Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Hydrogen-bonding catalysis of sulfonium salts

Shiho Kaneko,^a Yusuke Kumatabara,^a Shoichi Shimizu,^b Keiji Maruoka^c and Seiji Shirakawa^{*a}

 ^aDepartment of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
 ^bDepartment of Applied Molecular Chemistry, College of Industrial Technology, Nihon Universit, Izumi-cho, Narashino, Chiba 275-8575, Japan
 ^cDepartment of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

General Information

¹H and ¹³C NMR spectra were measured on a JEOL JNM-AL 400 NMR instrument (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Tetramethylsilane (TMS) served as the internal standard (0 ppm) for ¹H NMR, and CDCl₃ served as the internal standard (77.0 ppm) for ¹³C NMR. The following abbreviations were used to express the multiplicities: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-700N. Infrared spectra (IR) were measured on a JASCO FT/IR-4200 spectrometer. All reactions were monitored by thin-layer chromatography using Merck precoated TLC plates (silica gel 60GF-254, 0.25 mm), with visualization by the use of UV lamp (254 nm), or dyes such as KMnO₄. The products were purified by flash column chromatography on silica gel. Dehydrated tetrahydrofuran and dichloromethane was purchased from Kanto Chemical.

Fig. S1 Another binding mode of catalyst 2a and possible activation modes with *N*-acylisoquinoline 5a.

Fig. S2 1 H NMR titration studies of **4** and **1b** (see also page S-11).

Scheme S1 Control experiments in the aza Diels-Alder reaction of imine 12a.

Experimental Section

Synthesis of catalyst 2a.

Catalyst $2a^1$ was prepared according to the literature.

Synthesis of catalysts 2b and 4.

To a solution of $2a^1$ or $4^{\prime 2}$ (0.50 mmol) in THF (10 mL) was added sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) (0.50 mmol), and the reaction mixture was stirred at room temperature for 12 h. The resulting solution was evaporated,

and the residue was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1/0-0/1 as eluent) to give catalysts **2b** or **4** in 82 and 93% yields, respectively.

2b: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.70$ (s, 8H), 7.56 (s, 4H), 3.18–3.24 (m, 2H), 2.68–2.75 (m, 2H), 2.51 (s, 3H), 2.04–2.13 (m, 2H), 1.76–1.87 (m, 3H), 1.23–1.41 (m, 1H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 162.9$ (q, J = 49.7 Hz), 135.8, 130.4 (q, J = 31.6 Hz); 125.8 (q, J = 270 Hz), 118.5 (m), 38.6, 23.8, 22.2, 21.6; IR (neat): 1276, 1120, 913, 744 cm⁻¹; HRMS (FAB) calcd for C₆H₁₃S: 117.0738 ([M]⁺), found 117.0740.

BArF^{\odot} 4: ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (s, 8H), 7.54 (s, 4H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 7.2 Hz, 2H), 4.21 (s, 2H), 3.10–3.17 (m, 2H), 2.67–2.75 (m, 2H), 2.08–2.17 (m, 2H), 1.71–1.82 (m, 3H), 1.38–1.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.7 (q, *J* = 49.7 Hz), 134.8, 131.7, 130.6, 129.8, 129.0 (q, *J* = 31.3 Hz); 124.5 (q, *J* = 271 Hz), 123.4, 117.5 (m), 45.8, 36.7, 22.4, 21.2; IR (neat): 1353, 1273, 1114, 887, 839, 713, 682, 670 cm⁻¹; HRMS (FAB) calcd for C₁₂H₁₇S: 193.1051 ([M]⁺), found 193.1051.

General procedure for Mannich-type reactions of N-acylisoquinolines 5.

To a solution of isoquinoline derivative (0.20 mmol) in dehydrated THF (2.0 mL) was added 2,2,2-trichloroethyl chloroformate (TrocCl, 0.21 mmol) at 0 °C under N₂ atmosphere, and stirred for 0.5 h at 0 °C. The resulting solution of *N*-acylisoquinoline **5** was cooled to the reaction temperature (-78 or 0 °C). The solution of catalyst **4** (0.020 mmol, 10 mol %) in dehydrated THF (1.0 mL) was then added to a solution of *N*-acylisoquinoline **5** at the reaction temperature (-78 or 0 °C). The flask of the initial catalyst solution was washed with additional dehydrated THF (1.0 mL) to complete transfer of the catalyst to the reaction solution. The reaction mixture was stirred for 5 min at the reaction temperature (-78 or 0 °C), and then silyl ether **6** (0.30 mmo) was added to the reaction mixture. The mixture was stirred for several hours (3–8 h) at the reaction temperature (-78 or 0 °C), and extracted with ethyl acetate for three times at room temperature. The combined extracts were dried

over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 1/0-5/1 as eluent) to give product 7.

