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1. General methods

Reagents were purchased from Sigma-Aldrich, Alfa Aesar, ACROS or Fluka and used without further
purification. Dry solvents were purchased from ACROS. Silica gel (0.04-0.063 mm; Machery-Nagel)
was used for column chromatography. Ethanol (EtOH), dichloromethane (DCM), dimethylformamide
(DMF), and acetonitrile (ACN) used for surface experiments were purchased from Carl Roth or VWR
in HPLC grade and used as received. All reactions were carried out under argon protective
atmosphere.

For XPS and NEXAFS experiments, layers were prepared on polished single-crystal Si(111) wafers
purchased from CrysTec GmbH, stored under argon prior to use and cut into pieces (~1 cm?) with a
diamond cutter. Microscope glass slides, used for transmission UV/Vis spectroscopy were purchased
from Thermo Scientific. All SAM, macrocycle and metal ion depositions were performed in gamma-
sterilized tubes (Orange Scientific).

2. Instrumentation

NMR spectra were recorded on a Bruker ECX 400 (*H at 400 MHz, *C at 100 MHz) at room
temperature. All chemical shifts are reported in ppm with solvent signals taken as the internal
standards. Mass spectra were measured on an Agilent Technologies lonspec QFT-7 ESI-FTICR or an
Agilent 6210 ESI-TOF instrument. UV-Vis spectra were measured on a Varian Cary 50 UV-Vis
spectrometer. For surface UV-Vis spectra, a spectrum of the underlying SAM was used as background
and subtracted from all monolayer spectra.

XPS and NEXAFS measurements were carried out at the HESGM CRG dipole magnet beamline at the
synchrotron radiation source BESSY Il (Berlin, Germany). SR XPS (synchrotron radiation XPS) N 1s, Si
2p, and C 1s data were acquired by a Scienta 3000 hemispherical electron analyser (pass energy = 50
eV) at the HE-SGM dipole magnet CRG beamline. The same beamline was used for the acquisition of
all NEXAFS spectra. An emission angle of 0° was used for all XPS measurements. The binding energy
scale of the XP spectra was corrected for static charging using an electron binding energy BE of 99.2
eV for Si 2p (Si°) photoemission of the silicon substrate." Peak fitting of XP spectra was performed
with a Lorentzian—Gaussian sum function peak-shape model using the Unifit 2013 software (Unifit
Scientific Software GmbH, Leipzig, Germany). Peak fits and integrated peak areas were obtained after
subtraction of a polynomial background. If not otherwise noted, the FWHM for component peaks in
N 1s and C 1s spectra were constrained to be identical. NEXAFS spectra were acquired in the TEY
(total electron yield) mode and incident angles of linearly polarized synchrotron light of 30° (electric
field vector upright to surface plane), 55° and 90° (electric field vector parallel to the surface plane).’
The resolution E/AE of the monochromator at the carbonyl i* resonance (hv = 287.4 eV) of CO was
in the order of 2500. Raw spectra were divided by ring current and monochromator transmission
function. The latter was obtained with a freshly sputtered Au sample.? Energy alignment of the
energy scales was achieved by using an I, feature referenced to a Cls > n* resonance measured
with a fresh surface of HOPG (highly ordered pyrolytic graphite, Advanced Ceramic Corp., Cleveland,
USA) at 285.4 eV.}

Irradiation experiments were carried out with a Thorlabs DC2200 LED driver equipped with a
M365LP1 (365 nm) or M470L3 (470 nm) mounted LED.
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3. Preparation and characterization of compounds

3.1 Synthesis Overview

Scheme S1 gives an overview of the synthesis of compounds.
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Scheme S1: Synthesis of new compounds.
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Xanthene 8 was prepared as described before® and converted to axle building block 9 by attaching
xylylene dibromide. Axle building block 7 was synthesised in three steps from literature known
carboxylic acid 5. Terpyridine 3,° acid 5° and tetralactam macrocycles 1 and 2’ were prepared
according to literature procedures. Rotaxanes Rotl and Rot2 were obtained in a one-step ether-
rotaxane synthesis from the corresponding axle building-blocks and TLM 1 or 2. Rot3 functionalised
with a terpyridine unit at the TLM was synthesised in one step starting from Rot2 in a Sonogashira
coupling reaction with acetylene-functionalised terpyrine 3. Alkyne-functionalised Rot4 was
prepared likewise by Sonogashira reaction of Rot2 with trimethylsilylacetylene followed by
deprotection of the alkyne.

3.2 Synthesis of (E)-1-(4-(bromomethyl)benzyl)-4-(2,7-di-tert-butyl-9,9-dimethyl-
5-(phenyldiazenyl)-9H-xanthen-4-yl)piperazine-2,5-dione

Q)
& A

@

Br

(E)-1-(2,7-Di-tert-butyl-9,9-dimethyl-5-(phenyldiazenyl)-9-xanthen-4-yl)piperazin-2,5-dion (50.0 mg,
0.093 mmol) and xylylene dibromide (245 mg, 0.930 mmol) were dissolved in dry THF (10 mL) and
cooled with an ice bath to 0 °C. Potassium tert-butanolate (12.0 mg, 0.102 mmol) was added. The
mixture was stirred for 1 h at 0 °C and for further 2.5 h at room temperature. After adding diethyl
ether (50 mL), the solution was washed with destilled water (50 mL), dried over magnesium sulfate,
filtered and the solvent evaporated. The residue was purified by column chromatography (silica,
DCM/n-hexane 4:1 — DCM — DCM/EE 9:1), which afforded the product as an orange solid (55.0 mg,
0.0762 mmol, 82%).

