Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

CuI-catalyzed Intramolecular Aminocyanation of Terminal Alkynes in *N*-(2-Ethynylphenyl)-*N*-sulfonylcyanamides *via* Cu-vinylidene Intermediates

Zhen-Yuan Liao, Pen-Yuan Liao, and Tun-Cheng Chien*

Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

tcchien@ntnu.edu.tw

compound #	content	page #	compound #	content	page #
Schemes S1 & S2:			8b	¹ H NMR	43
S4a	¹ H NMR	3		¹³ C NMR	44
	¹³ C NMR	4	8c	¹ H NMR	45
S4b	¹ H NMR	5		¹³ C NMR	46
	¹³ C NMR	6	8d	¹ H NMR	47
S4c	¹ H NMR	7		¹³ C NMR	48
	¹³ C NMR	8	8e	¹ H NMR	49
S4d	¹ H NMR	9		¹³ C NMR	50
	¹³ C NMR	10	8 f	¹ H NMR	51
S4e	¹ H NMR	11		¹³ C NMR	52
	¹³ C NMR	12	8g	¹ H NMR	53
S4f	¹ H NMR	13		¹³ C NMR	54
	¹³ C NMR	14	8h	¹ H NMR	55
S4h	¹ H NMR	15		¹³ C NMR	56
	¹³ C NMR	16	8 i	¹ H NMR	57
S4i	¹ H NMR	17		¹³ C NMR	58
	¹³ C NMR	18	8j	¹ H NMR	59
S4j	¹ H NMR	19		¹³ C NMR	60
	¹³ C NMR	20	8k	¹ H NMR	61
S4k	¹ H NMR	21		¹³ C NMR	62
	¹³ C NMR	22	81	¹ H NMR	63
S4 1	¹ H NMR	23		¹³ C NMR	64
	¹³ C NMR	24	8m	¹ H NMR	65
S4m	¹ H NMR	25		¹³ C NMR	66
	¹³ C NMR	26	8n	¹ H NMR	67
S4p	¹ H NMR	27		^{13}C NMR	68
	¹³ C NMR	28	80	¹ H NMR	69
S5g	¹ H NMR	29		13 C NMR	70
	¹³ C NMR	30	8p	¹ H NMR	71
S5n	¹ H NMR	31		¹³ C NMR	72
	¹³ C NMR	32			
S50	¹ H NMR	33	Schemes S3-S6:	_	
	¹³ C NMR	34	S8	¹ H NMR	73
7g	¹ H NMR	35		¹³ C NMR	74
	^{13}C NMR	36	2	¹ H NMR	75
7n	¹ H NMR	37		^{13}C NMR	76
	¹³ C NMR	38	S12	¹ H NMR	77
70	¹ H NMR	39		¹³ C NMR	78
	¹³ C NMR	40	12a	¹ H NMR	79
8a	¹ H NMR	41		¹³ C NMR	80
	¹³ C NMR	42	12b	¹ H NMR	81

