Supporting Information

Regio-selective synthesis of diversely substituted benzo[a]carbazoles through Rh(III)-catalyzed annulation of 2-arylindoles with α-diazo carbonyl compounds

Bin Li, Beibei Zhang, Xinying Zhang* and Xuesen Fan*

School of Chemistry and Chemical Engineering, School of Environment, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and

Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

E-mail: xuesen.fan@htu.cn; xinyingzhang@htu.cn

Contents

l information		

I	General experimental information	2
II	Experimental procedures and spectroscopic data	3-14
III	Mechanism studies	15-20
IV	Copies of ¹ H and ¹³ C NMR spectra of 3a-3y	21-45
V	Copies of ¹ H and ¹³ C NMR spectra of 5a-5h	46-53
VI	Copies of ¹ H and ¹³ C NMR spectra of 5i, 7 and 8	54-56
VII	References	57

I. General experimental information

All the commercial reagents were used without further purification. 2-Aryl-1*H*-indoles (1),¹ α -diazo carbonyl compounds (2),^{2,3} 2-aryl-1*H*-indole-3-carbonitriles (4),⁴ and [RhCp*Cl₂]₂⁵ were prepared according to literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), q (quadruple), dd (doublet of doublet), m (multiplet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. General synthetic procedure and spectroscopic data of 3a-3y.

2-Aryl-1*H*-indole (**1**, 0.5 mmol), α -diazo carbonyl compound (**2**, 0.75 mmol), [RhCp*Cl₂]₂ (0.025 mmol), Cu(OAc)₂ (0.05 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The mixture was then stirred at 120 °C. Upon completion, it was cooled to room temperature, quenched with saturated brine (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **3**.

Ethyl 6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3a): Eluent: petroleum ether-ethyl acetate (10:1); white solid (130 mg, 71%); mp: 168-169 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.96 (t, *J* = 7.2 Hz, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.51-7.55 (m, 6H), 7.57-7.61 (m, 2H), 8.14-8.15 (m, 1H), 8.17-8.18 (m, 1H), 9.06 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.8, 61.4, 111.3, 116.4, 119.9, 120.2, 121.1, 121.8, 123.2, 124.0, 124.9, 125.7, 126.0, 126.6, 128.0, 128.4, 128.8, 129.5, 135.4, 136.0, 139.1, 139.3, 170.5. HRMS calcd for C₂₅H₁₉NNaO₂: 388.1308 [M+Na]⁺, found: 388.1307.

Ethyl 6-phenyl-3-(trifluoromethyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (3b): Eluent: petroleum etherethyl acetate (10:1); white solid (149 mg, 69%); mp: 200-201 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.97 (t, *J* = 7.2 Hz, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 1H), 7.00-7.02 (m, 1H), 7.37-7.39 (m, 1H), 7.50-7.57 (m, 6H), 7.74 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 1H), 8.26 (d, *J* = 9.0 Hz, 1H), 8.47 (s, 1H), 9.25 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.4, 111.2, 118.3, 120.5, 121.3, 121.5 (q, ³*J*_{C-F} = 2.55 Hz), 121.7, 122.2, 123.8, 123.9, 124.2 (q, ³*J*_{C-F} = 4.5 Hz), 124.4 (q, ¹*J*_{C-F} = 269.55 Hz), 125.8, 127.8, 128.16 (q, ²*J*_{C-F} = 33.3 Hz), 128.19, 128.5, 129.2, 135.0, 136.9, 138.7, 139.1, 169.2. HRMS calcd for C₂₆H₁₈F₃NNaO₂: 456.1182 [M+Na]⁺, found: 456.1180.

Ethyl 3-fluoro-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3c): Eluent: petroleum ether-ethyl acetate (10:1); white solid (130 mg, 68%); mp: 151-152 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.94 (t, *J* = 7.2 Hz, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.97 (dd, *J*₁ = 7.8 Hz, *J*₂ = 0.6 Hz, 1H), 7.28-7.34 (m, 2H), 7.49-7.52 (m, 6H), 7.81 (dd, *J*₁ = 10.8 Hz, *J*₂ = 1.8 Hz, 1H), 8.11 (dd, *J*₁ = 9.0 Hz, *J*₂ = 5.4 Hz, 1H), 9.16 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.2, 110.6 (d, ²*J*_{C-F} = 22.05 Hz), 111.0, 115.6 (d, ²*J*_{C-F} = 24.9 Hz), 116.3, 117.0, 120.3, 121.8, 122.8 (d, ⁴*J*_{C-F} = 4.8 Hz), 123.0 (d, ³*J*_{C-F} = 9.3 Hz), 124.0, 125.1, 128.0, 128.4, 129.2, 130.2 (d, ³*J*_{C-F} = 9.15 Hz), 135.8, 136.9, 138.9, 139.0, 161.2 (d, ¹*J*_{C-F} = 244.35 Hz), 169.5. HRMS calcd for C₂₅H₁₉FNO₂: 384.1394 [M+H]⁺, found: 384.1406.

Ethyl 3-chloro-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3d): Eluent: petroleum ether-ethyl acetate (10:1); white solid (142 mg, 71%); mp: 134-135 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.94 (t, *J* = 7.2 Hz, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.97-6.99 (m, 1H), 7.32-7.35 (m, 1H), 7.45 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 1H), 7.49-7.52 (m, 6H), 8.03 (d, *J* = 9.0 Hz, 1H), 8.12 (d, *J* = 1.8 Hz, 1H), 9.16 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.3, 111.1, 116.9, 118.2, 120.3, 121.9, 122.2, 122.6, 123.9, 125.3, 125.4, 126.4, 128.1, 128.4, 129.2, 129.7, 132.5, 135.5, 136.7, 138.9, 139.0, 169.5. HRMS calcd for C₂₅H₁₉CINO₂: 400.1099 [M+H]⁺, found: 400.1108.