'H NMR (400 MHz, Chloroform-d) 6 = 7.85 — 7.79 (m, 2H, H.benzene), 7.57 — 7.56 (m, 1H,
Hyanthene), 7.51 (dd, J = 2.3, 0.7 Hz, 1H, Hanthene), 7.47 (m, 1H,
Hyanthene), 7.45 (m, 3H, Haopenzene) 7.36 (d, J = 7.9 Hz, 2H,
Hyyiylene), 7.22 (d, J = 7.9 Hz, 2H, Hyyyiene), 7.15 (dd, J = 2.3, 0.7
Hz, 1H, Hyanthene), 4.94 (bs, 2H, Hyiperazine-2,5-dione), 4.50 (s, 2H,
Hena), 4.27 — 4.01 (bs, 2H, Hopiperazine-2,5-dione), 3-85 (s, 2H, Hena),
1.71 (s, 6H, Heyz), 1.36 (s, 9H, Hepy), 1.33 (s, 9H, Hepl) ppm.

3C NMR (101 MHz, Chloroform-d) & = 164.6, 164.5, 153.7, 146.6, 146.1, 145.2, 143.7, 140.6,
137.8, 135.6, 131.3, 131.3, 130.8, 129.7, 129.2, 129.2, 126.5,
125.8, 123.8, 123.1, 122.7, 112.4, 60.5, 52.8, 49.7, 49.1, 35.0,
34.9,34.8,33.0, 31.6, 31.5, 21.2, 14.3 ppm.

MS (ESI, pos. Mode, DCM/MeOH) m/z: calculated 721.2748 found 721.2741 ([M+H]’),
calculated 743.2567 found 743.2563 ([M+Na]’), calculated
759.2307 found 759.2296 ([M+K]").
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3.3 Synthesis of N-methyl-N-(2-(methylamino)ethyl)-2-(4-tritylphenoxy)acetamide
2 |
D

A solution of 2-(4-tritylphenoxy)acetic acid (4.50g, 11.41 mmol), tert-butyl methyl(2-
(methylamino)ethyl)carbamate (2.15g, 11.41mmol) and 1-hydroxybenzotriazole (1.93 g,
14.25 mmol) in dry DCM (80 mL) was cooled to 0°C with an ice bath. 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide (2.21 g, 14.25 mmol) was added and the solution stirred for 2 h
at 0 °C, followed by further stirring for 24 h at room temperature after the ice bath was removed.
The solution was washed with saturated NaHCO; solution (1 x 80 mL), dest. water (1 x 80 mL) and
brine (1 x 80 mL), dried with magnesium sulfate, filtered and the solvent evaporated. The residue
was purified by column chromatography (silica, DCM->DCM/ethyl acetate 7:3), which afforded the
intermediate product as a solid (5.79 g, 10.25 mmol, 89%). The intermediate product was dissolved
in dry DCM (200 mL). Trifluoroacetic acid (7 mL) was added and the solution stirred for 12 h at room
temperature. The solution was washed with saturated NaHCO; solution (2 x 80 mL), dried with
magnesium sulfate, filtered and the solvent evaporated, which afforded the product as a colourless
solid (4.40 g, 9.47 mmol, 83%).

'H NMR (500 MHz, CDCl5) 6 =7.25-7.16 (m, 15H, Hyiry), 7.14 —7.09 (M, 2H, Hirityi-phenol)s
6.87 — 6.78 (M, 2H, Huyityi-phenot), 4.72 (M, 2H, Ho.chz), 3.51 (m,
2H, Hy.cha), 3.02 (m, 3H, Heys), 2.84 — 2.74 (m, 2H, Hy.cha), 2.43
(m, 3H, Hexs) ppm.

3C NMR (126 MHz, CDCl5) & = 168.8, 168.4, 156.2, 156.1, 147.0, 140.1, 139.9, 132.4,
131.2, 131.2, 127.5, 127.5, 126.0, 113.7, 113.6, 67.4, 64.4,
49.7,49.2,48.7,47.2,36.7, 35.8, 35.2, 33.7 ppm.

MS (ESI, pos. Mode, DCM/MeOH) m/z: calculated 465.2537 found 465.2542 ([M+H]’),
calculated 487.2356 found 487.2353 ([M+Na]’), calculated
503.2095 found 503.2087 ([M+K]").

3.4 Synthesis of 2-(4-hydroxyphenyl)-N-methyl-N-(2-(N-methyl-2-(4-tritylphenoxy)-
acetamido)ethyl)acetamide

O O Oxj\hl,/\/“l‘m
O Q oH

N-Methyl-N-(2-(methylamino)ethyl)-2-(4-tritylphenoxy)acetamide (2.50g, 5.38 mmol), 4-hydroxy-
phenylacetic acid (818 mg, 5.38 mmol) and 1-hydroxybenzotriazole (909 mg, 6.73 mmol) were
dissolved in dry DCM (80 mL). The solution was cooled to 0 °C with an ice bath. 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide (1.29 g, 6.73 mmol) was added. It was stirred for 12 h while
slowly increasing the temperature to room temperature. The solution was then washed with
saturated NaHCO; solution (1 x 80 mL), dest. water (1 x 80 mL) and brine (1 x 80 mL), dried with
magnesium sulfate, filtered and the solvent evaporated. The residue was purified by column
chromatography (silica, DCM + 3.5 % MeOH), which afforded the product as a colourless solid (2.99 g,
4.99 mmol, 93%).
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1H NMR (500 MHz, CDCls) § = 7.25 — 7.14 (m, 15H, Hyiy), 7.11 (d, J = 9.0 Hz, 2H, Hyieyr
phenol), 7.03 = 6.92 (M, 2H, Hyhenot), 6.79 (d, J = 9.0 Hz, 2H, Hyiry1-
ohenol)s 6.73 = 6.61 (M, 2H, Hyhenol), 5.22 — 4.63 (bs, 1H, Hop),
4.61 — 4.53 (m, 2H, Hocha), 3.68 — 3.38 (m, 6H, Hgy,), 3.04 —
2.95 (m, 6H, Hcys) ppm.

