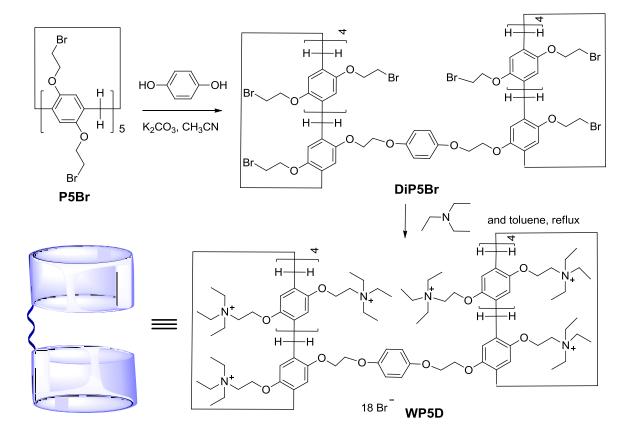
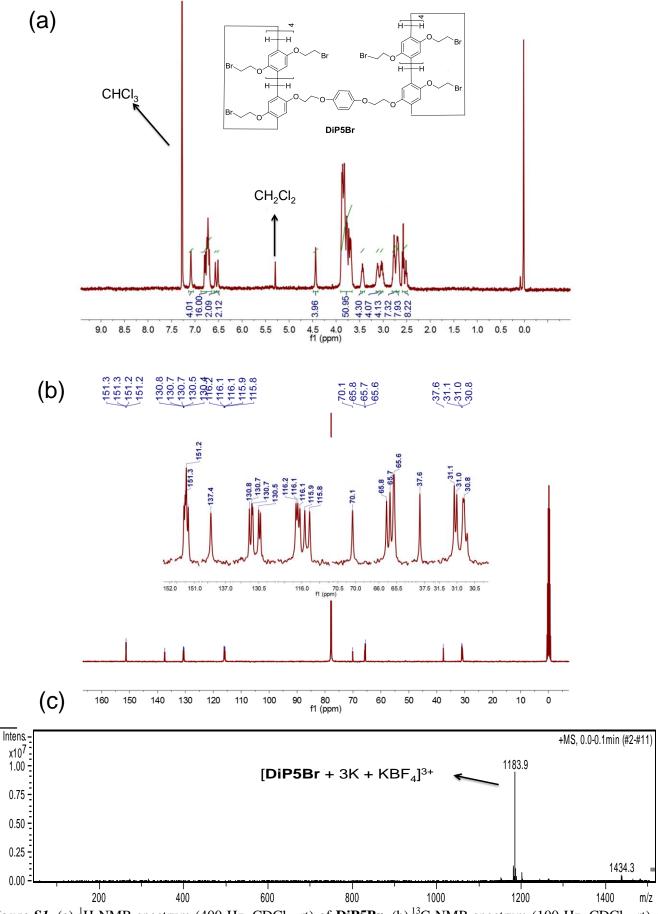
First water soluble pillar[5]arene dimer: synthesis and construction of a reversible fluorescent supramolecular polymer network in water[†]

Yan Sun,^{*a*,*} Jin Wang,^{*c*} and Yong Yao^{*a,b**}

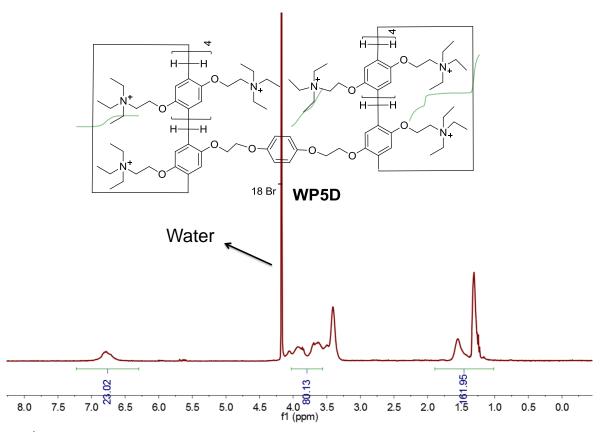

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China. ^bDepartment of Chemistry, University of Utah, Salt Lake City, 84112, USA. ^cResearch and Development Center, China Tobacco Yunnan Industrial Co.,Ltd., Kunming, 650231, China. *E-mail:* yaoyong@zju.edu.cn, ysun@iccas.ac.cn;

Electronic Supplementary Information (8 pages)

1.	Materials and methods	S2
2.	Syntheses of water soluble pillar[5]arene dimer	S 3
3.	Characterization of supramolecular polymer networks	S 7
4.	References	S 8


1. Materials and methods

All reagents were commercially available and used as supplied without further purication. **P5Br** was prepared according to the literature procedure.^{S1} ¹H or ¹³C NMR spectra were recorded with a Bruker Avance DMX 400 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Viscosity measurements were carried out with a Cannon-Ubbelohde semimicro dilution viscometer at 298K in water. Scanning electron microscopy investigation was carried out on a JEOL 6390LV instrument. The fluorescence spectra were recorded on a Perkin Elmer LS55 fluorescence spectrophotometer. Lowresolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with IonSpec 4.7 Tesla FTMS.