Ethyl 3-bromo-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3e): Eluent: petroleum ether-ethyl acetate (10:1); white solid (164 mg, 74%); mp: 144-145 °C; ¹H NMR (600 MHz, CDCl₃) δ: 0.94 (t, *J* = 7.2 Hz, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.95-6.98 (m, 1H), 7.31 (td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz, 1H), 7.45-7.51 (m, 7H), 7.89 (d, *J* = 9.0 Hz, 1H), 8.26 (d, *J* = 1.8 Hz, 1H), 9.26 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 13.7, 61.4, 111.2, 116.9, 118.5, 120.3, 120.7, 121.9, 122.3, 122.4, 123.9, 125.3, 128.1, 128.4, 128.5, 128.

128.9, 129.2, 130.0, 135.5, 136.6, 138.9, 139.0, 169.6. HRMS calcd for C₂₅H₁₈BrNNaO₂: 466.0413 [M+Na]⁺, found: 466.0393.

Ethyl 3-methyl-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3f): Eluent: petroleum ether-ethyl acetate (10:1); white solid (144 mg, 76%); mp: 206-207 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.94 (t, *J* = 7.2 Hz, 3H), 2.51 (s, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.97 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.31-7.33 (m, 1H), 7.40 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.50-7.55 (m, 6H), 7.88 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 9.03 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 22.0, 61.0, 110.9, 116.0, 118.1, 120.0, 120.5, 121.8, 123.1, 124.3, 124.8, 125.4, 127.9, 128.3, 129.2, 129.4, 135.2, 135.8, 136.5, 138.8, 139.3, 170.0. HRMS calcd for C₂₆H₂₁NNaO₂: 402.1465 [M+Na]⁺, found: 402.1455.

Ethyl 3-methoxy-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3g): Eluent: petroleum ether-ethyl acetate (10:1); white solid (144 mg, 73%); mp: 206-207 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.94 (t, *J* = 7.2 Hz, 3H), 3.82 (s, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.94 (td, *J*₁ = 7.2 Hz, *J*₂ = 0.8 Hz, 1H), 7.08 (dd, *J*₁ = 9.2 Hz, *J*₂ = 2.4 Hz, 1H), 7.24-7.28 (m, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.48-7.53 (m, 6H), 7.95 (d, *J* = 9.2 Hz, 1H), 9.16 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 55.3, 61.1, 105.6, 111.0, 115.1, 115.2, 117.4, 119.9, 121.6, 122.2, 122.4, 124.2, 124.6, 127.9, 128.3, 129.3, 130.5, 136.30, 136.35, 138.9, 139.5, 158.3, 170.4. HRMS calcd for C₂₆H₂₂NO₃: 396.1594 [M+H]⁺, found: 396.1579.

Ethyl 1-chloro-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3h): Eluent: petroleum ether-ethyl acetate (10:1); white solid (140 mg, 70%); mp: 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.95 (t, *J* = 7.2 Hz, 3H), 4.10 (q, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 7.35-7.39 (m, 1H), 7.43-7.47 (m, 1H), 7.53 (s, 5H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 8.03 (dd, *J*₁ = 8.8 Hz, *J*₂ = 0.8 Hz, 1H), 10.50 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.2, 111.3, 118.1, 118.2, 120.1, 121.9, 122.6, 124.2, 125.41, 125.43, 126.0, 127.4, 128.2, 128.5, 128.9, 129.4, 131.0, 134.1, 135.9, 138.3, 138.6, 169.5. HRMS calcd for C₂₅H₁₉ClNO₂: 400.1099 [M+H]⁺, found: 400.1090.

Ethyl 1-methyl-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3i): Eluent: petroleum ether-ethyl acetate (10:1); white solid (138 mg, 73%); mp: 185-186 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.96 (t, *J* = 7.2 Hz, 3H), 3.09 (s, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.97 (td, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.30-7.34 (m, 2H), 7.37-7.41 (m, 1H), 7.49-7.54 (m, 6H), 7.92 (d, *J* = 7.6 Hz, 1H), 9.34 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.8, 24.0, 61.1, 111.0, 117.3, 120.0, 120.5, 121.8, 123.0, 124.4, 124.79, 124.83, 126.0, 128.0, 128.2, 128.4, 129.6, 129.9, 132.0, 134.6, 136.1, 138.6, 139.0, 170.2. HRMS calcd for C₂₆H₂₁NNaO₂: 402.1465 [M+Na]⁺, found: 402.1462.

Ethyl 2-chloro-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3j): Eluent: petroleum ether-ethyl acetate (10:1); white solid (140 mg, 70%); mp: 215-216 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.95 (t, *J* = 7.2 Hz, 3H), 4.14 (q, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.93 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.20-7.26 (m, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.36 (dd, *J*₁ = 9.2 Hz, *J*₂ = 2.0 Hz, 1H), 7.48 (s, 5H), 8.03 (d, *J* = 9.2 Hz, 1H), 8.10 (d, *J* = 2.0 Hz, 1H), 9.47 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.5, 111.2, 117.3, 120.1, 120.3, 120.9, 121.9, 122.9, 123.8, 125.3, 127.0, 127.1, 127.8, 128.1, 128.4, 129.3, 131.5, 134.9, 135.8, 138.9, 139.1, 170.2. HRMS calcd for C₂₅H₁₈ClNNaO₂: 422.0918 [M+Na]⁺, found: 422.0904.

Ethyl 2-bromo-6-phenyl-11*H***-benzo**[*a*]**carbazole-5-carboxylate** (**3k**)**:** Eluent: petroleum ether-ethyl acetate (10:1); white solid (162 mg, 73%); mp: 240-241 °C; ¹H NMR (400 MHz, CDCl₃) δ: 0.95 (t, *J* = 7.2 Hz, 3H), 4.14 (q, *J* = 7.2 Hz, 2H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.93 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.25 (td, *J*₁ = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.48 (s, 5H), 7.52 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 7.98 (d, *J* = 9.2 Hz, 1H), 8.29 (d, *J* = 2.0 Hz, 1H), 9.37 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 13.7, 61.5, 111.2, 117.4, 119.7, 120.2, 121.3, 122.0, 123.1, 123.5, 123.8, 125.3, 127.3, 128.0, 128.1, 128.4, 129.3, 129.6, 134.7, 135.9, 138.9, 139.1, 170.0. HRMS calcd for C₂₅H₁₈BrNNaO₂: 466.0413 [M+Na]⁺, found: 466.0421.