13C NMR (126 MHz, CDCls) 6 = 173.0, 168.7, 156.0, 155.7, 147.0, 147.0, 146.9, 140.0,
132.4, 132.4, 131.2, 131.2, 130.4, 130.1, 130.0, 129.8, 127.6,
126.0, 125.6, 115.9, 113.6, 66.8, 64.4, 45.2, 45.1, 39.9, 36.4,
34.9 ppm.

MS (ESI, pos. Mode, DCM/MeOH): [m/z] calculated 599.2904 found 599.2907 ([M+H]’),
calculated 621.2724 found 621.2725 ([M+Na]®), calculated
637.2463 found 637.2464 ([M+K]").

3.5 Synthesis of Rotl

(E)-1-(4-(Bromomethyl)benzyl)-4-(2,7-di-tert-butyl-9,9-dimethyl-5-(phenyldiazenyl)-9H-xanthene-4-
yl)piperazine-2,5-dione (212 mg, 0.295 mmol), 2-(4-hydroxyphenyl)-N-methyl-N-(2-(N-methyl-2-(4-
tritylphenoxy)acetamido)ethyl)acetamide (177 mg, 0.295 mmol), TLM 1 (100 mg, 0.098 mmol),
potassium carbonate (203 mg, 1.47 mmol) and dibenzo-18-crown-6 (53.0 mg, 0.147 mmol) were
dissolved in dry DCM (15 mL) and stirred for 7 d at room temperature. The solution was diluted with
DCM (100 mL), washed with dest. water (2 x 50 mL), dried with magnesium sulfate, filtered and the
solvent evaporated. The residue was purified by column chromatography (silica, toluene/ethyl
acetate 7:3 — 1:4 — toluene + 6 % MeOH), which afforded a fraction containing the rotaxane followed
by a fraction containing the free axle. The fraction containing the rotaxane was further purified by
preparative TLC (Silica, ethyl acetate/cyclohexane 5:7), which afforded the pure compound as an
orange solid (120 mg, 0 053 mmol, 54%)
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6 =8.61 (s, 2H, Hize, 130), 8.46 (s, 4H, Hoy, o5, 154, 155), 8.31 (s, 4H,
H123, 124, 159, 163), 7.85 (dd, J = 6.4, 1.8 Hz, 2H, H;5 70), 7.60 (d, J =
2.4 Hz, 1H, Hyanthene), 7.55 (d, J = 2.3 Hz, 1H, H,anthene), 7.50 (d, J
= 2.3 Hz, 1H, Hyanthene), 7-49 — 7.43 (m, 3H, Hyg 77, 7s), 7.40 (d, J
= 8.0 Hz, 2H, Hgg, 55), 7.29 (d, J = 9.7 Hz, 2H, Hgg, o3), 7.28-7.17
(m, 15 H, Hyiyy), 7.16 (s, d, J = 2.4 Hz, 1H, Hyanthene), 7.07 (d, J =
8.9 Hz, 2H, Hy,13), 7.01 (s, 8H, Haos, 109, 110, 114, 142, 145, 146, 150), 6.79
(d, J = 8.9 Hz, 2H, Hy3 44), 6.77 (d, J = 8.9 Hz, 2H, Hyy 4s), 6.39
(d, J =9.1 Hz, 2H, Hs, g), 5.04 (s, 2H, Hye), 5.01 (bs, 2H, Hag,),
4.08 (bs, 2H, Hg;), 3.88 (s, 2H, Hy,), 3.86 (s, 2H, Hgy), 3.10 (s,
2H, Hs3), 2.41 (s, 3H, Hyp), 2.33 (bs, 6H, Heycionexyt), 2.30 (s, 3H,
Has), 2.09 (s, 24H, Heg, 115, 116, 117, 132, 151, 152, 153), 2.05 — 1.97 (m,
4H, Hg 37), 1.75 (bs, 6H, Hey, 62), 1.66 (bs, 10H, Heyciohexy), 1.53
(bs, 4H, Hcyclohexyl)/ 1.43 (s, 18H, Ha64, 165, 166, 167, 168, 169), 1.40 (s,
9H, Hes, 69, 70), 1.37 (s, 9H, Hea, 65,66) PPM.

6 = 173.0, 168.5, 165.8, 164.6, 164.5, 158.0, 155.0, 153.7,
153.6, 148.1, 146.7, 146.6, 146.2, 145.2, 143.7, 141.3, 140.6,
136.7, 135.3, 134.3, 132.5, 131.9, 131.4, 131.3, 131.1, 130.8,
129.2, 129.1, 129.0, 128.1, 127.7, 126.6, 126.2, 125.8, 125.4,
123.8, 123.1, 123.1, 122.7, 115.4, 113.3, 112.4, 69.8, 65.8,
64.4, 52.8, 49.6, 49.1, 45.0, 43.4, 43.3, 39.6, 35.8, 35.6, 35.5,
35.1,35.0,34.8,34.1,31.6,31.6, 31.4, 26.4, 22.9, 19.1 ppm.

m/z: calculated 2256.2497 found 2256.2492 ([M+H]").
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3.6 Synthesis of Rot2

