} \mathrm{~S}\right)(\mathrm{L} 2)_{12} \mathrm{O}_{6}\right]\left(\mathrm{ClO}_{4}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, 2, was mounted in the 100 K nitrogen cold stream provided by an Oxford Cryostream low-temperature apparatus on the goniometer head of a Bruker D8 diffractometer equipped with a Photon 100 CMOS detector on beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA). The data set was reduced with the use of Bruker SAINT, and a multi-scan absorption correction was applied with the use of SADABS. Structure solutions and refinements were conducted with SHELXS-2008 and SHELXL-2014, respectively.

Various types of disorder in the structure required some special refinement techniques. This dataset is the best that could be obtained out of numerous attempts in both India and the U.S. The set of Cu's is mixed valent by ESR, but the charge is evidently not localized. Two oxygen atoms, O1 and O2, with large displacement parameters have been assigned as O (oxide).There are two sites external to the cluster assigned as water (O1W and O2W). No attempt was made to locate and refine hydrogen positions for O 1 W and O 2 W . Very large thermal displacement parameters were observed for the peripheral 3-methylthiophene groups. In particular, the methyl groups were ill-behaved. In the final cycles of refinement, the $\mathrm{N}=\mathrm{C}(\mathrm{H})-3$ methylthiophene portion was refined as a rigid group in order for it to have a reasonable geometry. The coordinates for this group were taken from the structure with ref code LONSOX ${ }^{\text {iv }}$ in the Cambridge Crystallographic Database. Thermal parameters were kept isotropic for carbon atoms. The Cu, S, and N atoms were anisotropic. One perchlorate anion occupies a special position of 3 -fold symmetry. One of the four oxygens (O3) is also on the 3-fold axis, and the other (O4) is on a general position. This group is refined with restrained geometry of $\mathrm{Cl}-\mathrm{O}$
$1.44(2) \AA$ and $\mathrm{O}--\mathrm{O}$ of $2.36(8) \AA$. Additionally, the oxygen isotropic thermal parameters are fixed at $0.10 \AA^{2}$. The central sulphide-sulfur was anisotropic.

References

SAINT and SADABS: Bruker AXS Inc.: Madison, WI, 2014.
SHELXS: Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.
SHELXL: Sheldrick, G. M. Acta Crystallogr., Sect. C 2015, 71, 3.
SQUEEZE: Spek, A. L. Acta Crystallogr., Sect. C, 2015, 71, 9.
S. Wang, Z. Li, W. Wang, R.-J. Yu, X. Yu. Z Crystallogr-New Cryst. Struct. 2008, 223, 413.

Table S1. Crystal Data for $\left[\mathrm{Cu}_{8} \mathrm{L1}_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{DMF} \cdot 0.5 \mathrm{MeOH}$, 1, and $\left.\left[\mathrm{Cu}_{16} \mathrm{~S}\right)(\mathrm{L} 2)_{12} \mathrm{O}_{6}\right]\left(\mathrm{ClO}_{4}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}, 2$

	Cluster 1	Cluster 2
chemical formula	$\mathrm{C}_{99.5} \mathrm{OH}_{87} \mathrm{Cl}_{2} \mathrm{Cu}_{8} \mathrm{~N}_{9} \mathrm{O}_{9.5} \mathrm{~S}_{16}$	$\mathrm{C}_{96} \mathrm{H}_{120} \mathrm{ClCu}_{16} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{~S}_{25}$
formula weight	2652.96	3519.62
radiation source, $\lambda(\AA)$	sealed tube, 0.71073	synchrotron, 1.0332
crystal system	monoclinic	trigonal
space group	$P 2_{1} / n$ (No. 14)	P31c (No. 159)
T (K)	100(2)	100(2)
$a(\AA)$	18.757(5)	18.1253(7)
b (\AA)	30.586(5)	
$c(\AA)$	20.498(5)	29.8697(14)
$\beta\left({ }^{\circ}\right)$	92.805(5)	
$V\left(\AA^{3}\right)$	11746(5)	8498.3(8)
Z	4	2
$d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.500	1.375
$\mu\left(\mathrm{mm}^{-1}\right)$	1.805	6.41
$F(000)$	5380	3546
crystal size	$0.20 \times 0.30 \times 0.30$	$0.08 \times 0.10 \times 0.14$
reflections collected	94954	65370
data/parameters/restraints	21817/66/1295	10246/36/236
R (int)	0.1067	0.0769
R_{1} [data with $I>2 \sigma(I)$]	0.0842 [12667]	0.1258 [7295]
$w R_{2}$ (all data)	0.2496	0.3727
largest diff peak, hole (e \AA^{-3})	2.47, -0.81	1.81, -1.10