Ethyl 2-methyl-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3l): Eluent: petroleum ether-ethyl acetate (10:1); white solid (137 mg, 72%); mp: 239-240 °C; ¹H NMR (600 MHz, CDCl₃) δ : 0.95 (t, *J* = 7.2 Hz, 3H),

2.57 (s, 3H), 4.11 (q, J = 7.2 Hz, 2H), 6.89 (d, J = 7.8 Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.49-7.53 (m, 6H), 7.94 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 9.05 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 21.8, 61.1, 111.0, 116.6, 119.9, 120.1, 120.3, 121.8, 123.3, 124.2, 124.8, 126.1, 127.1, 127.8, 128.3, 128.7, 129.5, 134.4, 135.4, 135.7, 138.9, 139.3, 170.1. HRMS calcd for C₂₆H₂₂NO₂: 380.1645 [M+H]⁺, found: 380.1657.

Ethyl 8-fluoro-6-phenyl-11*H***-benzo**[*a*]**carbazole-5-carboxylate** (**3m**)**:** Eluent: petroleum ether-ethyl acetate (10:1); white solid (128 mg, 67%); mp: 207-208 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.96 (t, *J* = 7.2 Hz, 3H), 4.13 (q, *J* = 7.2 Hz, 2H), 6.48 (dd, *J*₁ = 10.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.01 (td, *J*₁ = 9.2 Hz, *J*₂ = 2.8 Hz, 1H), 7.32 (dd, *J*₁ = 8.8 Hz, *J*₂ = 4.4 Hz, 1H), 7.40-7.52 (m, 7H), 8.03-8.08 (m, 2H), 9.31 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.3, 107.3 (d, ²*J*_{C-F} = 26.65 Hz), 111.6 (d, ³*J*_{C-F} = 8.7 Hz), 112.9 (d, ²*J*_{C-F} = 27 Hz), 116.2 (d, ⁴*J*_{C-F} = 4.35 Hz), 120.1, 120.8, 123.4, 124.5 (d, ³*J*_{C-F} = 9.75 Hz), 125.8, 126.2, 126.8, 128.2, 128.5, 129.0, 129.2, 135.2, 135.3, 137.0, 138.6, 157.4 (d, ¹*J*_{C-F} = 233.1 Hz), 170.1. HRMS calcd for C₂₅H₁₉FNO₂: 384.1394 [M+H]⁺, found: 384.1402.

Ethyl 8-chloro-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3n): Eluent: petroleum ether-ethyl acetate (10:1); white solid (138 mg, 69%); mp: 163-164 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.96 (t, *J* = 7.2 Hz, 3H), 4.13 (q, *J* = 7.2 Hz, 2H), 6.78 (d, *J* = 2.0 Hz, 1H), 7.23 (dd, *J*₁ = 8.8 Hz, *J*₁ = 1.2 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.48-7.53 (m, 7H), 8.05-8.09 (m, 2H), 9.26 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.3, 112.0, 115.8, 120.0, 120.7, 121.4, 123.8, 125.1, 125.2, 125.5, 125.9, 126.2, 126.9, 128.3, 128.5, 129.0, 129.2, 135.1, 136.4, 137.2, 138.5, 169.9. HRMS calcd for C₂₅H₁₉ClNO₂: 400.1099 [M+H]⁺, found: 400.1111.

Ethyl 8-methyl-6-phenyl-11*H*-benzo[*a*]carbazole-5-carboxylate (3o): Eluent: petroleum ether-ethyl acetate (10:1); white solid (133 mg, 70%); mp: 117-118 °C; ¹H NMR (400 MHz, CDCl₃) δ: 0.95 (t, *J* = 7.2 Hz, 3H), 2.24 (s, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 6.63 (s, 1H), 7.11-7.13 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.44-7.54 (m,

7H), 8.07 (d, J = 7.6 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 9.13 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.8, 21.6, 61.4, 110.7, 116.3, 120.1, 120.8, 121.7, 123.1, 124.3, 125.7, 126.2, 126.4, 126.5, 127.9, 128.3, 128.8, 129.2, 129.4, 135.4, 136.0, 137.2, 139.3, 170.1. HRMS calcd for C₂₆H₂₂NO₂: 380.1645 [M+H]⁺, found: 380.1658.

Ethyl 8-phenyl-13*H*-naphtho[1,2-*a*]carbazole-7-carboxylate (3p): Eluent: petroleum ether-ethyl acetate (10:1); white solid (137 mg, 66%); mp: 261-262 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 0.91 (t, *J* = 7.2 Hz, 3H), 4.09 (q, *J* = 7.2 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 7.40-7.52 (m, 1H), 7.60-7.61 (m, 2H), 7.60-7.61 (m, 3H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.92-7.97 (m, 2H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 9.32 (d, *J* = 8.4 Hz, 1H), 12.28 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 61.2, 111.2, 116.2, 120.1, 120.4, 122.2, 123.6, 124.3, 124.4, 125.1, 125.6, 126.2, 127.4, 127.5, 128.0, 128.1, 128.4, 129.3, 129.4, 129.5, 132.3, 134.8, 136.7, 138.8, 140.2, 170.1. HRMS calcd for C₂₉H₂₁NNaO₂: 438.1465 [M+Na]⁺, found: 438.1476.