(E)-1-(4-(Bromomethyl)benzyl)-4-(2,7-di-tert-butyl-9,9-dimethyl-5-(phenyldiazenyl)-9H-xanthene-4-

yl)piperazine-2,5-dione (175 mg, 0.240 mmol), 2-(4-hydroxyphenyl)-N-methyl-N-(2-(N-methyl-2-(4-
tritylphenoxy)acetamido)ethyl)acetamide (145 mg, 0.240 mmol), TLM 2 (100 mg, 0.097 mmol),
potassium carbonate (134 mg, 0.97 mmol) and dibenzo-18-crown-6 (35.0 mg, 0.097 mmol) were
dissolved in dry DCM (15 mL) and stirred for 7 d at room temperature. The solution was diluted with
DCM (100 mL), washed with dest. water (2 x 50 mL), dried with magnesium sulfate, filtered and the
solvent evaporated. The residue was purified by column chromatography (silica, -hexane/ethyl
acetate 2:1 — ethyl acetate), which afforded a fraction containing the rotaxane followed by a fraction
containing the free axle. The fraction containing the rotaxane was further purified by preparative TLC
(silica, ethyl acetate/cyclohexane 5:7), which afforded the pure compound as an orange solid (128

mg, 0 056 mmol, 58%).

'H NMR (700 MHz, Chloroform-d)

3C NMR (176 MHz, Chloroform-d)

6= 10.38 (s, 2H, Hyu), 8.54 (s, 1H, Hisopnthar), 8.46 (d, J = 1.5 Hz,
2H, Hisophthal), 8.45 (M, 2H, Hyw), 8.36 (s, 2H, Hisopntnal), 8.10 (t, J
= 7.8 Hz, 1H, Hisophthal), 7.82 (dd, J = 7.9, 1.8 Hz, 2H, H,0nenzene),
7.57 (d, J = 2.4 Hz, 1H, Hynthene), 7.52 (d, J = 2.2 Hz, 1H,
Hyanthene), 7.47 (d, J = 2.2 Hz, 1H, H,anthene), 7.46 — 7.42 (m, 3H,
Hazobenzene), 7.40 (d, J = 8.4 Hz, 2H, Hyheny), 7.27 (d, ) = 7.5 Hz,
2H, Hphenyt), 7.26 — 7.23 (m, 5H, Hyiy), 7.21 — 7.15 (m, 10H,
Heity), 7.15 (d, J = 2.2 Hz, 1H, Hyanthene), 7.07 (d, J = 9.1 Hz, 2H,
Hohenyt), 6.98 (s, 4H, Haryitim), 6.95 (s, 4H, Haryimuv), 6.71 (d, J =
8.8 Hz, 2H, Hyheny), 6.55 (d, J = 8.9 Hz, 2H, Hphenyr), 6.43 (d, J =
9.1 Hz, 2H, Hpheny), 5.03 (s, 2H, Heyo), 5.13 — 4.87 (br, 2H,
Haiketopiperazine), 4.17 (s, 2H, Hcw), 4.25 — 4.01 (br, 2H,
Haiketopiperazine), 3-85 (S, 2H, Hewa), 3.28 (s, 2H, Hepa), 2.42 —2.23
(m, 12H, Heys), 2.16 (M, 2H, Henz diamide), 2.12 (s, 12H, Hews 1um),
2.08 — 2.03 (m, 2H, Hcyo giamige), 1.98 (s, 12H, Hewa mm), 1.78 —
1.70 (m, 10H, Heyciohexy), 1.62 — 1.56 (m, 6H, Heyciohexyr), 1.54 —
1.48 (m, 4H, Heycohexyt), 1.37 (s, 9H, Hepy), 1.34 (s, 9H, Hipy)

6 =172.7, 168.8, 164.5, 164.5, 164.5, 162.0, 157.8, 155.2,
153.6, 148.9, 146.7, 146.6, 146.1, 145.2, 143.7, 141.1, 140.6,
140.6, 139.3, 136.7, 136.4, 135.3, 135.2, 134.8, 132.6, 131.7,
131.4, 131.3, 131.3, 131.1, 131.1, 130.8, 129.2, 129.1, 128.0,
127.7, 126.6, 126.3, 126.2, 126.1, 125.8, 125.5, 125.1, 123.8,
123.1, 122.9, 122.7, 119.9, 115.2, 113.3, 112.4, 95.6, 69.8,
66.3, 64.4, 52.8, 49.6, 49.1, 45.6, 44.9, 44.9, 43.8, 43.6, 41.5,
40.3, 36.2, 36.1, 36.0, 35.9, 35.1, 35.0, 34.8, 34.8, 34.8, 34.6,
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31.8,31.7, 31.6, 31.6, 31.5, 31.2, 31.1, 29.2, 27.8, 27.0, 26.4,
25.4,22.9,22.9, 22.8, 22.7, 20.8, 20.6, 19.6, 19.3, 19.1, 18.9,
18.9, 14.5,14.2,11.6, 1.1 ppm.

MS (ESI, pos. Mode, DCM/ACN) m/z: calculated 2271.0164 found 2271.0182 ([M+H]"), m/z:
calculated 2292.9984 found 2293.0027 ([M+Nal]’), m/z:
calculated 2308.9723 found 2308.9734 ([M+K]%), m/z:
calculated 1147.0028 found 1147.0055 ([M+H+Na]™"), m/z:
ber. 1154.9898 found 1154.9885 ([M+H+K]™*), m/z: calculated
1157.9938 found 1157.9973 ([M+2 Na]**), m/z: calculated
1165.9808 found 1165.9831 ([M+H+Na]™).