	¹³ C NMR	82	13i	¹ H NMR	131
12c	¹ H NMR	83	- 0	¹³ C NMR	132
	¹³ C NMR	84	14	¹ H NMR	133
12d	¹ H NMR	85		¹³ C NMR	134
	¹³ C NMR	86	15	¹ H NMR	135
12e	1 H NMR	87		¹³ C NMR	136
	¹³ C NMR	88		C I (I)III	100
12f	¹ H NMR	89	Scheme 5:		
	¹³ C NMR	90	10a	¹ H NMR	137
12g	¹ H NMR	91	200	¹³ C NMR	138
8	13 C NMR	92		ORTEP projection	139
12h	¹ H NMR	93		Crystal data	140~146
	13 C NMR	94	10h	¹ H NMR	147
12i	¹ H NMR	95	100	¹³ C NMR	148
121	13 C NMR	96	10c	¹ H NMR	149
12i	¹ H NMR	97	100	¹³ C NMR	150
12)	13 C NMR	98	10d	¹ H NMR	151
7a	1 H NMR	99	Iou	13 C NMR	152
74	13 C NMR	100	10e	¹ H NMR	152
	CIUM	100	100	13 C NMR	153
Scheme S7•			10f	¹ H NMR	154
Scheme 57. S14	1 H NMR	101	101	13 C NMR	155
514	13 C NMR	102	10σ	¹ H NMR	150
16	¹ H NMR	102	IUg	13 C NMR	157
10	13 C NMR	103	10h	¹ H NMR	150
	CIUM	104	1011	13 C NMR	160
Scheme S8.			10i	¹ H NMR	161
Stheme 50: S169	1 H NMR	105	101	13 C NMR	162
510a	13 C NMR	105	10j	¹ H NMR	162
\$16b	¹ H NMR	100	10j	13 C NMR	164
5100	13 C NMR	107	10k	¹ H NMR	165
69	¹ H NMR	100	IUK	13 C NMR	165
Ua	13 C NMR	110	101	¹ H NMR	167
6h	¹ H NMR	110	101	¹³ C NMR	168
00	13 C NMR	112	10m	¹ H NMR	160
	CIVINIK	112	10111	13 C NMR	10)
Scheme 3(A)•			10n	¹ H NMR	170
Q	1 H NMR	113	1011	13 C NMR	171
	13 C NMR	113	100	¹ H NMR	172
	ORTEP projection	114	100	13 C NMR	173
	Crystal data	116~122	10n	¹ H NMR	174
	Crystar data	110-122	тор	13 C NMR	175
Scheme 4.				CIUMIN	170
13f	1 H NMR	123	Scheme 7(E)		
101	13 C NMR	123	23	¹ H NMR	177
13σ	1 H NMR	125	20	13 C NMR	178
1.5	13 C NMR	125		ORTEP projection	179
13h	¹ H NMR	120		Crystal data	180~187
1311	13 C NMR	127		Ciystai uata	100-107
13i	¹ H NMP	120			
1.51	¹³ C NMP	130			
		150			

$\mathbf{L}_{\mathbf{S}}^{\mathbf{L}_{\mathbf{S}}}$			40.14 33.93 33.72 33.651 33.60 38.88	Current Data Parameters NAME SO001 EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20141030 Time 9.16 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zapg30 TD 32768 SOLVENT DMSO NS 1000 DS 0 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 0.6815744 sec RG 198.09 DW 20.800 usec DE 6.50 usec TE 300.0 K D1 2.0000000 sec D11 0.0300000 sec D11 0.0300000 sec D11 0.0300000 sec D11 10.06233319 MHz NUC1 13C P1 10.00 usec PLW1 46.0000000 W ====== CHANNEL f2 ====== SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec
				PLW2 15.0000000 W PLW12 0.34252000 W PLW13 0.27744001 W F2 - Processing parameters SI 32768 SF 100.6128201 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.00
190 180 170 160 15	0 140 130 120 110 100	90 80 70	60 50 40 30 20 10	0 ppm

down point

down point pure

C C C H	 	 40.13 39.71 39.50 39.29 38.87	Current Data Parameters NAME SD-062(old) EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date 20140424 Time 15.45 INSTRUM spect PROBHD 5 mm SEI 1H-13 PULPROG zgpg30 TD 32768 SOLVENT DMSO NS 704 DS 0 SWH 24038 461 Hz
S4e			FIDRES 0.733596 Hz AQ 0.6815744 sec RG 2896.3 DW 20.800 usec DE 6.50 usec TE 299.3 K D1 2.00000000 sec D11 0.03000000 sec TD0 1 ======= CHANNEL f1 ======= NUC1 13C P1 15.50 usec PL1 7.30 dB SEO1 400 6232325 MHz
			SF01 100.6233325 MHz ====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 -4.20 dB PL12 13.10 dB PL13 16.10 dB SF02 400.1316005 MHz F2 - Processing parameters SI 32768
			SF 100.6128121 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00
190 180 170 160 15	120 110 1		

pure

recrystallized from EtOAc

recrystallized from EtOAc

— 1 55 .71	/ 141.26 / 139.55 / 129.63 / 127.57 / 119.39 / 110.04		40.13 39.29 39.29 39.29 39.08 33.87 23.74	Current Data Parameters NAME SD-090(new) EXPNO 3 PROCNO 1
<i>i</i> -Pr C ^C N H S4j	1/ 1/ 1			F2 - Acquisition Parameters Date_ 20140619 Time 20.04 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 32768 SOLVENT DMSO NS 447 DS 0 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 0.6815744 sec RG 198.09 DW 20.800 usec DE 6.50 usec TE 299.1 K D1 0.0300000 sec D11 0.0300000 sec TD0 1
				SFO1 100.6233319 MHz NUC1 13C 13C P1 10.00 usec PLW1 46.00000000 W
				Example CHANNEL f2 SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 15.0000000 W PLW12 0.34252000 W PLW13 0.27744001 W
				F2 - Processing parameters SI 32768 SF 100.6128177 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.00
and the second particular second strange and the second second second second second second second second second			der werdens spieligt ander seiner in der ster d	
190 180 170 160 15	50 140 130 120 110 100	90 80 70	60 50 40 30 20 10 0 p	om