Ethyl 5-phenyl-10*H*-thieno[3,2-*a*]carbazole-4-carboxylate (3q): Eluent: petroleum ether-ethyl acetate (10:1); white solid (141 mg, 76%); mp: 182-183 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (t, *J* = 7.2 Hz, 3H), 4.09 (q, *J* = 7.2 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.94 (td, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.29 (td, *J*₁ = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.45-7.51 (m, 6H), 7.87 (d, *J* = 5.2 Hz, 1H), 8.74 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.7, 60.9, 111.0, 117.9, 119.7, 120.2, 122.2, 124.2, 125.4, 125.5, 125.6, 127.6, 128.3, 129.3, 135.0, 135.6, 137.5, 139.5, 139.9, 169.3. HRMS calcd for C₂₃H₁₇NNaO₂S: 394.0872 [M+Na]⁺, found: 394.0873.

Ethyl 6-(4-(trifluoromethyl)phenyl)-11*H***-benzo**[*a*]**carbazole-5-carboxylate (3r):** Eluent: petroleum etherethyl acetate (10:1); white solid (149 mg, 69%); mp: 208-209 °C; ¹H NMR (400 MHz, CDCl₃) δ: 0.95 (t, *J* = 7.2 Hz, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.99-7.03 (m, 1H), 7.33-7.37 (m, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.56 (dd, $J_1 = 6.4$ Hz, $J_2 = 3.2$ Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 8.14 (dd, $J_1 = 6.4$ Hz, $J_2 = 3.2$ Hz, 2H), 9.20 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.5, 61.3, 111.2, 115.8, 120.2, 120.3, 120.8, 121.5, 123.5, 123.7, 124.2 (q, ${}^{1}J_{C-F} = 270.45$ Hz), 125.2, 125.3 (q, ${}^{3}J_{C-F} = 2.85$ Hz), 126.23, 126.25, 126.4, 126.8, 128.8, 130.0, 130.2 (q, ${}^{2}J_{C-F} = 31.5$ Hz), 133.6, 135.8, 138.9, 169.5. HRMS calcd for C₂₆H₁₉F₃NO₂: 434.1362 [M+H]⁺, found: 434.1353.

Ethyl 6-(4-fluorophenyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (3s): Eluent: petroleum ether-ethyl acetate (10:1); white solid (130 mg, 68%); mp: 182-183 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.02 (t, *J* = 7.2 Hz, 3H), 4.17 (q, *J* = 7.2 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.98 (td, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.18-7.22 (m, 2H), 7.30 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.43-7.52 (m, 5H), 8.06-8.10 (m, 2H), 9.30 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.9, 61.3, 111.2, 115.4 (d, ²*J*_{C-F} = 25.15 Hz), 116.5, 120.10, 120.14, 120.8, 121.6, 123.7, 123.9, 125.1, 125.9, 126.2, 126.6, 128.8, 131.2 (d, ³*J*_{C-F} = 8.4 Hz), 134.0, 135.1 (d, ⁴*J*_{C-F} = 3.3 Hz), 135.7, 138.9, 162.7 (d, ¹*J*_{C-F} = 245.85 Hz), 170.0. HRMS calcd for C₂₅H₁₈FNNaO₂: 406.1214 [M+Na]⁺, found: 406.1221.

Ethyl 6-(4-chlorophenyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (3t): Eluent: petroleum ether-ethyl acetate (10:1); white solid (132 mg, 66%); mp: 203-204 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.03 (t, *J* = 7.2 Hz, 3H), 4.16 (q, *J* = 7.2 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.99-7.02 (m, 1H), 7.30-7.34 (m, 1H), 7.44-7.54 (m, 7H), 8.10 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 2H), 9.27 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.9, 61.3, 111.2, 116.2, 120.16, 120.18, 120.8, 121.6, 123.6, 123.9, 125.1, 126.0, 126.2, 126.7, 128.6, 128.8, 130.9, 133.8, 134.0, 135.8, 137.7, 138.9, 169.8. HRMS calcd for C₂₅H₁₉ClNO₂: 400.1099 [M+H]⁺, found: 400.1079.

Ethyl 6-(4-bromophenyl)-11*H***-benzo[***a***]carbazole-5-carboxylate (3u): Eluent: petroleum ether-ethyl acetate (10:1); white solid (160 mg, 72%); mp: 223-224 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.03 (t,** *J* **= 7.2 Hz, 3H), 4.16 (q,** *J* **= 7.2 Hz, 2H), 6.92 (d,** *J* **= 8.0 Hz, 1H), 7.01 (td,** *J***₁ = 7.6 Hz,** *J***₂ = 0.8 Hz, 1H), 7.33 (td,** *J***₁ = 8.0 Hz,**

 $J_2 = 1.2$ Hz, 1H), 7.40 (dd, $J_1 = 6.8$ Hz, $J_2 = 2.0$ Hz, 2H), 7.48-7.54 (m, 3H), 7.65 (dd, $J_1 = 6.8$ Hz, $J_2 = 2.0$ Hz, 2H), 8.09-8.12 (m, 2H), 9.25 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.8, 61.3, 111.2, 116.1, 120.16, 120.21, 120.8, 121.7, 122.2, 123.5, 123.8, 125.1, 126.0, 126.3, 126.7, 128.8, 131.2, 131.6, 133.8, 135.8, 138.2, 138.9, 169.8. HRMS calcd for C₂₅H₁₈BrNNaO₂: 466.0413 [M+Na]⁺, found: 466.0415.

Ethyl 6-(*p*-tolyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (3v): Eluent: petroleum ether-ethyl acetate (10:1); white solid (138 mg, 73%); mp: 223-224 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.00 (t, *J* = 7.2 Hz, 3H), 2.49 (s, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 6.96-6.99 (m, 2H), 7.30-7.34 (m, 3H), 7.41-7.43 (d, *J* = 7.6 Hz, 2H), 7.48-7.55 (m, 3H), 8.08-8.13 (m, 2H), 9.18 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.8, 21.5, 61.1, 111.0, 116.7, 119.97, 120.02, 120.7, 122.0, 123.7, 124.2, 124.9, 125.7, 126.2, 126.5, 128.9, 129.0, 129.2, 135.4, 135.7, 136.0, 137.5, 138.9, 170.1. HRMS calcd for C₂₆H₂₁NNaO₂: 402.1465 [M+Na]⁺, found: 402.1446.