Description of the structure of $\left[\mathrm{Cu}_{8}(\mathrm{~L} 1)_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{DMF}) . \mathbf{0 . 5}(\mathrm{MeOH}), 1$

The cluster has no crystallographic symmetry. There are eight Cu 's in a crown conformation and eight ligands (L1). The eight sulfide S atoms, S1, S3, S5, S7, S9, S11, S13, S15 form normal bonds to Cu whereas the thiophene S atoms are only weakly interacting. Bond distances and angles around Cu do not reveal whether the metal center is in the +1 or +2 oxidation state. A listing of selected distances and angles is given in Table S1 below.

Table 1. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\left[\mathrm{Cu}_{8}(\mathrm{~L} 1)_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{DMF}) .0 .5(\mathrm{MeOH}), 1$.

$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.048(9)$	$\mathrm{Cu}(4)-\mathrm{Cu}(5)$	$2.6051(19)$
$\mathrm{Cu}(1)-\mathrm{S}(6)$	$2.292(3)$	$\mathrm{Cu}(5)-\mathrm{N}(6)$	$2.057(9)$
$\mathrm{Cu}(1)-\mathrm{S}(1)$	$2.306(3)$	$\mathrm{Cu}(5)-\mathrm{S}(13)$	$2.306(3)$
$\mathrm{Cu}(1)-\mathrm{S}(3)$	$2.390(3)$	$\mathrm{Cu}(5)-\mathrm{S}(9)$	$2.315(3)$
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$2.5836(18)$	$\mathrm{Cu}(5)-\mathrm{S}(11)$	$2.388(3)$
$\mathrm{Cu}(1)-\mathrm{Cu}(8)$	$2.6078(18)$	$\mathrm{Cu}(5)-\mathrm{Cu}(6)$	$2.5552(18)$
$\mathrm{Cu}(2)-\mathrm{N}(3)$	$2.033(9)$	$\mathrm{Cu}(6)-\mathrm{N}(7)$	$2.031(10)$
$\mathrm{Cu}(2)-\mathrm{S}(7)$	$2.293(3)$	$\mathrm{Cu}(6)-\mathrm{S}(11)$	$2.295(3)$
$\mathrm{Cu}(2)-\mathrm{S}(3)$	$2.314(3)$	$\mathrm{Cu}(6)-\mathrm{S}(15)$	$2.306(3)-\mathrm{S}(13)$
$\mathrm{Cu}(2)-\mathrm{S}(6)$	$2.412(3)$	$\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$2.412(3)$
$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	$2.5493(19)$	$\mathrm{Cu}(7)-\mathrm{S}(13)$	$2.5893(18)$
$\mathrm{Cu}(3)-\mathrm{N}(4)$	$2.053(9)$	$\mathrm{Cu}(7)-\mathrm{S}(1)$	$2.033(8)$
$\mathrm{Cu}(3)-\mathrm{S}(6)$	$2.300(3)$	$\mathrm{Cu}(7)-\mathrm{S}(15)$	$2.288(3)$
$\mathrm{Cu}(3)-\mathrm{S}(9)$	$2.342(3)$	$\mathrm{Cu}(7)-\mathrm{Cu}(8)$	$2.414(3)$
$\mathrm{Cu}(3)-\mathrm{S}(7)$	$2.426(3)$	$\mathrm{Cu}(8)-\mathrm{N}(1)$	$2.5704(19)$
$\mathrm{Cu}(3)-\mathrm{Cu}(4)$	$2.5852(18)$	$\mathrm{Cu}(8)-\mathrm{S}(15)$	$2.024(9)$
$\mathrm{Cu}(4)-\mathrm{N}(5)$	$2.052(9)$	$\mathrm{Cu}(8)-\mathrm{S}(3)$	$2.280(3)$
$\mathrm{Cu}(4)-\mathrm{S}(7)$	$2.286(3)$	$\mathrm{Cu}(8)-\mathrm{S}(1)$	$2.292(3)$
$\mathrm{Cu}(4)-\mathrm{S}(11)$	$2.312(3)$	$2.367(3)$	$2.369(3)$
$\mathrm{Cu}(4)-\mathrm{S}(9)$			