pure

- 155.45	—140.77	- 131.22 - 129.40 - 124.48 - 124.48 - 120.43			40.13 39.71 39.29 39.29 39.29 38.87 38.87	Current Data Paramet NAME SD-096(ne EXPNO 4 PROCNO 1	ters ew)
CI CI NH2 S4m	2					F2 - Acquisition Paran Date_ 20140627 Time 17.55 INSTRUM spec PROBHD 5 mm PAB PULPROG 2090 TD 32768 SOLVENT DM3 NS 1000 DS 0 SWH 24038.46 FIDRES 0.73359 AQ 0.6815744 RG 198.09 DW 20.800 u DE 6.50 use TE 300.6 K D1 2.00000000 D11 0.03000000 D11 0.03000000	neters t IBO BB/ I30 SO 1 Hz SO 1 Hz Sec sec sec Sec D sec
			I			====== CHANNEL SFO1 100.62333' NUC1 13C P1 10.00 use PLW1 46.000000	. f1 ====== 19 MHz ec 00 W
						======= CHANNEL SFO2 400.13160 NUC2 1H CPDPRG[2 waltz PCPD2 90.00 PLW2 15.000000 PLW12 0.342520 PLW13 0.277440	f2 D5 MHz 16 usec 00 W 00 W 00 W 01 W
						F2 - Processing paran SI 32768 SF 100.6128182 WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.00	neters ? MHz
						a - Mary Latin David Mary Mary Ala	
190 180 170 160 15	50 140	130 120 1	10 100 90	80 70	60 50 40 30 20	10 0 ppm	

33 / 187

0 ppm

-

$Me + C = C - H \\ Me + C = C - H \\ N - CN \\ 8i + 133 \\ 133 $	83.90 77.32 77.20 76.68	21.71	Current Data Parameters NAME SD-061(old) EXPNO 4 PROCNO 1 F2 - Acquisition Parameters Date_ 20140423 Time 19.38 INSTRUM spect PROBHD 5 mm SEI 1H-13 PULPROG zgp30 TD 32768 SOLVENT CDCI3 NS 206 DS 0 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 0.6815744 sec RG 2896.3 DW 20.800 usec DE 6.50 usec TE 299.3 K D1 2.00000000 sec D11 0.03000000 sec D110 1
190 180 170 160 150 140 130 120 110 100	90 80 70 60 50	40 30 20 10 0 ppm	

pure

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

pure

		134.38 134.00 129.35 129.05 128.05 129.05		77.55 77.23 76.91		60.0-	Current Data Parameters NAME SO012 EXPNO 3 PROCNO 1
С ^С -ТМS - N - N - ОН S8 NH ₂	5			¥			F2 - Acquisition Parameters Date_ 20141115 Time 9.15 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 32768 SOLVENT CDC13 NS 1000 DS 0 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 0.6815744 sec RG 198.09 DW 20.800 usec DE 6.50 usec TE 299.4 K D1 2.00000000 sec D11 0.03000000 sec D11 0.13000000 sec TD0 1
							======================================
		1.4					======= CHANNEL f2 ====== SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 15.0000000 W PLW12 0.34252000 W PLW13 0.27744001 W
							F2 - Processing parameters SI 32768 SF 100.6127516 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.00
					nakeumagnungungangnagnanggulayakan nationas		
	0 150	140 130 120 1	10 100 9	0 80 70	60 50 40 30	20 10 0 ppm	