Ethyl 6-(4-methoxyphenyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (3w): Eluent: petroleum ether-ethyl acetate (10:1); white solid (148 mg, 75%); mp: 216-217 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.04 (t, *J* = 7.2 Hz, 3H), 3.91 (s, 3H), 4.17 (q, *J* = 7.2 Hz, 2H), 6.99-7.00 (m, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 7.30-7.34 (m, 1H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.48-7.55 (m, 3H), 8.07-8.13 (m, 2H), 9.19 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 13.9, 55.4, 61.1, 111.0, 113.8, 116.9, 120.0, 120.7, 121.9, 123.9, 124.2, 124.9, 125.7, 126.2, 126.5, 128.9, 130.6, 131.4, 134.9, 135.6, 138.9, 159.4, 170.2. HRMS calcd for C₂₆H₂₂NO₃: 396.1594 [M+H]⁺, found: 396.1596

Ethyl 6-(thiophen-2-yl)-11H-benzo[a]carbazole-5-carboxylate (3x): Eluent: petroleum ether-ethyl acetate (10:1); white solid (130 mg, 70%); mp: 198-199 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.12 (t, *J* = 7.2 Hz, 3H), 4.25 (q, *J* = 7.2 Hz, 2H), 7.01-7.06 (m, 2H), 7.20-7.23(m, 2H), 7.31-7.35 (m, 1H), 7.39-7.53 (m, 3H), 7.53-5.54 (m, 1H), 7.99-8.01 (m, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 9.22 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 14.0, 61.5, 111.1, 117.4, 120.2, 120.4, 120.7, 121.8, 123.8, 125.1, 125.7, 126.2, 126.45, 125.49, 127.1, 127.2, 128.0, 128.5, 135.5, 138.9, 139.0, 169.9. HRMS calcd for C₂₃H₁₈NO₂S: 372.1053 [M+H]⁺, found: 372.1060.

1-(6-Methyl-11*H***-benzo[***a***]carbazol-5-yl)ethanone (3y): Eluent: petroleum ether-ethyl acetate (10:1); white solid (29 mg, 21%); mp: 165-166 °C; ¹H NMR (400 MHz, CDCl₃) \delta: 2.71 (s, 3H), 2.88 (s, 3H), 7.31 (t, J = 7.2 Hz, 1H), 7.42-7.53 (m, 3H), 7.59 (d, J = 8.0 Hz, 1H), 7.71-7.73 (m, 1H), 8.07-8.09 (m, 1H), 8.21 (d, J = 8.0 Hz, 1H), 9.01 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) \delta: 18.2, 34.0, 111.2, 117.2, 119.5, 120.3, 120.8, 122.2, 124.6, 124.8, 125.0, 125.1, 126.1, 127.5, 128.0, 131.7, 135.0, 138.8, 209.4. HRMS calcd for C₁₉H₁₆NO: 274.1226 [M+H]⁺, found: 274.1230.**

2. Optimization studies on the formation of 5a

	CN N H 4a	$ \begin{array}{c} & & O \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	H_2N CO_2Et N H_5a		
Entry	Catalyst	Additive (equiv)	Solvent	Yield $(\%)^b$	
1	[RhCp*Cl ₂] ₂	$Cu(OAc)_2(0.1)$	CH ₃ CN	32	
2	[RhCp*Cl ₂] ₂	AgSbF ₆ (0.2)	CH ₃ CN	13	
3	[RhCp*Cl ₂] ₂	$Cu(OAc)_2 (0.1) + AgSbF_6 (0.2)$	CH ₃ CN	47	
4	[RhCp*Cl ₂] ₂	AgOAc (0.2) + AgSbF ₆ (0.2)	CH ₃ CN	68	
5	[RhCp*Cl ₂] ₂	$CsOAc (0.2) + AgSbF_6 (0.2)$	CH ₃ CN	34	
6	[RhCp*Cl ₂] ₂	AgOAc (0.1) + AgSbF ₆ (0.1)	CH ₃ CN	45	
7	[RhCp*Cl ₂] ₂	AgOAc (0.2) + AgSbF ₆ (0.2)	DCE	12	
8	[RhCp*Cl ₂] ₂	AgOAc (0.2) + AgSbF ₆ (0.2)	THF	28	
9	-	AgOAc (0.2) + AgSbF ₆ (0.2)	CH ₃ CN	-	
10	[RhCp*Cl ₂] ₂	-	CH ₃ CN	19	
11	[RhCp*Cl ₂] ₂	AgOAc (0.2)	CH ₃ CN	44	
4 Conditional of f_{2} 0.75 mm al of f_{2} 0.025 mm al of actaluate to 1.1 d to f_{2} 120 ∞ 18					

Table 1. Optimization studies on the formation of $5a^{a}$

^{*a*} Conditions: 0.5 mmol of **4a**, 0.75 mmol of **2a**, 0.025 mmol of catalyst, sealed tube, 120 $^{\circ}$ C, 18 h. ^{*b*} Isolated yield.

3. General synthetic procedure and spectroscopic data of 5a-5h.

2-Aryl-1*H*-indole-3-carbonitrile (**4**, 0.5 mmol), α -diazo carbonyl compound (**2**, 0.75 mmol), [RhCp*Cl₂]₂ (0.025 mmol), AgOAc (0.1 mmol), AgSbF₆ (0.1 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The reaction mixture was then stirred at 120 °C. Upon completion, it was cooled to room temperature, quenched with saturated brine (10 mL), and extracted with EtOAc (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **5**.