$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{S}(6)$	$125.5(2)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{S}(1)$	$111.2(3)$
$\mathrm{S}(6)-\mathrm{Cu}(1)-\mathrm{S}(1)$	$107.00(10)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{S}(3)$	$88.8(2)$
$\mathrm{S}(6)-\mathrm{Cu}(1)-\mathrm{S}(3)$	$112.10(10)$

$\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{S}(3)$	$110.91(10)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$107.0(3)$
$\mathrm{S}(6)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$58.94(7)$
$\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$139.09(9)$
$\mathrm{S}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$55.28(8)$

$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(8)$	99.6(2)	$\mathrm{S}(7)-\mathrm{Cu}(4)-\mathrm{S}(11)$	103.74(11)
$\mathrm{S}(6)-\mathrm{Cu}(1)-\mathrm{Cu}(8)$	133.95(9)	$\mathrm{N}(5)-\mathrm{Cu}(4)-\mathrm{S}(9)$	88.8(3)
$\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(8)$	57.25(7)	$\mathrm{S}(7)-\mathrm{Cu}(4)-\mathrm{S}(9)$	113.83(11)
$\mathrm{S}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(8)$	54.38(8)	$\mathrm{S}(11)-\mathrm{Cu}(4)-\mathrm{S}(9)$	111.80(11)
$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(8)$	102.67(6)	$\mathrm{N}(5)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	108.4(3)
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{S}(7)$	133.0(3)	$\mathrm{S}(7)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	59.35(8)
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{S}(3)$	114.8(3)	$\mathrm{S}(11)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	136.45(9)
$\mathrm{S}(7)-\mathrm{Cu}(2)-\mathrm{S}(3)$	97.52(11)	$\mathrm{S}(9)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	56.23(8)
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{S}(6)$	88.2(3)	$\mathrm{N}(5)-\mathrm{Cu}(4)-\mathrm{Cu}(5)$	99.5(3)
$\mathrm{S}(7)-\mathrm{Cu}(2)-\mathrm{S}(6)$	112.13(10)	$\mathrm{S}(7)-\mathrm{Cu}(4)-\mathrm{Cu}(5)$	135.00(9)
$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{S}(6)$	110.56(10)	$\mathrm{S}(11)-\mathrm{Cu}(4)-\mathrm{Cu}(5)$	57.74(8)
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	110.9(3)	$\mathrm{S}(9)-\mathrm{Cu}(4)-\mathrm{Cu}(5)$	55.24(8)
$\mathrm{S}(7)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	59.84(8)	$\mathrm{Cu}(3)-\mathrm{Cu}(4)-\mathrm{Cu}(5)$	103.80(6)
$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	131.46(9)	$\mathrm{N}(6)-\mathrm{Cu}(5)-\mathrm{S}(13)$	127.8(3)
$\mathrm{S}(6)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	55.15(7)	$\mathrm{N}(6)-\mathrm{Cu}(5)-\mathrm{S}(9)$	114.5(3)