103 / 187

105 / 187

				77.55 77.23 76.91 76.26		31.38 28.73 19.63 14.07	Current Data Parameters NAME SC127 EXPNO 3 PROCNO 1
$C^{=C^{-C_{6}H_{1}}}$	3			¥			F2 - Acquisition Parameters Date20140514 Time 8.46 INSTRUM spect PROBHD 5 mm SEI 1H-13 PULPROG zgpg30 TD 32768 SOLVENT CDC13 NS 100 DS 0 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 0.6815744 sec RG 32768 DW 20.800 usec DE 6.50 usec TE 296.2 K D1 2.00000000 sec D1 0.03000000 sec TD0 1
							Employee CHANNEL f1 NUC1 13C P1 15.50 usec PL1 7.30 dB SFO1 100.6233325 MHz
							Emission CHANNEL f2 CPDPRG[2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 -4.20 dB PL12 13.10 dB PL13 16.10 dB SFO2 400.1316005 MHz
							F2 - Processing parameters SI 32768 SF 100.6127675 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00
ynneline ar fel hadarrentar							
190 180 170 16	io 150 140) 130 120 110 10	0 90	80 70 60	50 40	30 20 10 0 ppm	

Table 1. Crystal data and structure refinement for a15780. Identification code a15780 Empirical formula C15 H10 N2 Formula weight 218.25 Temperature 200(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Pbca Space group Unit cell dimensions a = 13.936(7) Å $\alpha = 90^{\circ}$. b = 7.077(3) Å $\beta = 90^{\circ}$. c = 22.807(10) Å $\gamma = 90^{\circ}$. 2249.2(17) Å³ Volume Ζ 8 Density (calculated) 1.289 Mg/m³ 0.078 mm⁻¹ Absorption coefficient 912 F(000) 0.21 x 0.18 x 0.03 mm³ Crystal size Theta range for data collection 3.43 to 25.19°. -16<=h<=16, -8<=k<=5, -26<=l<=27 Index ranges Reflections collected 15611 Independent reflections 2016 [R(int) = 0.1822] Completeness to theta = 25.19° 99.3 % Absorption correction multi-scan 0.9977 and 0.9839 Max. and min. transmission Refinement method Full-matrix least-squares on F² 2016 / 0 / 154 Data / restraints / parameters Goodness-of-fit on ${\rm F}^2$ 0.976 R1 = 0.0582, wR2 = 0.1137Final R indices [I>2sigma(I)] R1 = 0.1301, wR2 = 0.1461R indices (all data) 0.213 and -0.222 e.Å-3 Largest diff. peak and hole

	Х	у	Z	U(eq)
C(1)	725(2)	6898(4)	4090(1)	36(1)
C(2)	1117(2)	9035(4)	4881(1)	33(1)
C(3)	852(2)	7998(4)	5364(1)	37(1)
C(4)	1048(2)	8802(4)	5905(1)	43(1)
C(5)	1485(2)	10561(4)	5949(1)	44(1)
C(6)	1728(2)	11584(4)	5459(1)	42(1)
C(7)	1551(2)	10809(4)	4908(1)	34(1)
C(8)	1705(2)	11441(4)	4316(1)	35(1)
C(9)	1374(2)	10114(4)	3938(1)	33(1)
C(10)	1338(2)	10111(4)	3296(1)	33(1)
C(11)	2066(2)	10992(4)	2984(1)	45(1)
C(12)	2036(3)	11077(4)	2377(1)	53(1)
C(13)	1290(2)	10281(4)	2074(1)	48(1)
C(14)	560(2)	9386(4)	2376(1)	43(1)
C(15)	583(2)	9297(4)	2984(1)	38(1)
N(1)	481(2)	5417(4)	3949(1)	52(1)
N(2)	998(2)	8602(3)	4280(1)	33(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)for a15780. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(1)	1.148(3)
C(1)-N(2)	1.337(4)
C(2)-C(3)	1.374(4)
C(2)-C(7)	1.395(4)
C(2)-N(2)	1.413(3)
C(3)-C(4)	1.386(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.389(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.374(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.392(4)
C(6)-H(6)	0.9500
C(7)-C(8)	1.438(4)
C(8)-C(9)	1.356(4)
C(8)-H(8)	0.9500
C(9)-N(2)	1.425(3)
C(9)-C(10)	1.465(3)
C(10)-C(11)	1.386(4)
C(10)-C(15)	1.394(4)
C(11)-C(12)	1.388(4)
C(11)-H(11)	0.9500
C(12)-C(13)	1.370(4)
C(12)-H(12)	0.9500
C(13)-C(14)	1.382(4)
C(13)-H(13)	0.9500
C(14)-C(15)	1.387(3)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
N(1)-C(1)-N(2)	177.3(3)
C(3)-C(2)-C(7)	124.1(3)
C(3)-C(2)-N(2)	129.0(3)
C(7)-C(2)-N(2)	106.8(2)

Table 3. Bond lengths [Å] and angles [°] for a15780.