7a:³ ¹H NMR (400 MHz, CDCl₃) [observed as a 3:1 mixture of rotamers]: $\delta = 7.18-7.29$ (m, 2H), 7.02–7.11 (m, 2H), 6.95–6.97 (m, 1H), 6.05 (d, J = 7.6 Hz, 0.25H), 5.95 (d, J = 7.2 Hz, 0.75H), 5.79 (s, 0.25H), 5.74 (s, 0.75H), 4.97 (d, J = 12.0 Hz, 0.75H), 4.88 (d, J = 11.6 Hz, 0.25H), 4.84 (d, J = 11.6 Hz, 0.25H), 4.70 (d, J = 12.0 Hz, 0.75H), 3.64 (s, 2.25H), 3.61 (s, 0.75H), 1.12–1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) [observed as a mixture of rotamers]: $\delta = 175.7$, 152.5, 152.1, 131.2, 131.1, 128.3, 128.2, 128.0, 127.8, 127.1, 127.0, 126.4, 125.4, 124.8, 124.7, 112.7, 111.8, 95.0, 94.7, 75.7, 75.4, 61.1, 60.7, 52.1, 52.0, 50.4, 50.1, 23.7, 22.4, 21.4, 20.7; IR (neat): 2979, 2951, 1721, 1382, 1317, 1229, 1122, 714 cm⁻¹.

N Troc Ph O **7b:**³ ¹H NMR (400 MHz, CDCl₃) [observed as a 3:2 mixture of rotamers]: $\delta = 7.89$ (d, J = 7.2 Hz, 1.2H), 7.84 (d, J = 6.8 Hz, 0.8H), 7.39–7.56 (m, 3H), 7.08–7.26 (m, 4H), 6.96 (d, J = 8.0 Hz, 0.4H), 6.91 (d, J = 8.0 Hz, 0.6H), 6.01–6.12 (m, 2H), 4.86 (d, J = 12.0 Hz, 0.6H),

4.81 (s, 0.8H), 4.72 (d, J = 11.6 Hz, 0.6H), 3.59 (dd, J = 8.4, 15.2 Hz, 0.4H), 3.39 (dd, J = 8.0, 14.8 Hz, 0.6H), 3.28 (dd, J = 6.0, 14.4 Hz, 0.6H), 3.22 (dd, J = 5.2, 15.6 Hz, 0.4H); ¹³C NMR (100 MHz, CDCl₃) [observed as a mixture of rotamers]: $\delta = 196.8$, 196.5, 151.4, 150.9, 136.9, 136.8, 133.3, 133.2, 131.6, 131.4, 129.6, 129.5, 128.6, 128.28, 128.24, 128.19, 128.07, 127.5, 127.4, 126.7, 126.6, 125.2, 125.1, 124.6, 123.5, 110.6, 110.4, 94.9, 94.8, 75.5, 75.2, 53.0, 52.8, 44.2, 43.4; IR (neat): 3062, 2955, 1720, 1682, 1635, 1384, 1321, 1283, 1243, 1124, 779, 754, 716, 691 cm⁻¹.

 $\begin{array}{ccc} & \textbf{7c:}^{3} \ ^{1}\text{H NMR} \ (400 \ \text{MHz}, \text{CDCl}_{3}): \ \delta = 7.23 - 7.27 \ (\text{m}, 1\text{H}), \ 7.16 - 7.20 \ (\text{m}, 1\text{H}), \ 7.05 - 7.11 \ (\text{m}, 2\text{H}), \ 6.04 \ (\text{s}, 1\text{H}), \ 5.62 \ (\text{s}, 1\text{H}), \ 5.02 \ (\text{br}, 1\text{H}), \ 4.62 \ (\text{br}, 1\text{H}), \ 3.57 \ (\text{s}, 3\text{H}), \ 2.33 \ (\text{s}, 3\text{H}), \ 1.22 \ (\text{s}, 3\text{H}), \ 1.21 \ (\text{s}, 3\text{H}); \ ^{13}\text{C NMR} \ (100 \ \text{MHz}, \text{CDCl}_{3}): \ \delta = 175.5, \ 153.1, \ 135.3, \ 131.8, \ 129.8, \ 128.0, \ 127.2, \ 126.5, \ 124.3, \ 117.0, \ 95.0, \ 75.7, \ 63.1, \ 51.7, \ 48.1, \ 22.9, \ 21.8; \ \text{IR} \ (\text{neat}): \ 2976, \ 2951, \ 1718, \ 1389, \ 1308, \ 1242, \ 1134, \ 1050, \ 755, \ 714 \ \text{cm}^{-1}. \end{array}$