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	96.9(2)	$\mathrm{S}(13)-\mathrm{Cu}(5)-\mathrm{S}(9)$	103.19(11)
$\mathrm{S}(7)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	129.68(9)	$\mathrm{N}(6)-\mathrm{Cu}(5)-\mathrm{S}(11)$	87.5(3)
$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	58.12(8)	$\mathrm{S}(13)-\mathrm{Cu}(5)-\mathrm{S}(11)$	111.88(10)
$\mathrm{S}(6)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	54.49(7)	$\mathrm{S}(9)-\mathrm{Cu}(5)-\mathrm{S}(11)$	110.95(11)
$\mathrm{Cu}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	101.66(6)	$\mathrm{N}(6)-\mathrm{Cu}(5)-\mathrm{Cu}(6)$	106.3(3)
$\mathrm{N}(4)-\mathrm{Cu}(3)-\mathrm{S}(6)$	130.9(3)	$\mathrm{S}(13)-\mathrm{Cu}(5)-\mathrm{Cu}(6)$	59.24(8)
$\mathrm{N}(4)-\mathrm{Cu}(3)-\mathrm{S}(9)$	114.8(3)	$\mathrm{S}(9)-\mathrm{Cu}(5)-\mathrm{Cu}(6)$	136.50(9)
$\mathrm{S}(6)-\mathrm{Cu}(3)-\mathrm{S}(9)$	101.64(11)	$\mathrm{S}(11)-\mathrm{Cu}(5)-\mathrm{Cu}(6)$	55.21(8)
$\mathrm{N}(4)-\mathrm{Cu}(3)-\mathrm{S}(7)$	86.8(3)	$\mathrm{N}(6)-\mathrm{Cu}(5)-\mathrm{Cu}(4)$	99.4(3)
$\mathrm{S}(6)-\mathrm{Cu}(3)-\mathrm{S}(7)$	111.40(10)	$\mathrm{S}(13)-\mathrm{Cu}(5)-\mathrm{Cu}(4)$	131.93(9)
$\mathrm{S}(9)-\mathrm{Cu}(3)-\mathrm{S}(7)$	109.72(10)	$\mathrm{S}(9)-\mathrm{Cu}(5)-\mathrm{Cu}(4)$	57.15(8)
$\mathrm{N}(4)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	107.4(3)	$\mathrm{S}(11)-\mathrm{Cu}(5)-\mathrm{Cu}(4)$	54.96(8)
$\mathrm{S}(9)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	134.22(9)	$\mathrm{Cu}(6)-\mathrm{Cu}(5)-\mathrm{Cu}(4)$	102.85(6)
$\mathrm{S}(7)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	54.83(7)	$\mathrm{N}(7)-\mathrm{Cu}(6)-\mathrm{S}(11)$	126.6(3)
$\mathrm{N}(4)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	97.0(3)	$\mathrm{N}(7)-\mathrm{Cu}(6)-\mathrm{S}(15)$	121.2(3)
$\mathrm{S}(6)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	131.11(9)	$\mathrm{S}(11)-\mathrm{Cu}(6)-\mathrm{S}(15)$	98.53(11)
$\mathrm{S}(9)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	57.17(8)	$\mathrm{N}(7)-\mathrm{Cu}(6)-\mathrm{S}(13)$	88.0(3)
$\mathrm{S}(7)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	54.16(7)	$\mathrm{S}(11)-\mathrm{Cu}(6)-\mathrm{S}(13)$	111.37(10)
$\mathrm{Cu}(2)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	101.89(6)	$\mathrm{S}(15)-\mathrm{Cu}(6)-\mathrm{S}(13)$	110.52(10)
$\mathrm{N}(5)-\mathrm{Cu}(4)-\mathrm{S}(7)$	125.0(3)	$\mathrm{N}(7)-\mathrm{Cu}(6)-\mathrm{Cu}(5)$	105.8(3)
$\mathrm{N}(5)-\mathrm{Cu}(4)-\mathrm{S}(11)$	113.3(3)	$\mathrm{S}(11)-\mathrm{Cu}(6)-\mathrm{Cu}(5)$	58.69(8)