C(2)-C(3)-C(4)	116.2(3)
C(2)-C(3)-H(3)	121.9
C(4)-C(3)-H(3)	121.9
C(3)-C(4)-C(5)	121.2(3)
C(3)-C(4)-H(4)	119.4
C(5)-C(4)-H(4)	119.4
C(6)-C(5)-C(4)	121.4(3)
C(6)-C(5)-H(5)	119.3
C(4)-C(5)-H(5)	119.3
C(5)-C(6)-C(7)	118.9(3)
C(5)-C(6)-H(6)	120.6
C(7)-C(6)-H(6)	120.6
C(6)-C(7)-C(2)	118.1(3)
C(6)-C(7)-C(8)	134.3(3)
C(2)-C(7)-C(8)	107.6(2)
C(9)-C(8)-C(7)	109.4(3)
C(9)-C(8)-H(8)	125.3
C(7)-C(8)-H(8)	125.3
C(8)-C(9)-N(2)	107.2(2)
C(8)-C(9)-C(10)	130.5(3)
N(2)-C(9)-C(10)	122.3(2)
C(11)-C(10)-C(15)	118.5(3)
C(11)-C(10)-C(9)	119.1(3)
C(15)-C(10)-C(9)	122.4(3)
C(10)-C(11)-C(12)	120.6(3)
C(10)-C(11)-H(11)	119.7
C(12)-C(11)-H(11)	119.7
C(13)-C(12)-C(11)	120.6(3)
C(13)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7
C(12)-C(13)-C(14)	119.7(3)
C(12)-C(13)-H(13)	120.2
C(14)-C(13)-H(13)	120.2
C(13)-C(14)-C(15)	120.2(3)
C(13)-C(14)-H(14)	119.9
C(15)-C(14)-H(14)	119.9

C(14)-C(15)-C(10)	120.6(3)
C(14)-C(15)-H(15)	119.7
C(10)-C(15)-H(15)	119.7
C(1)-N(2)-C(2)	122.9(2)
C(1)-N(2)-C(9)	127.2(2)
C(2)-N(2)-C(9)	109.0(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	44(2)	31(2)	35(2)	4(1)	-2(1)	0(2)
C(2)	30(2)	34(2)	34(2)	-2(1)	-1(1)	5(1)
C(3)	34(2)	34(2)	44(2)	3(1)	2(1)	2(1)
C(4)	40(2)	50(2)	37(2)	6(2)	4(1)	7(2)
C(5)	41(2)	53(2)	39(2)	-9(2)	-1(1)	2(2)
C(6)	39(2)	41(2)	46(2)	-7(2)	-3(1)	-2(2)
C(7)	30(2)	33(2)	38(2)	0(1)	-2(1)	1(1)
C(8)	32(2)	29(2)	45(2)	2(1)	-1(1)	-3(1)
C(9)	34(2)	24(2)	39(2)	5(1)	0(1)	-2(1)
C(10)	38(2)	23(2)	38(2)	4(1)	-5(1)	2(1)
C(11)	51(2)	41(2)	44(2)	5(1)	-2(2)	-14(2)
C(12)	70(3)	47(2)	43(2)	8(2)	8(2)	-14(2)
C(13)	68(3)	40(2)	36(2)	3(1)	2(2)	2(2)
C(14)	49(2)	41(2)	39(2)	-1(1)	-7(2)	-1(2)
C(15)	40(2)	32(2)	41(2)	2(1)	0(1)	-3(2)
N(1)	74(2)	34(2)	47(2)	4(1)	-9(1)	-7(2)
N(2)	36(2)	27(1)	35(1)	1(1)	-4(1)	-2(1)

Table 4.Anisotropic displacement parameters (Å²x 10³) for a15780.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	у	Z	U(eq)
H(3)	552	6798	5329	45
H(4)	880	8138	6252	51
H(5)	1619	11067	6326	53
H(6)	2011	12800	5495	50
H(8)	1993	12606	4207	42
H(11)	2590	11542	3189	55
H(12)	2537	11694	2169	64
H(13)	1273	10343	1658	58
H(14)	41	8831	2168	51
H(15)	81	8677	3189	45

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for a15780.

123 / 187

127 / 187

recrystallized

Table 1. Crystal data and structure refinement for a15781.