General procedure for regioselective Mannich-type reactions with quinolines 9.

To a solution of quinoline derivative 9 (0.20 mmol) in dehydrated THF (2.0 mL) was added 2,2,2-trichloroethyl chloroformate (TrocCl, 0.21 mmol) at 0 °C under N₂ atmosphere, and stirred for 0.5 h at 0 °C. The resulting solution was cooled to the reaction temperature (-78 or 0 °C). To a cooled solution was added a solution of catalyst 4 (0.020 mmol, 10 mol %) in dehydrated THF (1.0 mL) at the reaction temperature (-78 or 0 °C). The flask of the initial catalyst solution was washed with additional dehydrated THF (1.0 mL) to complete transfer of the catalyst to the reaction solution. The reaction mixture was stirred for 5 min at the reaction temperature (-78 or 0 °C), and then ketene silvl acetal 6a (0.30 mmo) was added to the reaction mixture. The mixture was stirred for 3 h at the reaction temperature (-78 or 0 °C). The reaction mixture was quenched by saturated aqueous NaHCO₃ at the reaction temperature (-78 or 0 °C), and extracted with ethyl acetate for three times at room temperature. The combined extracts were dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 1/0-5/1 as eluent) to give product 10. The regioselectivity of product 10 was determined by ¹H NMR analysis by comparison with literature data.⁴

10a: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (d, J = 8.4 Hz, 1H), 7.27– 7.31 (m, 1H), 7.14–7.19 (m, 2H), 7.04-7.09 (m, 1H), 5.38–5.42 (m, 1H), 4.86–4.97 (m, 2H), 3.82 (d, J = 6.0 Hz, 1H), 3.69 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.2$, 150.6, 137.0, 129.6, 128.1, 127.8, 126.9, 125.1, 122.0, 112.0, 95.0, 75.3, 51.9, 48.9, 45.4, 21.7, 20.8; IR (neat): 2978, 2952, 1723, 1381, 1327, 1236, 1137, 759, 715 cm⁻¹; HRMS (FAB) calcd for C₁₇H₁₉Cl₃NO₄: 406.0380 ([M+H]⁺), found 406.0383.

CI N Troc **10b:** ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, J = 8.8 Hz, 1H), 7.24–7.27 (m, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 5.39 (dd, J = 6.8, 7.2 Hz, 1H), 4.86–4.96 (m, 2H), 3.78 (d, J = 6.4 Hz, 1H), 3.71 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): *δ* = 176.8, 150.5, 135.6, 130.4, 130.0, 129.2, 127.8, 127.0, 123.2, 111.5,

94.8, 75.4, 51.9, 49.0, 45.3, 21.3, 21.1; IR (neat): 2977, 2953, 2878, 1725, 1380, 1332, 1232, 1141, 818, 715 cm⁻¹; HRMS (FAB) calcd for $C_{17}H_{18}Cl_4NO_4$: 439.9990 ([M+H]⁺), found 439.9983.

General procedure for aza Diels-Alder reactions.

MeO

To a solution of imine **12** (0.10 mmol) and catalyst **2b** (0.010 mmol, 10 mol %) in dehydrated CH₂Cl₂ (2.0 mL) was added Danishefsky diene **13** (0.15 mmol) at 0 °C under N₂ atmosphere, and stirred for 3 h at 0 °C. Then, aqueous 1N HCl (50 μ L) was added to the reaction mixture, and further stirred for 5 min at 0 °C. The reaction mixture was quenched by H₂O at 0 °C, and extracted with CH₂Cl₂ for three times at room temperature. The combined extracts were dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 1/0–0/1 as eluent) to give product **14**.