3.7 Synthesis of Rot3

Rot2 (100 mg, 0.044 mmol), 4'-ethynyl-2,2":6',2"-terpyridine (22.6 mg, 0.088 mmol),
bis(triphenylphosphine)palladium(ll) dichloride (3.08 mg, 0.004 mmol), copper(l) iodide (0.84 mg, 4.4
pmol) and triphenylphosphine (4.00 mg, 0.015 mmol) were dissolved in dry DMF (16 mL) and dry
diisopropylethylamine (4 mL). The solution was degassed with an argon stream for about 5 min and
stirred at room temperature for 5 d. 4'-Ethynyl-2,2':6',2"-terpyridine (11.3 mg, 0.044 mmol),
bis(triphenylphosphine)palladium(ll) dichloride (3.08 mg, 0.004 mmol) and copper(l) iodide (0.84 mg,
4.4 umol) were added and the solution stirred for further 2 d. The solvents were evaporated and the
residue was dissolved in DCM (10 mL) and filtered over a short column (neutral alox, DCM + 8%
MeOH + 4% TEA). The solvents were evaporated and the residue was dissolved in DCM (100 mL),
washed with dest. water (2 x 50 mL), dried with magnesium sulfate, filtered and the solvent
evaporated. The residue was purified by dialysis (MWCO 1000, DCM/MeOH 2:1, 14 h, 4 h), which
afforded the product as an orange solid.

'H NMR (700 MHz, Chloroform-d) 6 =10.39 (s, 2H, Hyy), 8.77 — 8.74 (m, 2H, Herpyridine), 8.64 (d, J
=7.7 Hz, 2H, Hterpyridine); 8.57 (S, 2H, Hterpyridine)/ 8.47 —8.43 (m,
2H, Hisophthal)r 8.40 (S, 2H, HNH)r 8.37 - 8.33 (mr 1H, Hisophthal):
8.32 (d, J = 1.5 Hz, 1H, Hiscphtha), 8.11 (t, J = 7.8 Hz, 2H,
Heerpyrigine), 7.90 (t, J = 7.1 Hz, 2H, Higopntnal), 7.79 (d, J = 6.9 Hz,
2H, Hazobenzene), 7.56 (d, J = 2.4 Hz, 1H, Hyanthene), 7.51 (d, ) = 2.4
Hz, 1H, Hyanthene), 7.46 (d, J = 2.2 Hz, 1H, Hyanthene), 7.44 — 7.40
(m; 3H: Hazobenzene): 7.41-7.37 (m; ZH; Hterpyridine); 7.37 (d/ J=
8.1 Hz, 2H, Honeny)), 7.30 = 7.26 (M, 2H, Hopeny), 7.25 — 7.13 (m,
15H, Hyiy), 7.13 (d, J = 2.2 Hz, 1H, Hyanthene), 7.06 (d, J = 9.1 Hz,
2H: thenyl): 6.99 (S; 4H: Haryl TLM)/ 6.96 (S, 4H; Haryl TLM)/ 6.72 (d/
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3C NMR (176 MHz, Chloroform-d)

MS (ESI, pos. Mode, DCM/ACN)

3.8 Synthesis of Rot4

J=8.6 Hz, 2H, Hypeny), 6.58 (d, J = 8.2 Hz, 2H, Hphenyl), 6.45 (d, J
= 9.1 Hz, 2H, Hphenyr), 5.03 (s, 2H, Hcue), 5.10 — 4.76 (br, 2H,
Hdiketopiperazine)r 4.32 - 3.98 (br: 2H, Hdiketopiperazine): 4.17 (S, ZH,
Henz), 3.80 (s, 2H, Hewz), 3.29 (s, 2H, Hewz), 2.37 (s, 6H, Heus
xanthene), 2.36 — 2.22 (m, 6H, Henz diamide), 2-21 — 2.15 (m, 2H,
Heha diamide), 2:13 (s, 12H, Hewz rum), 2.01 (s, 12H, Hewz i), 1.96 —
1.91 (m, 2H, Hcuz giamige), 1.69 (M, 10H, Heyciohexyl), 1.59 (m, 6H,
Heyclohexyl), 1.52 = 1.43 (M, 4H, Hyciohexyt), 1.36 (s, 9H, Hegy), 1.32
(s, 9H, Higy) ppm.

6 =172.7, 168.7, 165.1, 164.5, 164.5, 162.0, 157.8, 155.9,
155.8, 155.6, 155.4, 155.3, 155.3, 154.5, 153.8, 153.5, 149.4,
148.9, 148.1, 147.8, 146.9, 146.7, 146.5, 146.1, 146.1, 145.2,
143.7, 143.4, 141.9, 141.1, 140.6, 140.5, 140.3, 140.0, 139.3,
137.0, 137.0, 136.7, 136.5, 136.4, 135.4, 135.2, 134.9, 134.7,
132.7, 132.5, 132.2, 132.1, 131.6, 131.6, 131.5, 131.3, 131.3,
131.1, 130.8, 129.3, 129.2, 129.1, 128.8, 128.7, 128.7, 128.6,
128.3, 128.0, 128.0, 127.9, 127.7, 126.6, 126.5, 126.1, 126.1,
125.8, 125.5, 125.1, 124.7, 124.3, 124.2, 123.8, 123.6, 123.1,
123.0, 122.7, 122.7, 121.3, 119.8, 115.1, 113.3, 112.3, 91.9,
89.5, 69.8, 66.3, 64.4, 52.8, 49.6, 49.1, 45.9, 44.9, 43.8, 43.7,
40.2, 36.1, 35.9, 35.1, 35.0, 34.9, 34.8, 34.8, 34.5, 31.6, 31.5,
31.2,29.8, 26.4,22.9,19.3,19.0, 18.9, 8.7, 1.1 ppm.

m/z: calculated 2422.1814 found 2422.1807 ([M+Na]’), m/z:
calculated 1211.5943 found 1211.5929 ([M+H+Na]™), m/z:
calculated 1222.5853 found 1211.5878 ([M+2Na]™).