Ethyl 6-amino-11*H*-benzo[*a*]carbazole-5-carboxylate (5a): Eluent: petroleum ether-ethyl actate (10:1); white solid (103 mg, 68%); mp: 177-178 °C; ¹H NMR (600 MHz, CDCl₃) δ : 1.50 (t, *J* = 7.2 Hz, 3H), 4.53 (q, *J* = 7.2 Hz, 2H), 6.68 (br s, 2H), 7.27-7.32 (m, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 8.68 (d, *J* = 9.0 Hz, 1H), 9.07 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 14.6, 60.5, 97.8, 108.0, 111.5, 116.4, 120.1, 120.6, 120.9, 122.1, 123.4, 124.4, 126.4, 127.1, 132.6, 138.2, 138.6, 148.8, 170.2. HRMS calcd for C₁₉H₁₆N₂NaO₂: 327.1104 [M+Na]⁺, found: 327.1105.

Ethyl 6-amino-3-(trifluoromethyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (5b): Eluent: petroleum etherethyl acetate (10:1); white solid (128 mg, 69%); mp: 197-198 °C; ¹H NMR (600 MHz, CDCl₃) δ : 1.53 (t, *J* = 7.2 Hz, 3H), 4.52 (q, *J* = 7.2 Hz, 2H), 6.94 (br s, 2H), 7.36-7.39 (m, 1H), 7.47-7.49 (m, 2H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 8.96 (br s, 1H), 9.10 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 14.3, 60.7, 97.6, 109.3, 111.7, 117.7, 117.8 (q, ³*J*_{C-F} = 3.3 Hz), 120.4, 121.1, 121.4, 123.1, 124.2 (q, ³*J*_{C-F} = 4.35 Hz), 124.8 (q, ¹*J*_{C-F} = 270.3 Hz), 125.1, 128.5 (q, ²*J*_{C-F} = 31.65 Hz), 131.9, 137.7, 138.2, 150.0, 169.7. HRMS calcd for C₂₀H₁₅F₃N₂NaO₂: 395.0978 [M+Na]⁺, found: 395.0985. Ethyl 6-amino-3-fluoro-11*H*-benzo[*a*]carbazole-5-carboxylate (5c): Eluent: petroleum ether-ethyl acetate (10:1); white solid (103 mg, 64%); mp: 180-181 °C; ¹H NMR (600 MHz, CDCl₃) δ : 1.52 (t, *J* = 7.2 Hz, 3H), 4.53 (q, *J* = 7.2 Hz, 2H), 6.93 (br s, 2H), 7.06-7.09 (m, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.87 (dd, *J*₁ = 8.4 Hz, *J*₂ = 6.0 Hz, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 8.47 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.4 Hz, 1H), 8.91 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 14.6, 60.6, 97.0 (d, ³*J*_{C-F} = 4.35 Hz), 107.5, 111.1 (d, ²*J*_{C-F} = 24 Hz), 111.5, 111.6 (d, ²*J*_{C-F} = 25.2 Hz), 113.2, 120.0, 121.2, 122.4 (d, ³*J*_{C-F} = 9.9 Hz), 123.4, 124.5, 134.5, 138.0, 138.6, 150.2, 162.1 (d, ¹*J*_{C-F} = 241.8 Hz), 169.9. HRMS calcd for C₁₉H₁₆FN₂O₂: 323.1190 [M+H]⁺, found: 323.1210.

Ethyl 6-amino-3-chloro-11*H*-benzo[*a*]carbazole-5-carboxylate (5d): Eluent: petroleum ether-ethyl acetate (10:1); white solid (106 mg, 63%); mp: 218-219 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 1.43 (t, *J* = 7.2 Hz, 3H), 4.46 (q, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.397-7.402 (m, 3H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 8.38 (d, *J* = 8.4 Hz, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 8.66 (d, *J* = 1.8 Hz, 1H), 12.56 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.8, 60.6, 95.2, 107.5, 112.1, 115.3, 120.8, 121.4, 122.1, 122.9, 124.4, 124.9, 125.0, 132.3, 133.8, 138.97, 139.00, 150.0, 169.3. HRMS calcd for C₁₉H₁₆ClN₂O₂: 339.0895 [M+H]⁺, found: 339.0901.

Ethyl 6-amino-3-bromo-11*H*-benzo[*a*]carbazole-5-carboxylate (5e): Eluent: petroleum ether-ethyl acetate (10:1); white solid (126 mg, 66%); mp: 209-210 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 1.43 (t, *J* = 7.2 Hz, 3H), 4.45 (q, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.39 (s, 2H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.51 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 8.82 (d, *J* = 1.2 Hz, 1H), 12.56 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.8, 60.6, 95.1, 107.6, 112.1, 115.5, 120.8, 121.2, 121.4, 122.9, 124.5, 124.7, 124.9, 128.1, 134.1, 138.98, 139.00, 149.8, 169.3. HRMS calcd for C₁₉H₁₆BrN₂O₂: 383.0390 [M+H]⁺, found: 383.0392.

Ethyl 6-amino-8-(trifluoromethyl)-11*H*-benzo[*a*]carbazole-5-carboxylate (5f): Eluent: petroleum etherethyl acetate (10:1); white solid (139 mg, 75%); mp: 218-219 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 1.42 (t, *J* = 7.2 Hz, 3H), 4.46 (q, *J* = 7.2 Hz, 2H), 7.26 (s, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 8.53 (d, *J* = 9.0 Hz, 1H), 8.83 (s, 1H), 12.88 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.8, 60.5, 97.7, 107.7, 112.5, 116.6, 119.1 (q, ³*J*_{C-F} = 3.3 Hz), 121.2, 121.3 (q, ²*J*_{C-F} = 31.8 Hz), 122.4, 122.6, 122.7, 126.00 (q, ¹*J*_{C-F} = 269.1 Hz), 126.01, 127.8, 132.9, 140.5, 140.8, 148.1, 169.7. HRMS calcd for C₂₀H₁₆F₃N₂O₂: 373.1158 [M+H]⁺, found: 373.1160.