$\mathrm{S}(15)-\mathrm{Cu}(6)-\mathrm{Cu}(5)$	$131.06(9)$	$\mathrm{S}(1)-\mathrm{Cu}(7)-\mathrm{Cu}(6)$	$136.14(9)$
$\mathrm{S}(13)-\mathrm{Cu}(6)-\mathrm{Cu}(5)$	$55.22(7)$	$\mathrm{S}(15)-\mathrm{Cu}(7)-\mathrm{Cu}(6)$	$54.76(7)$
$\mathrm{N}(7)-\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$100.8(3)$	$\mathrm{Cu}(8)-\mathrm{Cu}(7)-\mathrm{Cu}(6)$	$101.60(6)$
$\mathrm{S}(11)-\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$131.41(9)$	$\mathrm{Cu}(7)-\mathrm{Cu}(8)-\mathrm{Cu}(1)$	$102.15(6)$
$\mathrm{S}(15)-\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$\mathrm{N}(1)-\mathrm{Cu}(8)-\mathrm{S}(15)$	$122.8(3)$	
$\mathrm{S}(13)-\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$\mathrm{N}(1)-\mathrm{Cu}(8)-\mathrm{S}(3)$	$112.7(3)$	
$\mathrm{Cu}(5)-\mathrm{Cu}(6)-\mathrm{Cu}(7)$	$\mathrm{S}(15)-\mathrm{Cu}(8)-\mathrm{S}(3)$	$105.06(11)$	
$\mathrm{N}(8)-\mathrm{Cu}(7)-\mathrm{S}(13)$	$\mathrm{N}, 3.30(8)$	$\mathrm{N}(1)-\mathrm{Cu}(8)-\mathrm{S}(1)$	$89.4(3)$
$\mathrm{N}(8)-\mathrm{Cu}(7)-\mathrm{S}(1)$	$102.09(6)$	$\mathrm{S}(15)-\mathrm{Cu}(8)-\mathrm{S}(1)$	$114.31(11)$
$\mathrm{S}(13)-\mathrm{Cu}(7)-\mathrm{S}(1)$	$129.4(3)$	$\mathrm{S}(3)-\mathrm{Cu}(8)-\mathrm{S}(1)$	$112.20(10)$
$\mathrm{N}(8)-\mathrm{Cu}(7)-\mathrm{S}(15)$	$113.0(3)$	$\mathrm{N}(1)-\mathrm{Cu}(8)-\mathrm{Cu}(7)$	$109.4(3)$
$\mathrm{S}(13)-\mathrm{Cu}(7)-\mathrm{S}(15)$	$103.44(10)$	$\mathrm{S}(15)-\mathrm{Cu}(8)-\mathrm{Cu}(7)$	$59.33(8)$
$\mathrm{S}(1)-\mathrm{Cu}(7)-\mathrm{S}(15)$	$87.8(3)$	$\mathrm{S}(1)-\mathrm{Cu}(8)-\mathrm{Cu}(7)$	$136.13(9)$
$\mathrm{N}(8)-\mathrm{Cu}(7)-\mathrm{Cu}(8)$	$111.12(10)$	$\mathrm{N}(1)-\mathrm{Cu}(8)-\mathrm{Cu}(1)$	$56.11(7)$
$\mathrm{S}(13)-\mathrm{Cu}(7)-\mathrm{Cu}(8)$	$110.85(10)$	$\mathrm{S}(15)-\mathrm{Cu}(8)-\mathrm{Cu}(1)$	$101.6(3)$
$\mathrm{S}(1)-\mathrm{Cu}(7)-\mathrm{Cu}(8)$	$98.6(3)$	$\mathrm{S}(3)-\mathrm{Cu}(8)-\mathrm{Cu}(1)$	$135.07(9)$
$\mathrm{S}(15)-\mathrm{Cu}(7)-\mathrm{Cu}(8)$	$130.98(9)$	$\mathrm{S}(1)-\mathrm{Cu}(8)-\mathrm{Cu}(1)$	$57.97(8)$
$\mathrm{N}(8)-\mathrm{Cu}(7)-\mathrm{Cu}(6)$	$57.57(8)$	$54.96(7)$	
$\mathrm{S}(13)-\mathrm{Cu}(7)-\mathrm{Cu}(6)$	$54.33(7)$		

Figure S19. A view of the atom numbering for the cation of the cluster of $\left[\mathrm{Cu}_{8}(\mathrm{~L} 1)_{8}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (DMF) $0.5(\mathrm{MeOH}), \mathbf{1}$, as seen approximately down the b axis. Hydrogen atoms, anions, and solvate molecules have been omitted for clarity.