In a pressure tube, Rot2 (100 mg, 0.044 mmol), trimethylsilylacetylene (13.0 mg, 0.132 mmol),
bis(triphenylphosphine)palladium(ll) dichloride (3.08 mg, 4.4 umol) and copper(l) iodide (0.84 mg,
4.4 umol) were dissolved in a mixture of dry THF (8 mL), dry DMF (2 mL) and dry
diisopropylethylamine (6 mL) and stirred at 40 °C for 24 h. The solution was diluted with DCM (50
mL), washed with dest. water (2 x 50 mL) and brine (50 mL), dried with magnesium sulfate, filtered
and the solvent evaporated. The residue was purified by preparative TLC (silica, ethyl acetate/n-
hexane 6:5), which afforded the TMS-protected intermediate as an orange solid. The intermediate
and potassium fluoride (26.0 mg, 0.44 mmol) were dissolved in THF (8 mL) and MeOH (6 mL) and
stirred for 24 h at room temperature. The solvents were evaporated and the residue dissolved in
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DCM (50 mL). The solution was washed with dest. water (2 x 50 mL), dried with magnesium sulfate,
filtered and the solvent evaporated. The residue was purified by preparative TLC (silica, ethyl
acetate/cyclohexane 5:7), which afforded the product as an orange solid (87.7 mg, 0.04 mmol, 92 %).

1H NMR (500 MHz, Chloroform-d)

3C NMR (126 MHz, Chloroform-d)

MS (ESI, pos. Mode, DCM/ACN)

6 =10.40 (s, 2H, Hyu), 8.57 (s, 1H, Hisophthal), 8.48 (d, J = 7.7 Hz,
2H, Hisophthal), 8.40 — 8.37 (m, 2H, Hyu), 8.26 (d, J = 1.6 Hz, 2H,
Hisophtnat), 8.13 (t, J = 7.8 Hz, 1H, Hisopntnal), 7.86 — 7.82 (m, 2H,
Hazobenzene), 7-59 (d, J = 2.4 Hz, 1H, Hyanthene), 7.54 (d, J = 2.4 Hz,
1H, Hyanthene), 7.50 (d, J = 2.4 Hz, 1H, Hyanthene), 7.48 — 7.44 (m,
3H, Hazobenzene), 7.42 (d, J = 8.4 Hz, 2H, Hghenyl), 7.29 (d, J = 6.1
Hz, 2H, Hphenyl), 7.28 —7.25 (m, 5H, Hyiey), 7.26 = 7.13 (m, 10H,
Heieyt), 7.19 (d, J = 2.4 Hz, 1H, Hyanthene), 7.09 (d, J = 9.0 Hz, 2H,
Hoheny), 7.00 (s, 4H, Hayitim), 6.97 (s, 4H, Hayitv), 6.72 (d, J =
8.7 Hz, 2H, Hphenyr), 6.59 (d, J = 8.5 Hz, 2H, Hphenyl), 6.46 (d, J =
9.1 Hz, 2H, Hphenyt), 5.04 (s, 2H, Heya), 5.22 — 4.78 (br, 2H,
Haiketopiperazine), 4.17 (s, 2H, Hau), 4.33 — 3.93 (br, 2H,
Haiketopiperazine), 3-87 (S, 2H, Hena), 3.31 (s, 2H, Hewa), 3.17 (s, 1H,
Hacetylene): 241-2.25 (mr 12H: HCH3); 2.19 (m: 2Hr HCHZ diamide);
2.15 (s, 12H, Hepz mim), 2.11 (m, 2H, Hewa diamide), 2-01 (s, 12H,
Hews tum), 1.72 (m, 10H, Heyciohexyl), 1.61 (M, 6H, Heycionexyl), 1.54
—1.47 (m, 4H, Heycionexy), 1.39 (s, 9H, Hepy), 1.36 (s, 9H, Hepy)
ppm.

& = 172.7, 168.7, 165.1, 164.5, 162.0, 157.8, 155.3, 153.6,
148.9, 148.0, 147.8, 146.7, 146.6, 146.1, 145.2, 143.7, 141.0,
140.6, 139.3, 136.7, 135.3, 135.2, 134.9, 134.8, 132.5, 131.6,
131.5, 131.3, 131.3, 131.1, 130.8, 129.3, 129.2, 129.1, 128.0,
127.7, 127.0, 126.6, 126.5, 126.1, 126.1, 125.8, 125.4, 125.1,
124.5, 123.8, 123.0, 122.7, 115.1, 113.2, 112.4, 82.0, 79.5,
69.7, 66.3, 64.4, 53.5, 52.8, 49.6, 49.1, 44.9, 43.8, 43.6, 40.2,
36.1, 35.9, 35.9, 35.0, 34.9, 34.8, 34.7, 31.6, 31.5, 26.3, 22.9,
22.8,19.3, 18.9 ppm.

m/z: calculated 2191.1017 found 2191.0848 ([M+Na]’), m/z:
calculated 1104.0415 found 1104.0358 ([M+H+K]™), m/z:
calculated 1107.0455 found 1107.0455 ([M+2Na]™), m/z:
calculated 1115.0324 found 1115.0321 ([M+Na+K]™).
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Figure S12: ESI-MS spectrum (DCM, MeOH) of Rot1.
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Figure S20: 3¢ NMR spectrum (298 K, CDCI;) of Rot4.
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5. '"H NMR and IRMPD-ESI-FTICR MS spectra for the formation of
Rotl

a) b)

TM3 ESI-MS of Rot1 1128.6281 [measured
2+
A _A_LLA_A_A—
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|
. b | .’l Ll
, : 1129.0 1310 miz
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ol 599.2900
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Figure $22 a) 'H NMR spectra of TLM 3 (top), Rot1 (middle) and the free axle of the rotaxane (down); b) ESI-FTICR MS spectra and IRMPD
fragmentation of Rot1.