Ethyl 6-amino-8-fluoro-11*H*-benzo[*a*]carbazole-5-carboxylate (5g): Eluent: petroleum ether- ethyl acetate (10:1); white solid (105 mg, 65%); mp: 202-203 °C; ¹H NMR (600 MHz, CDCl₃) δ : 1.51 (t, *J* = 7.2 Hz, 3H), 4.54 (q, *J* = 7.2 Hz, 2H), 6.62 (br s, 2H), 7.17-7.20 (m, 1H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.49-7.53 (m, 2H), 7.69 (d, *J* = 9.6 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 8.69 (d, *J* = 9.0 Hz, 1H), 8.91 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.8, 60.4, 96.4, 107.0 (d, ²*J*_{C-F} = 25.05 Hz), 107.4 (d, ⁴*J*_{C-F} = 3.3 Hz), 112.3 (d, ²*J*_{C-F} = 26.25 Hz), 112.7 (d, ³*J*_{C-F} = 9.75 Hz), 116.8, 122.2, 122.4, 123.3 (d, ³*J*_{C-F} = 10.95 Hz), 126.0, 127.6, 132.8, 135.5, 140.6, 148.5, 157.8 (d, ¹*J*_{C-F} = 231.9 Hz), 169.8. HRMS calcd for C₁₉H₁₅FN₂NaO₂: 345.1010 [M+Na]⁺, found: 345.1030.

Ethyl 5-amino-10*H*-thieno[2,3-*a*]carbazole-4-carboxylate (5h): Eluent: petroleum ether-ethyl acetate (10:1); white solid (113 mg, 73%); mp: 191-192 °C; ¹H NMR (600 MHz, CDCl₃) δ : 1.51 (t, *J* = 7.2 Hz, 3H), 4.49 (q, *J* = 7.2 Hz, 2H), 6.89 (br s, 2H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 5.4 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 5.4 Hz, 1H), 8.51 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 14.6, 60.3, 98.2, 107.9, 111.2, 114.3, 120.1, 121.0, 123.7, 124.4, 124.8, 127.8, 137.1, 138.4, 139.4, 149.1, 169.5. HRMS calcd for C₁₇H₁₅N₂O₂S: 311.0849 [M+H]⁺, found: 311.0864.

4. Synthesis of 2-bromo-11*H*-benzo[*a*]carbazole-5-carboxylic acid (8)

4.1 Synthetic procedure and spectroscopic data of 5i

2-(3-Bromophenyl)-1*H*-indole-3-carbonitrile (**4i**, 0.5 mmol), ethyl 2-diazo-3-*oxo*-3-phenylpropanoate (**2a**, 0.75 mmol), [RhCp*Cl₂]₂ (0.025 mmol), AgOAc (0.1 mmol), AgSbF₆ (0.1 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The reaction mixture was then stirred at 120 °C. Upon completion, it was cooled to room temperature, quenched with saturated brine (10 mL), and extracted with EtOAc (10 mL \times 3). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **5i**.

Ethyl 6-amino-2-bromo-11*H*-benzo[*a*]carbazole-5-carboxylate (5i): Eluent: petroleum ether-ethyl acetate (10:1); white solid (130 mg, 68%); mp: 167-168 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.40 (t, *J* = 7.2 Hz, 3H), 4.43 (q, *J* = 7.2 Hz, 2H), 7.28-7.33 (m, 3H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.56 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 8.41 (d, *J* = 8.0 Hz, 1H), 8.49 (d, *J* = 9.2 Hz, 1H), 8.61 (d, *J* = 2.4 Hz, 1H), 12.54 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 14.3, 60.0, 95.6, 107.6, 111.6, 114.1, 117.8, 120.3, 121.0, 122.4, 124.0, 124.5, 127.8, 129.2, 130.9, 137.6, 138.5, 148.6, 169.0. HRMS calcd for C₁₉H₁₆BrN₂O₂: 383.0390 [M+H]⁺, found: 383.0395.

4.2 Synthetic procedure and spectroscopic data of 7

To a flask containing ethyl 6-amino-2-bromo-11*H*-benzo[*a*]carbazole-5-carboxylate (**5i**, 77 mg, 0.2 mmol), DMSO (0.2 mL) and diluted HCl (2M, 2 mL) was added an aqueous solution of NaNO₂ (30% w/w in water, 0.07 mL) dropwisely at 0 $\$ with stirring. The resuling mixture was stirred at 0 $\$ for 0.5 h. Then, H₃PO₂ (50% w/w in water, 0.06 mL) was added in a drop-wise manner. It was then stirred at room temperature for 3 h. Upon completion as monitored by TLC, it was quenched with aqueous solution of NaHCO₃, and extracted with ethyl acetate (5 mL × 3). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (10:1) as the eluent to give **7**.

Ethyl 2-bromo-11*H*-benzo[*a*]carbazole-5-carboxylate (7): Eluent: petroleum ether-ethyl acetate (10:1); yellow solid (39 mg, 53%); mp: 258-259 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 1.43 (t, *J* = 7.2 Hz, 3H), 4.42 (q, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.40 (d, *J* = 9.6 Hz, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 8.44 (s, 1H), 8.98 (s, 1H), 9.01 (d, *J* = 9.6 Hz, 1H), 12.61 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.8, 61.0, 112.3, 117.2, 117.6, 119.5, 120.6, 120.8, 123.0, 123.6, 125.1, 126.17, 126.22, 128.8, 129.2, 129.8, 137.7, 139.8, 167.3. HRMS calcd for C₁₉H₁₅BrNO₂: 368.0281 [M+H]⁺, found: 368.0285.