Scheme S1. Synthetic route for water soluble pillar[5]arene dimer

DiP5Br: In a 500 mL round–bottom flask, **P5Br** (8.62 g, 5.00 mmol), K₂CO₃ (1.55 g, 11.25 mmol), hydroquinone (0.11 g, 1.00mmol) and acetonitrile (350ml) was added and the reaction mixture was stirred under N₂ for 12 h at 80 °C. After removal of the inorganic salt by filtration, the solvent was evaporated and the residue was dissolved in CH₂Cl₂. The resultant solution was washed with H₂O. The organic phase was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated to provide a crude product, which was purified by column chromatography (eluent: petroleum ether/ CH₂Cl₂, 10:1) to give **DiP5Br** (2.04 g, 60.0 %) as a white solid. Mp: 98.3–97.5 °C. The proton NMR spectrum of **DiP5Br** is shown in Fig. S1. ¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm): 7.08 (s, 4H), 6.78–6.67 (m, 16H), 6.57 (s, 2H), 6.48 (s, 2H), 4.42 (s, 4H), 3.86–3.68 (m, 50H), 3.42 (m, 4H), 3.16 (m, 4H), 3.05 (m, 4H), 2.75 (m, 8H), 2.68 (m, 8H), 2.56 (m, 8H).

Figure S1. (a) ¹H NMR spectrum (400 Hz, $CDCl_3$, rt) of **DiP5Br**. (b) ¹³C NMR spectrum (100 Hz, $CDCl_3$, rt) of **DiP5Br**. (c) Electrospray ionization mass spectrum of **DiP5Br**.

WP5D: A mixture of **DiP5Br** (1.70 g, 0.500 mmol) and triethylamine (11.0 g, 100.0 mmol) in toluene (125 mL) was stirred in a 200 mL round-bottom flask at 120 °C for 24 hours. After cooling, the solvent was removed and the residue was recrystallized from ethanol/diethyl ether (1:2) to give a white solid (2.08 g, 81%). The ¹H NMR spectrum of **WP5D** is shown in Figure S2. ¹H NMR (400 MHz, D₂O, rt) δ (ppm): 6.92-6.69 (m, 24H), 4.12-3.54 (m, 80H), 1.70-1.14 (m, 162H). The ¹³C NMR spectrum of **WP5D** is shown in Figure S3. ¹³C NMR (100 MHz, D₂O, rt) δ (ppm):149.91, 149.61, 149.44, 149.23, 148.62, 114.91, 114.61, 114.41, 113.73, 113.57, 65.31, 64.27, 64.00, 63.80, 63.54, 49.69, 14.58, 14.49. LRESIMS is shown in Figure S4: m/z 776.2 [**M** – 6Br]⁶⁺, 1203.3 [**M** – 4Br]⁴⁺. HRESIMS is shown in Figure S5: m/z of [**M** – 3Br]³⁺ C₂₂₄H₃₉₄N₁₈O₂₂Br₁₅ 1630.94; [**M** – 4Br]⁴⁺ C₂₂₄H₃₉₄N₁₈O₂₂Br₁₄ 1203.48.

Figure S2. ¹H NMR spectrum (400 MHz, D₂O, rt) of **WP5D**.