Identification code	a15781	
Empirical formula	C16 H12 N2 O2 S	
Formula weight	296.34	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 9.0829(15) Å	α= 90°.
	b = 10.2351(14) Å	β= 97.384(10)°.
	c = 15.664(2) Å	$\gamma = 90^{\circ}.$
Volume	1444.1(4) Å ³	
Z	4	
Density (calculated)	1.363 Mg/m ³	
Absorption coefficient	0.229 mm ⁻¹	
F(000)	616	
Crystal size	0.23 x 0.07 x 0.03 mm ³	
Theta range for data collection	2.26 to 25.02°.	
Index ranges	-10<=h<=10, -12<=k<=12, -18<=l<=18	
Reflections collected	9899	
Independent reflections	2547 [R(int) = 0.0797]	
Completeness to theta = 25.02°	99.6 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9932 and 0.9492	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2547 / 0 / 190	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2sigma(I)]	R1 = 0.0529, wR2 = 0.1059	
R indices (all data)	R1 = 0.1015, $wR2 = 0.1274$	
Largest diff. peak and hole	0.314 and -0.317 e.Å ⁻³	

	х	У	Z	U(eq)
C(1)	3412(3)	1652(3)	1185(2)	31(1)
C(2)	4047(4)	408(3)	1177(2)	41(1)
C(3)	3516(4)	-459(3)	534(2)	49(1)
C(4)	2373(4)	-122(3)	-108(2)	40(1)
C(5)	1822(4)	-1052(4)	-832(3)	60(1)
C(6)	1744(4)	1120(3)	-82(2)	42(1)
C(7)	2260(4)	2008(3)	557(2)	39(1)
C(8)	1717(3)	2233(3)	2932(2)	29(1)
C(9)	604(4)	3057(3)	2540(2)	35(1)
C(10)	-799(4)	2891(4)	2770(2)	43(1)
C(11)	-1103(4)	1951(3)	3373(2)	44(1)
C(12)	6(4)	1152(3)	3768(2)	38(1)
C(13)	1437(3)	1292(3)	3541(2)	29(1)
C(14)	2853(4)	676(3)	3832(2)	31(1)
C(15)	3899(4)	1223(3)	3401(2)	34(1)
C(16)	3119(4)	-298(3)	4498(2)	38(1)
N(1)	3255(3)	2196(2)	2859(2)	31(1)
N(2)	3305(3)	-1058(3)	5036(2)	57(1)
O(1)	3419(2)	4015(2)	1814(2)	42(1)
O(2)	5603(2)	2584(2)	2260(2)	45(1)
S(1)	4043(1)	2747(1)	2009(1)	34(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)for a15781. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(7)	1.390(4)
C(1)-C(2)	1.398(4)
C(1)-S(1)	1.751(3)
C(2)-C(3)	1.381(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.393(5)
C(3)-H(3)	0.9500
C(4)-C(6)	1.396(4)
C(4)-C(5)	1.516(4)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.388(4)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-C(9)	1.397(4)
C(8)-C(13)	1.402(4)
C(8)-N(1)	1.417(4)
C(9)-C(10)	1.378(5)
C(9)-H(9)	0.9500
C(10)-C(11)	1.400(5)
C(10)-H(10)	0.9500
C(11)-C(12)	1.381(4)
C(11)-H(11)	0.9500
C(12)-C(13)	1.398(4)
C(12)-H(12)	0.9500
C(13)-C(14)	1.452(4)
C(14)-C(15)	1.355(4)
C(14)-C(16)	1.441(4)
C(15)-N(1)	1.389(4)
C(15)-H(15)	0.9500
C(16)-N(2)	1.143(4)
N(1)-S(1)	1.687(3)
O(1)-S(1)	1.434(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for a15781.

C(7)-C(1)-C(2)	120.5(3)
C(7)-C(1)-S(1)	120.0(3)
C(2)-C(1)-S(1)	119.5(3)
C(3)-C(2)-C(1)	119.0(3)
C(3)-C(2)-H(2)	120.5
C(1)-C(2)-H(2)	120.5
C(2)-C(3)-C(4)	121.7(3)
C(2)-C(3)-H(3)	119.2
C(4)-C(3)-H(3)	119.2
C(3)-C(4)-C(6)	118.4(3)
C(3)-C(4)-C(5)	121.9(3)
C(6)-C(4)-C(5)	119.8(3)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(4)	121.0(3)
C(7)-C(6)-H(6)	119.5
C(4)-C(6)-H(6)	119.5
C(6)-C(7)-C(1)	119.5(3)
C(6)-C(7)-H(7)	120.2
C(1)-C(7)-H(7)	120.2
C(9)-C(8)-C(13)	122.0(3)
C(9)-C(8)-N(1)	130.3(3)
C(13)-C(8)-N(1)	107.6(3)
C(10)-C(9)-C(8)	116.9(3)
C(10)-C(9)-H(9)	121.6
C(8)-C(9)-H(9)	121.6
C(9)-C(10)-C(11)	122.0(3)
C(9)-C(10)-H(10)	119.0
C(11)-C(10)-H(10)	119.0
C(12)-C(11)-C(10)	120.9(3)