^{Ph} N 14a:^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.68 (d, J = 8.0 Hz, 1H), 7.26– 7.35 (m, 7H), 7.11 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 7.6 Hz, 2H), 5.27–5.30 (m, 2H), 3.30 (dd, J = 7.0, 16.2 Hz, 1H), 2.80 (dd, J = 2.8, 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.2, 148.2, 144.7, 137.9, 129.5, 129.0, 127.8, 126.1, 124.4, 118.5, 103.0, 61.7, 43.4; IR (neat): 3060, 2894, 1642, 1566, 1493, 1277, 1202, 755, 694 cm⁻¹.

> **14b:**^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.65 (dd, *J* = 1.0, 8.0 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H),

5.23–5.29 (m, 2H), 3.78 (s, 3H), 3.27 (dd, J = 7.6, 16.4 Hz, 1H), 2.76 (dd, J = 4.0, 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.4$, 159.1, 148.2, 144.7, 129.8, 129.5, 127.3, 124.4, 118.6, 114.3, 102.7, 61.2, 55.2, 43.6; IR (neat): 3064, 2959, 2931, 2836, 1643, 1569, 1494, 1204, 1032, 829, 757, 731, 693 cm⁻¹.

Ph N 14c:^{5 1}H NMR (400 MHz, CDCl₃): $\delta = 7.71$ (dd, J = 1.0, 7.8 Hz, 1H), 7.53–7.57 (m, 4H), 7.43 (t, J = 7.6 Hz, 2H), 7.29–7.37 (m, 5H), 7.13 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 5.30–5.35 (m, 2H), 3.35 (dd, J = 7.2, 16.4 Hz, 1H), 2.83 (dd, J = 3.2, 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.2$, 148.1, 144.6, 140.8, 140.4, 136.8, 129.6, 128.7, 127.7, 127.4, 127.0, 126.5, 124.4, 118.5, 103.0, 61.4, 43.3; IR (neat): 3055, 3030, 2923, 1643, 1571, 1491, 1207, 757, 730, 694 cm⁻¹.

Ph N 14d: ^{5 1}H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (dd, J = 0.8, 4.8 Hz, 1H), 7.71 (dd, J = 1.4, 8.0 Hz, 1H), 7.62 (dt, J = 2.0, 8.0 Hz, 1H), 7.27–7.36 (m, 3H), 7.19–7.23 (m, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 7.6 Hz, 2H), 5.36 (d, J = 5.6 Hz, 1H), 5.30 (d, J = 8.0 Hz, 1H), 3.29 (dd, J = 7.6, 16.8 Hz, 1H), 3.13 (ddd, J = 1.2, 2.6, 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.5$, 157.4, 150.2, 147.6, 144.5, 136.8, 129.6, 124.3, 122.7, 120.4, 118.0, 103.5, 63.0, 41.4; IR (neat): 3064, 3010, 1641, 1568, 1495, 1212, 756, 694 cm⁻¹.

> **14e:**^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.61 (dd, J = 1.0, 7.8 Hz, 1H), 7.21–7.36 (m, 7H), 6.94 (d, J = 9.2 Hz, 2H), 5.30 (dd, J = 1.0, 7.2 Hz, 1H), 5.24 (dd, J = 3.2, 6.8 Hz, 1H), 3.28 (dd, J = 7.2, 16.4

Hz, 1H), 2.80 (ddd, J = 1.2, 3.2, 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.1, 147.8, 143.2, 137.5, 129.7, 129.5, 129.1, 128.0, 126.0, 119.8, 103.4, 61.8, 43.5; IR (neat): 3061, 2921, 2897, 1645, 1568, 1492, 1320, 1295, 1205, 1094, 824, 786, 744, 699 cm⁻¹.$

14f:^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.45 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.14–7.20 (m, 3H), 5.15 (d, *J* = 8.0 Hz, 1H), 4.05–4.10 (m, 1H), 2.92 (dd, *J* = 7.2, 16.4 Hz, 1H), 2.62 (d, *J* = 16.4 Hz, 1H),

1.54–1.96 (m, 6H), 0.98–1.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ = 192.0, 148.5, 145.1, 129.7, 124.5, 120.3, 101.3, 62.7, 39.5, 37.7, 30.2, 28.9, 26.2, 26.03, 25.97; IR (neat): 2925, 2851, 1642, 1571, 1495, 1321, 1273, 1204, 756, 695 cm⁻¹.