4.3 Synthetic procedure and spectroscopic data of 8

To a flask containing ethyl 2-bromo-11*H*-benzo[*a*]carbazole-5-carboxylate (7, 73 mg, 0.2 mmol) were added methanol (10 mL) and an aqueous solution of NaOH (2M, 0.5 mL). It was stirred under reflux for 3 h, and then cooled to room temperature. To the resulting mixture was added an aqueous solution of HCl (1M) dropwisely until the pH value was about 5. The mixture was then extracted with EtOAc (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (2:1) as eluent to give **8**. **2-Bromo-11***H***-benzo[***a***]carbazole-5-carboxylic acid (8)⁶: Eluent: petroleum ether-ethyl acetate (2:1); white solid (63 mg, 93%); mp: 260-261 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta: 7.3 (t,** *J* **= 7.6 Hz, 1H), 7.49 (t,** *J* **= 8.0 Hz, 1H), 7.69 (d,** *J* **= 8.0 Hz, 1H), 7.79 (dd,** *J***₁ = 9.6 Hz,** *J***₂ = 2.0 Hz, 1H), 8.30 (d,** *J* **= 8.4 Hz, 1H), 8.88 (d,** *J* **= 1.6 Hz, 1H), 9.09 (s, 1H), 9.20 (d,** *J* **= 9.2 Hz, 1H), 12.63 (s, 1H), 12.88 (br s, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta: 14.3, 60.0, 95.6, 107.6, 111.6, 114.1, 117.8, 120.3, 121.0, 122.4, 124.0, 124.5, 127.8, 129.2, 130.9, 137.6, 138.5, 148.6, 169.0. HRMS calcd for C₁₇H₉BrNO₂: 337.9822 [M-H]⁻, found: 337.9826.**

III. Mechanism studies

1. A control experiment

1-Methyl-2-phenyl-1*H*-indole (**6**, 0.5 mmol), ethyl 2-diazo-3-oxo-3-phenylpropanoate (**2a**, 0.75 mmol), $[RhCp*Cl_2]_2$ (0.025 mmol), $Cu(OAc)_2$ (0.1 mmol), and CH_3CN (3 mL) were charged into a sealed tube. The mixture was then stirred at 120 °C for 18 h. From the resulting mixture, 93% of **6** was recovered.

Scheme 1. A control experiment

2. The intramolecular KIE experiment

2-(Phenyl-2-*d*)-1*H*-indole (**1a**-*d*₁, 0.5 mmol), ethyl 2-diazo-3-oxo-3-phenylpropanoate (**2a**, 0.75 mmol), [RhCp*Cl₂]₂ (0.025 mmol), Cu(OAc)₂ (0.05 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The mixture was then stirred at 120 °C for 4 h. Afterwards, it was cooled to room temperature, quenched with saturated brine (10 mL), and extracted with EtOAc (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford a mixture of **3a** and **3a**-*d*₁. Upon analyzing the corresponding ¹H NMR spectrum as shown in Fig 1, the ratio of **3a** and **3a**-*d*₁ in the resulting mixture was determined as 0.65:0.35. Accordingly, the intramolecular KIE (k_H/k_D) was calculated as 1.86.

Scheme 2. The intramolecular KIE experiment

Fig 1. The ¹H NMR spectrum of the products obtained from the intramolecular KIE experiment

3. The intermolecular KIE experiments

2-Phenyl-1*H*-indole (**1a**, 0.25 mmol), 2-phenyl- d_5 -1*H*-indole (**1a**- d_5 , 0.25 mmol), ethyl 2-diazo-3-oxo-3phenylpropanoate (**2a**, 0.5 mmol), [RhCp*Cl₂]₂ (0.025 mmol), Cu(OAc)₂ (0.05 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The mixture was then stirred at 120 °C for 4 h. Afterwards, it was cooled to room temperature, quenched with saturated brine (10 mL), and extracted with EtOAc (10 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford a mixture of **3a** and **3a**- d_4 . Upon analyzing the corresponding ¹H NMR spectrum as shown in Fig 2, the ratio of **3a** and **3a**- d_4 was determined as 1.41:0.59. Accordingly, the intermolecular KIE (K_H/K_D) was calculated as 2.39.

Scheme 3. The intermolecular KIE experiment

Fig 2. The ¹H NMR spectrum of the products obtained from the intermolecular KIE experiment

4. Identification of benzoic acid from the reaction mixture of 4a with 2a by GC-MS

3-Cyano-2-phenylindole (**4a**, 0.5 mmol), ethyl 2-diazo-3-*oxo*-3-phenylpropanoate (**2a**, 0.75 mmol), $[RhCp*Cl_2]_2$ (0.025 mmol), AgOAc (0.1 mmol), AgSbF₆ (0.1 mmol), and CH₃CN (3 mL) were charged into a sealed tube. The mixture was then stirred at 120 °C for 8 h. Afterwards, it was cooled to room temperature, and filtered. A GC-MS study of the resulting mixture thus obtained showed that benzoic acid was formed.

Fig 3. GC spectrum of the resulting mixture from the reaction of 4a with 2a

Fig 4. MS spectrum of the compound with a retention time of 7.055

IV. Copies of ¹H and ¹³C NMR spectra of 3a-3y

200 150 100 50 0 PPM

V. Copies of ¹H and ¹³C NMR spectra of 5a-5h

VI. Copies of ¹H and ¹³C NMR spectra of 5i, 7 and 8

VII. References

- (1) E. Fisher and F. Jourdan, Ber. Dtsch. Chem. Ges., 1883, 16, 2241.
- (2) Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C.-M. Park, Chem. Commun., 2012, 48, 3133.

(3) O. E. Marvis and G. S. Patrick, J. Org. Chem., 2008, 73, 8675.

- (4) B. Li, B. Zhang, X. Zhang and X. Fan, J. Org. Chem., 2016, 81, 9530.
- (5) K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785.
- (6) Y. Wang, X. Li, Q. He, Y. Chen, Y. Xie, J. Ding, Z. Miao and C. Yang, Eur. J. Med. Chem., 2011, 46 5878.