Description of the structure of $\left.\left[\mathrm{Cu}_{16} \mathrm{~S}\right)(\mathbf{O})_{6}(\mathrm{L2})_{12}\right]\left(\mathrm{ClO}_{4}\right)\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{4}}, \mathbf{2}$

The compound crystallizes in the trigonal crystal system, space group P31c (No. 159), $Z=2$. The overall Cu cluster has 16 Cu positions. However, the asymmetric unit has one Cu on a crystallographic 3 -fold axis (Cu1) and five Cu 's ($\mathrm{Cu} 2-\mathrm{Cu} 6$) on general positions. One unique $\mathrm{S}(\mathrm{S} 9)$ also resides on the 3 -fold axis, and is considered to be sulfide. The sulfide atom constitutes a $\mathrm{Cu}_{4} \mathrm{~S}$ core, shown in Figure S21. The asymmetric unit also contains two oxide O atoms at general positions. There are four ligands (L2) in the asymmetric unit. In each of these, there is a thiolate $S(S 1, S 3, S 5, S 7)$ that bridges to three Cu 's, with $\mathrm{Cu}-\mathrm{S}$ bond distances in the range 2.250(6) to 2.377(6) \AA. The four thiophene S 's ($\mathrm{S} 2, \mathrm{~S} 4, \mathrm{~S} 6, \mathrm{~S} 8$) are found in the periphery of the cluster and display weaker, non-bonded distances to the Cu 's in the range 2.954 to $3.007 \AA$. Selected values for the bond distances and angles are given in Table S2.

Table S2. Selected bond lengths $[\AA ̊]$ and angles $\left[^{\circ}\right]$ for $\mathbf{2}$.

$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.659(17)$	$\mathrm{Cu}(4)-\mathrm{N}(2)$	$1.897(19)$
$\mathrm{Cu}(1)-\mathrm{S}(9)$	$2.321(9)$	$\mathrm{Cu}(4)-\mathrm{O}(2)$	$2.03(5)$
$\mathrm{Cu}(1)-\mathrm{S}(7)$	$2.377(6)$	$\mathrm{Cu}(4)-\mathrm{S}(5)$	$2.250(6)$
$\mathrm{Cu}(1)-\mathrm{Cu}(5) \# 1$	$2.815(4)$	$\mathrm{Cu}(4)-\mathrm{S}(1)$	$2.271(7)$
$\mathrm{Cu}(2)-\mathrm{O}(2)$	$1.65(4)$	$\mathrm{Cu}(4)-\mathrm{S}(3)$	$2.843(6)$
$\mathrm{Cu}(2)-\mathrm{S}(9)$	$2.337(4)$	$\mathrm{Cu}(4)-\mathrm{S}(4)$	$2.954(9)$
$\mathrm{Cu}(2)-\mathrm{S}(3)$	$2.339(6)$	$\mathrm{Cu}(5)-\mathrm{N}(4)$	$1.938(19)$
$\mathrm{Cu}(2)-\mathrm{S}(5) \# 2$	$2.371(6)$	$\mathrm{Cu}(5)-\mathrm{O}(1)$	$2.234(18)$
$\mathrm{Cu}(2)-\mathrm{S}(1)$	$2.373(6)$	$\mathrm{Cu}(5)-\mathrm{S}(7) \# 1$	$2.252(7)$
$\mathrm{Cu}(2)-\mathrm{O}(2) \# 2$	$2.49(5)$	$\mathrm{Cu}(5)-\mathrm{S}(7)$	$2.295(7)$
$\mathrm{Cu}(2)-\mathrm{O}(1)$	$2.604(17)$	$\mathrm{Cu}(6)-\mathrm{N}(3)$	$2.857(7)$
$\mathrm{Cu}(2)-\mathrm{Cu}(4)$	$2.779(4)$	$\mathrm{Cu}(6)-\mathrm{S}(3)$	$1.862(15)$
$\mathrm{Cu}(3)-\mathrm{N}(1)$	$1.912(19)$	$\mathrm{Cu}(6)-\mathrm{S}(3) \# 1$	$2.271(6)$
$\mathrm{Cu}(3)-\mathrm{O}(1)$	$2.236(17)$	$\mathrm{Cu}(6)-\mathrm{O}(2)$	$2.300(6)$
$\mathrm{Cu}(3)-\mathrm{S}(7)$	$2.275(7)$	$\mathrm{Cu}(6)-\mathrm{S}(5)$	$2.31(4)$
$\mathrm{Cu}(3)-\mathrm{S}(5) \# 2$	$2.313(7)$	$\mathrm{Cu}(6)-\mathrm{Cu}(2) \# 1$	$2.831(7)$
$\mathrm{Cu}(3)-\mathrm{S}(1)$	$2.854(7)$	$2.847(4)$	
$\mathrm{Cu}(3)-\mathrm{S}(2)$	$2.954(10)$		