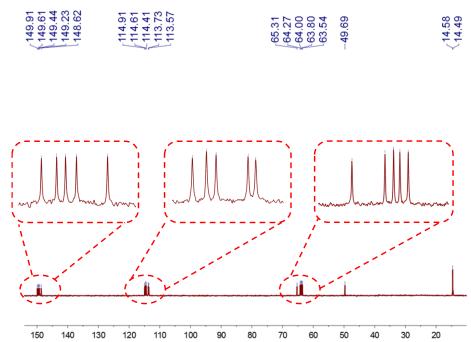
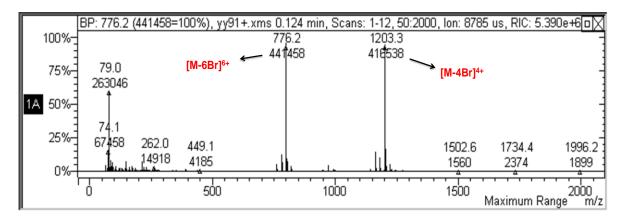
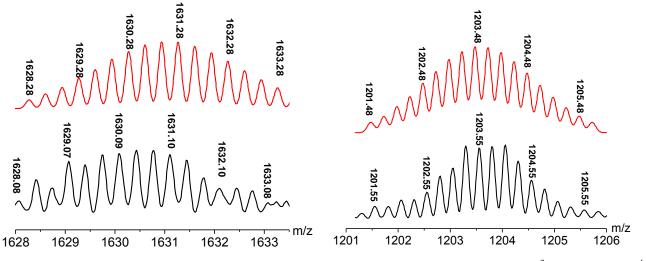




Figure S3. ¹³C NMR spectrum (100 MHz, D₂O, rt) of WP5D.

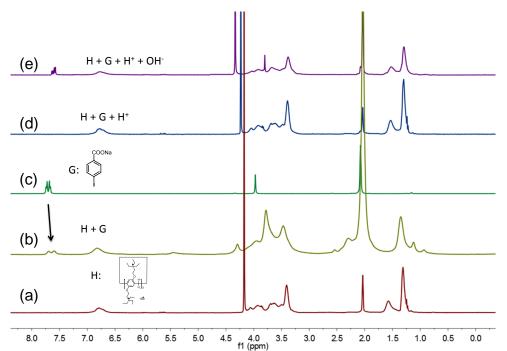


Figure S4. Electrospray ionization mass spectrum of **WP5D**. Assignment of main peaks: m/z 1203.3 $[\mathbf{M} - 4\mathbf{Br}]^{4+}$ and 776.2 $[\mathbf{M} - 6\mathbf{Br}]^{6+}$.

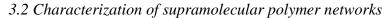


Figure S5. Experimental (black) and calculated (red) ESI-TOF-MS spectra of **WP5D** $[M - 3Br]^{3+}$ and $[M - 4Br]^{4+}$.

3. Characterization of supramolecular polymer networks 3.1 Host-guest interaction between model pillar[5]arene and guest

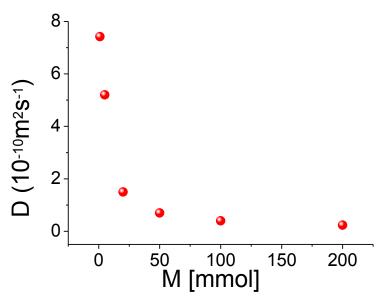


Figure S6. ¹H NMR spectrum (400 MHz, D₂O/acetone- d_6 , rt) of (a) model pillar[5]arene, (b) model pillar[5]arene and guest, (c) model guest, (d) addition of H⁺ to (c), (e) addition of OH⁻ to (d). [pillar[5]arene] = [guest] = 2.0 × 10⁻³ M.

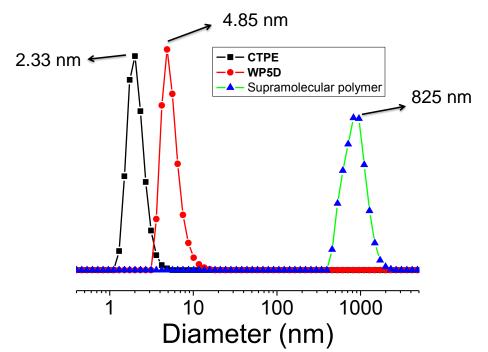


Figure S7. Partial ¹H NMR spectra (400 MHz, 298 K) of (**WP5-dimer**)2 carboxylate-TPE in D_2O at various concentrations: (a) 200 mM; (b) 100 mM; (c) 50.0 mM; (d) 25.0 mM; (e) 15.0 mM; (f) 10.0 mM; (g) 7.00 mM; (h) 5.00 mM; (i) 2.00 mM; (i) 1.00 mM. Here, the concentration is the original TPE' concentration.

Figure S8. Concentration dependence of diffusion coefficient *D* (400 MHz, D₂O, 298K).

Figure S9. DLS experiments of **WP5D** (50 mM, red line), **CTPE** (25 mM, black line) and the supramolecular polymer (green line) in water.

4. References:

S1. Y. Ma, X. Ji, F. Xiang, X. Chi, C. Han, J. He, Z. Abliz, W. Chen and F. Huang, *Chem. Commun.*, 2011, 47, 12340–12342.