General procedure for reductions of imines 12.

CI

To a solution of imine **12** (0.10 mmol) and catalyst **2b** (0.010 mmol, 10 mol %) in dehydrated CH₂Cl₂ (2.0 mL) was added Hantzsch ester **15** (0.12 mmol) at 25 °C under N₂ atmosphere, and stirred for 6 h at 25 °C. The reaction mixture was then

directly charged into silica gel, and purified (hexane/ethyl acetate = 1/0-5/1 as eluent) to give product **16**.

^{CI} **16a:**^{6 1}H NMR (400 MHz, CDCl₃): δ = 7.34–7.35 (m, 4H), 7.27–7.31 (m, 1H), 7.11 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 4.30 (s, 2H), 4.09 (br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 146.0, 138.5, 129.1, 128.7, 127.5, 127.4, 122.7, 114.4, 48.6; IR (neat): 3426, 3062, 3029, 2922, 2850, 1600, 1497, 815, 733, 698 cm⁻¹.

^{HN} ^{Ph} **16b:**^{6 1}H NMR (400 MHz, CDCl₃): $\delta = 7.55-7.60$ (m, 4H), 7.41–7.46 (m, 4H), 7.34 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 2H), 6.73 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 8.4 Hz, 2H), 4.38 (s, 2H), 4.08 (br, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.1$, 140.8, 140.2, 138.5, 129.3, 128.8, 127.9, 127.4, 127.2, 127.0, 117.6, 112.9, 48.0; IR (neat): 3396, 3050, 3029, 2958, 2926, 2853, 2826, 1601, 1498, 748, 689 cm⁻¹.

HN Ph **16c:**^{6 1}H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.8 Hz, 2H), 7.18 (t, J = 7.6 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.71 (t, J = 6.8 Hz, 1H), 6.64 (d, J = 8.8 Hz, 2H), 4.26 (s, 2H), 3.95 (br, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.8$, 148.2, 131.4, 129.2, 128.8, 117.5, 114.0, 112.8, 55.3, 47.8; IR (neat): 3417, 3050, 3019, 2954, 2932, 2907, 2835, 1602, 1508, 1245, 1176, 1033, 823, 749, 692 cm⁻¹.

NMR titration studies.

To an NMR tube was added 4 (0.0050 mmol) followed by $CDCl_3$ (0.50 mL). To the solution was added appropriate amount of chlorodiphenylmethane 8 (1M solution in $CDCl_3$) via syringe, and measured ¹H NMR. After the measurement, additional amount of 8 (1M solution in $CDCl_3$) was added to the NMR tube, and the ¹H NMR measurement was repeated. The ¹H NMR titration study of 1b with 8 was also performed in the same manner.

S-11

References

- Z. Polívka, J. Holubek, M. Budesínsky, O. Matousová, E. Svátek, J. Metys and M. Protiva, *Collect. Czech. Chem. Commun.*, 1987, 52, 2758.
- 2 S. M. Date, R. Singh and S. K. Ghosh, Org. Biomol. Chem., 2005, 3, 3369.
- 3 S. Shirakawa, S. Liu, S. Kaneko, Y. Kumatabara, A. Fukuda, Y. Omagari and K. Maruoka, *Angew. Chem., Int. Ed.*, 2015, **54**, 15767.
- 4 H. Rudler, B. Denise, Y. Xu, A. Parlier and J. Vaissermann, *Eur. J. Org. Chem.*, 2005, 3724.
- 5 (a) Y. Takeda, D. Hisakuni, C.-H. Lin and S. Minakata, Org. Lett., 2015, 17, 318;
 (b) Y. Kumatabara, S. Kaneko, S. Nakata, S. Shirakawa and K. Maruoka, Chem.– Asian J., 2016, 11, 2126.
- 6 (a) P. A. Champagne, J. Pomarole, M.-È. Thérien, Y. Benhassine, S. Beaulieu, C. Y. Legault and J.-F. Paquin, Org. Lett., 2013, 15, 2210; (b) I. Chatterjee, M. Oestreich, Org. Lett., 2016, 18, 2463; (c) V. Fasano, J. E. Radcliffe and M. J. Ingleson, ACS Catal., 2016, 6, 1793.

S-13