$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1)$	$105.4(7)$	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(2) \# 2$	$93(3)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{S}(9)$	$66.7(6)$	$\mathrm{S}(9)-\mathrm{Cu}(2)-\mathrm{O}(2) \# 2$	$54.5(10)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{S}(7) \# 1$	$99.2(6)$	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(1)$	$105.0(16)$
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{S}(7)$	$145.5(6)$	$\mathrm{S}(9)-\mathrm{Cu}(2)-\mathrm{O}(1)$	$54.1(4)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{S}(7)$	$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{O}(1)$	$157.4(4)$	
$\mathrm{S}(9)-\mathrm{Cu}(1)-\mathrm{S}(7)$	$\mathrm{S}(5) \# 2-\mathrm{Cu}(2)-\mathrm{O}(1)$	$82.6(4)$	
$\mathrm{S}(7) \# 1-\mathrm{Cu}(1)-\mathrm{S}(7)$	$102.7(2)$	$\mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{O}(1)$	$67.5(4)$
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{S}(9)$	$115.29(16)$	$\mathrm{N}(1)-\mathrm{Cu}(3)-\mathrm{O}(1)$	$143.6(7)$
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{S}(3)$	$\mathrm{N}(1)-\mathrm{Cu}(3)-\mathrm{S}(7)$	$136.4(8)$	
$\mathrm{S}(9)-\mathrm{Cu}(2)-\mathrm{S}(3)$	$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{S}(7)$	$42.7(5)$	
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{S}(5) \# 2$	$\mathrm{~N}(1)-\mathrm{Cu}(3)-\mathrm{S}(5) \# 2$	$112.7(8)$	
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{S}(1)$	$104.9(2)$	$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{S}(5) \# 2$	$92.5(5)$
$\mathrm{S}(9)-\mathrm{Cu}(2)-\mathrm{S}(1)$	$154.4(16)$	$\mathrm{S}(7)-\mathrm{Cu}(3)-\mathrm{S}(5) \# 2$	$108.9(2)$
$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{S}(1)$	$90.2(16)$	$\mathrm{N}(1)-\mathrm{Cu}(3)-\mathrm{S}(1)$	$84.4(3)$