The formation of Rotl was followed by ‘*H NMR spectroscopy (Figure 2d; i, ii). The "H NMR spectrum
of TLM 1 shows the macrocycle amide and inner isophthalic protons a and b at 7.30 respectively 7.98
ppm, which are shifted downfield by 1.15 and 0.62 ppm in the spectrum of the rotaxane due to
hydrogen bonding to the axle. Comparison of the NMR spectra of free axle and rotaxane reveals
significant upfield shifts of the diamide methyl and methylene protons e, f and g of 0.66, 0.75 and
1.56 ppm and the adjacent methylene protons j and k of 0.48 and 0.75 ppm due to the shielding
effect of TLM 1, while the methylene protons c and d of the diketopiperazine binding site remain
unaffected at 5.01 and 4.11 ppm. This is clear evidence for the TLM being located at the diamide and
not at the diketopiperazine binding site.

The ESI-FTICR MS spectrum shows a peak for the rotaxane dication at m/z 1128, with the isotope
pattern being in agreement with the calculated one. IRMPD fragmentation of this ion leads to
fragmentation of the axle at the ether bond between the two phenyl rings, yielding two singly
charged fragments at m/z 599 and 1658. Fragment 1658 consisting of the macrocycle and part of the
axle further dissociates simultaneously. As no separation of axle and macrocycle without the
fragmentation of a bond could be observed, it can be concluded that axle and macrocycle are
mechanically interlocked.
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Scheme S2: Peak assignment for IRMPD spectra of Rot1.

As a control experiment, *H NMR and MS spectra of a 1:1 mixture of the free axle of Rotl and TLM 1
have been recorded (Figure S23). The mixture was equilibrated at room temperature over 24h prior
to all measurements.
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10955805 1396370
1039.6092 '
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Figure S23: a) '"H NMR spectra of Rotl (orange) and a 1:1 mixture of TLM 1 and the free axle of Rot1 (black) in CDCI; at
room temperature and b) ESI-MS spectrum of a 1:1 mixture of TLM 1 and the free axle of Rot1.
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The 'H NMR spectrum of the 1:1 mixture of TLM 1 and the free axle of Rotl (Figure S23a, black)
clearly differs from the spectrum of Rotl (Figure S23a, orange). The downfield shifts of the
macrocycles amide and inner isophthalic protons indicate the formation of side-on complexes. The
protons of the diamide binding site are not shifted upfield in the 1:1 mixture, with shows that they
are not encapsulated by the macrocycle.

The ESI-MS spectrum (Figure S23b) exhibits signals for the free macrocycle (m/z= 1017 [M+H]", 1039
[M+Na]*, 1055 [M+K]", 2034 [2M+H]", 2034 [2M+Na]’) and the free axle (m/z= 1239 [M+H]", 1261
[M+Na]" 1277 [M+K]"), while no signals for an 1:1 complex of axle and macrocycle are present. The
absence of any side-on complexes is not surprising, as side-on complexes with TLM usually are non-
detectable in the gas phase.

Both experiments confirm that in a 1:1 mixture of free axle and macrocycle, the macrocycle does not
thread the axle.
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6. Variable-temperature ‘H NMR spectra of Rot1
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Figure S24: Variable temperature 500 MHz "H NMR spectra of Rot1 in CDCl; from 300 K to 228 K.
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7. Determination of binding constants

The binding behaviour of diamide 7 to TLM 1 was investigated with NMR experiments. Since there is
a fast exchange on the NMR timescale, the binding constants were evaluated by NMR titration
analysis.® ° A solution of TLM 1 (5.00 mg) in CDCl; (0.65 mL) was placed in an NMR tube and treated
with different amounts of 2. A 'H NMR spectrum was measured after each injection and the guest
concentrations were determined by integration of the signals. The binding constant was determined
based on a 1:1 binding model to be 1,400 + 140 M™.

O, O
< o
' H
1
|
',

Z

.
3 s S

OH
Ug)

N

I

Figure S25: Pseudorotaxane formation.
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Figure $26: NMR titration.

9. Clicked surfaces

To deposit Rot4, glass surfaces were functionalized with a self-assembled monolayer of AUS ((11-
azidoundecyl)triethoxysilane) by immersing the substrate in a 5 mM solution of AUS. Immersing
these surfaces in a 1 mM solution of Rot4 in the presence of a catalytic amount of Cat, Rot4 was
covalently attached to the SAM in an azide-alkyne click-reaction (Figure S27a). On-surface switching
was conducted likewise to the surfaces functionalized with Rot3 and resulted in the same effects
(Figure S27b).
The surfaces functionalized with Rot4 were analysed with transmission UV-Vis spectroscopy
analogously to the surfaces with Rot3. An increase in absorbance was detected in the UV-Vis
spectrum after deposition of Rot4, which resembles to the UV-Vis spectra of Rotl in solution and
therefore indicates a successful monolayer formation. After irradiation at A;=365 nm, the UV-Vis
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spectra of the surface showed a decrease in absorbance in the region between 300 and 500 nm,
indicating the formation of cis-configurated Rot4. After irradiation at A,= 470 nm, the absorbance of
the surface increased up to about 90 % of its initial value, indicating almost complete back-switching
to the trans-configuration of Rot4 (Figure S27, c).

The stronger absorbance for the surfaces functionalized with Rot3 in comparison to the surfaces with
Rot4 leads to the conclusion that a larger amount of Rot3 than Rot4 was deposited and thus the
monolayer is packed more densely. XPS measurements show a molecular ratio of Rot4 to AUS of
1:45, which is about three times lower than the packing density of Rot3.
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Figure S27: a) Surface deposition of Rot4, b) transmission UV-Vis spectra of surfaces, c) reversibility of the on-surface photoswitching
tested over five cycles.

10. Surface preparations

The surface preparation procedures were developed in previous studies of our group. In here, only a
simple work instruction without further explanations is given.'**

Surface cleaning

Glass slides and silicon wafers were cut to 2cm? size and cleaned by immersing them for 30 min in
piranha solution (H,0, 30% : conc. H,SO, 1:3). The surfaces were then rinsed with dest. water for 1
min.

Deposition of Rot3

Cleaned surfaces were dipped in EtOH to remove the remaining water droplets on the surface, then
dipped two times in DCM and then immersed in a 5mM solution of PDS ((12-(4-
pyridyl)dodecyl)triethoxysilane) in DCM for 24 h. The surfaces were then dipped two times in DCM
followed by immersion in DCM for 10 min to remove any unspecific bound molecules. The surfaces
were then dried with an argon stream to record background UV spectra.

The surfaces were immersed in a 1 mM solution of Pd(CH3;CN),(BF,), in acetonitrile for 30 min, then
dipped two times in acetonitrile followed by immersion in acetonitrile for 10 min, and then two times
in DCM followed by immersion in a 1 mM solution of Rot3 in DCM for 24 h. Afterwards, the surfaces
were dipped two times in DCM, immersed in DCM for 10 min, and dried with an argon stream. The
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solvents used for washing the substrates by dipping or immersing were changed after each surface
contact.

Deposition of Rot4

Cleaned surfaces were dipped in EtOH to remove remaining water, subsequently washed two times
with toluene and immersed in a 5 mM solution of AUS in toluene at 80 °C for 24 h. Followed by
rinsing in toluene, twice in DCM and subsequent immersion for 10 min in DCM. The surfaces were
then dried with an argon stream to record background UV spectra.

The surfaces were afterwards immersed in a 1 mM solution of Rot4 containing 5 mol% catalyst 9 for
24 h, then dipped two times in DCM followed by immersion in DCM for 10 min and dried under an
argon stream.

11. NEXAFS and XPS
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Figure S28. Survey XP-spectrum (hv = 849 eV) of the AUS monolayer.
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Figure S29. C 1s (hv = 385 eV) and N 1s (hv = 500 eV) Xp-spectra of the AUS monolayer. Chemical shifts are in line with
literature.’
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Figure S30. N K-edge NEXAFS spectrum of the AUS monolayer.
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Figure S31: (angle-resolved) C-K NEXAFS spectra of a Rot3-monolayer deposited to Pd-PDS; pristine (left), after irradiation with 365 nm
for 1 h (middle), and after 1 h irradiation with 365 nm plus 1.5 h with 470 nm (right).
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Figure S32: N K-edge NEXAFS spectrum of a Rot3-monolayer deposited to PDS-Pd (PDS-PdRot3).
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Figure S33: C K-edge (left) and N K-edge (right) of drop-coated Rot3.
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Figure S34: Survey SR-XP spectrum of PDS-PdRot3.
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Figure S35: C 1s, N 1s, and Pd 3d SR-XP spectra of PDS-PdRot3.
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Figure S36: (angle-resolved) C K-edge NEXAFS spectra of Rot4 clicked to AUS (AUS-Rot4).
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Figure S37: N K-edge NEXAFS of AUS-Rot4.
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Figure S38: C K-edge (left) and N K-edge (right) NEXAFS spectra of drop-coated Rot4.
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Figure S39: Survey SR-XP spectrum of AUD-Rot4.
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Figure S40: C 1s and N 1s SR-XP spectra of AUD-Rot4.

Table 1. Summary of the C 1s peak fits. Theoretical peak areas for aromatic and aliphatic carbon atoms were calculated
for different ratios of the rotaxane to the underlying monolayer. The best fit was obtained at a 1:15 ratio for Rot3 and a

1:45 ratio for Rot 4.

Rot3-PdPDS Rot4-AUS
binding assigned
theor. Value  rel. peak area theor. Value rel. peak area
energy [eV] atom
(calc. for 1:15) (exp.) (calc. for 1:45) (exp.)
284.7 Cop2 32 32 12 12
285.1 -CH,- 50 52 70 73
286 CH,-N, Cg-N 15 12 15 10
287 CNO 3 4 3 5
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12. Contact angle measurements

Contact angle measurements were conducted for a PDS-Rot3 monolayer on a glass surface over five
consecutive switching cycles (Figure S37). In each switching cycle, the monolayer was irradiated at
A1 =365 nm for 1 h and subsequently at A, =470 nm for 1.5 h. The experiments were repeated for
every measurement point on two surfaces with three measurement spots on each surface. Averaged
values of all measurements are reported. An error of 1° for inaccurate reading, differences in volume
of the droplet and the measurement time is assumed. The contact angles display a strong and
reversible change in polarity upon photoswitching of the rotaxane monolayer.
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Figure S41: Contact angle measurements.
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