$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{S}(1)$	64.6(5)	$\mathrm{S}(5)-\mathrm{Cu}(4)-\mathrm{S}(4)$	89.0(3)
$\mathrm{S}(7)-\mathrm{Cu}(3)-\mathrm{S}(1)$	100.2(2)	$\mathrm{S}(1)-\mathrm{Cu}(4)-\mathrm{S}(4)$	92.5(3)
$\mathrm{S}(5) \# 2-\mathrm{Cu}(3)-\mathrm{S}(1)$	101.0(2)	$\mathrm{S}(3)-\mathrm{Cu}(4)-\mathrm{S}(4)$	157.6(2)
$\mathrm{N}(1)-\mathrm{Cu}(3)-\mathrm{S}(2)$	72.2(3)	$\mathrm{N}(4)-\mathrm{Cu}(5)-\mathrm{O}(1)$	120.2(6)
$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{S}(2)$	132.6(5)	$\mathrm{N}(4)-\mathrm{Cu}(5)-\mathrm{S}(1)$	130.0(7)
$\mathrm{S}(7)-\mathrm{Cu}(3)-\mathrm{S}(2)$	90.8(3)	$\mathrm{O}(1)-\mathrm{Cu}(5)-\mathrm{S}(1)$	76.3(5)
$\mathrm{S}(5) \# 2-\mathrm{Cu}(3)-\mathrm{S}(2)$	96.6(3)	$\mathrm{N}(4)-\mathrm{Cu}(5)-\mathrm{S}(7) \# 1$	117.9(8)
$\mathrm{S}(1)-\mathrm{Cu}(3)-\mathrm{S}(2)$	154.8(2)	$\mathrm{S}(1)-\mathrm{Cu}(5)-\mathrm{S}(7) \# 1$	109.3(2)
$\mathrm{N}(2)-\mathrm{Cu}(4)-\mathrm{O}(2)$	127.7(12)	$\mathrm{N}(4)-\mathrm{Cu}(5)-\mathrm{S}(7)$	85.2(3)
$\mathrm{N}(2)-\mathrm{Cu}(4)-\mathrm{S}(5)$	129.1(7)	$\mathrm{O}(1)-\mathrm{Cu}(5)-\mathrm{S}(7)$	35.0(5)
$\mathrm{O}(2)-\mathrm{Cu}(4)-\mathrm{S}(5)$	72.7(13)	$\mathrm{S}(1)-\mathrm{Cu}(5)-\mathrm{S}(7)$	100.7(2)
$\mathrm{N}(2)-\mathrm{Cu}(4)-\mathrm{S}(1)$	116.7(7)	$\mathrm{S}(7) \# 1-\mathrm{Cu}(5)-\mathrm{S}(7)$	101.9(3)
$\mathrm{O}(2)-\mathrm{Cu}(4)-\mathrm{S}(1)$	84.3(12)	$\mathrm{N}(3)-\mathrm{Cu}(6)-\mathrm{S}(3)$	126.5(7)
$\mathrm{S}(5)-\mathrm{Cu}(4)-\mathrm{S}(1)$	110.9(2)	$\mathrm{N}(3)-\mathrm{Cu}(6)-\mathrm{S}(3) \# 1$	120.6(6)
$\mathrm{N}(2)-\mathrm{Cu}(4)-\mathrm{S}(3)$	85.7(3)	$\mathrm{S}(3)-\mathrm{Cu}(6)-\mathrm{S}(3) \# 1$	109.9(3)
$\mathrm{O}(2)-\mathrm{Cu}(4)-\mathrm{S}(3)$	42.0(12)	$\mathrm{N}(3)-\mathrm{Cu}(6)-\mathrm{O}(2)$	135.6(13)
$\mathrm{S}(5)-\mathrm{Cu}(4)-\mathrm{S}(3)$	101.8(2)	$\mathrm{S}(3)-\mathrm{Cu}(6)-\mathrm{O}(2)$	49.1(11)
$\mathrm{S}(1)-\mathrm{Cu}(4)-\mathrm{S}(3)$	101.7(2)	$\mathrm{N}(3)-\mathrm{Cu}(6)-\mathrm{S}(5)$	87.0(3)
$\mathrm{Cu}(2)-\mathrm{Cu}(4)-\mathrm{S}(3)$	49.14(13)	$\mathrm{S}(3)-\mathrm{Cu}(6)-\mathrm{S}(5)$	101.6(2)
$\mathrm{N}(2)-\mathrm{Cu}(4)-\mathrm{S}(4)$	72.4(3)	$\mathrm{S}(3) \# 1-\mathrm{Cu}(6)-\mathrm{S}(5)$	99.6(2)
$\mathrm{O}(2)-\mathrm{Cu}(4)-\mathrm{S}(4)$	158.8(13)	$\mathrm{O}(2)-\mathrm{Cu}(6)-\mathrm{S}(5)$	58.2(11)

Symmetry transformations used to generate equivalent atoms:

```
#1-y+1,x-y,z #2 -x+y+1,-x+1,z
```


Figure S20. A view of the cluster $\left[\mathrm{Cu}_{16} \mathrm{~S}(\mathrm{~L} 2)_{12} \mathrm{O}_{6}\right]^{+}, \mathbf{2}$, as seen approximately down the crystallographic 3 -fold axis showing only the atoms coordinated to Cu together with atom numbering.

Figure S21. The $\left[\mathrm{Cu}_{16} \mathrm{~S}(\mathrm{~L} 2)_{12} \mathrm{O}_{6}\right]^{+}$cluster excluding hydrogen atoms and water molecules. Copper atoms are green, sulfur are yellow, nitrogen are blue, oxygen are red and carbon are gray.

Figure S22: χ_{M} Vs T plot of $\mathbf{1}$ (blue) and $\mathbf{2}$ (Red) at an external field of 500 Oe.