1.431(2)

O(2)-S(1)

С(12)-С(11)-Н(11)	119.5
C(10)-C(11)-H(11)	119.5
C(11)-C(12)-C(13)	118.3(3)
С(11)-С(12)-Н(12)	120.9
C(13)-C(12)-H(12)	120.9
C(12)-C(13)-C(8)	120.0(3)
C(12)-C(13)-C(14)	133.7(3)
C(8)-C(13)-C(14)	106.3(3)
C(15)-C(14)-C(16)	125.7(3)
C(15)-C(14)-C(13)	108.3(3)
C(16)-C(14)-C(13)	126.0(3)
C(14)-C(15)-N(1)	109.5(3)
C(14)-C(15)-H(15)	125.3
N(1)-C(15)-H(15)	125.3
N(2)-C(16)-C(14)	178.4(4)
C(15)-N(1)-C(8)	108.2(3)
C(15)-N(1)-S(1)	122.3(2)
C(8)-N(1)-S(1)	125.3(2)
O(2)-S(1)-O(1)	120.96(13)
O(2)-S(1)-N(1)	104.49(13)
O(1)-S(1)-N(1)	105.95(14)
O(2)-S(1)-C(1)	110.28(15)
O(1)-S(1)-C(1)	109.86(15)
N(1)-S(1)-C(1)	103.67(14)

Symmetry transformations used to generate equivalent atoms:
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	32(2)	35(2)	27(2)	5(2)	5(2)	-1(2)
C(2)	40(2)	39(2)	41(2)	1(2)	-4(2)	6(2)
C(3)	49(3)	40(2)	55(3)	-2(2)	0(2)	9(2)
C(4)	43(2)	40(2)	38(2)	-2(2)	6(2)	-3(2)
C(5)	70(3)	56(3)	53(3)	-13(2)	2(2)	0(2)
C(6)	46(2)	42(2)	36(2)	6(2)	-1(2)	-2(2)
C(7)	42(2)	39(2)	34(2)	7(2)	3(2)	1(2)
C(8)	28(2)	32(2)	27(2)	-6(2)	-2(2)	0(2)
C(9)	32(2)	38(2)	33(2)	5(2)	1(2)	3(2)
C(10)	31(2)	57(2)	39(2)	1(2)	-4(2)	5(2)
C(11)	25(2)	59(2)	47(3)	-3(2)	1(2)	-7(2)
C(12)	41(2)	40(2)	32(2)	1(2)	5(2)	-14(2)
C(13)	32(2)	29(2)	26(2)	-3(2)	0(2)	-5(1)
C(14)	38(2)	28(2)	25(2)	2(2)	-1(2)	-1(2)
C(15)	37(2)	35(2)	29(2)	2(2)	-5(2)	10(2)
C(16)	41(2)	37(2)	35(2)	0(2)	1(2)	-1(2)
N(1)	27(2)	37(2)	29(2)	6(1)	2(1)	1(1)
N(2)	72(2)	45(2)	50(2)	15(2)	-6(2)	-5(2)
O(1)	45(2)	31(1)	49(2)	5(1)	6(1)	-6(1)
O(2)	23(1)	63(2)	49(2)	0(1)	1(1)	-5(1)
S (1)	30(1)	36(1)	36(1)	4(1)	3(1)	-5(1)

Table 4.Anisotropic displacement parameters (Ųx 10³)for a15781.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)
H(2)	4831	162	1608	49
H(3)	3942	-1306	530	59
H(5A)	1019	-636	-1215	90
H(5B)	1451	-1852	-590	90
H(5C)	2640	-1269	-1158	90
H(6)	950	1361	-509	50
H(7)	1829	2853	564	46
H(9)	804	3702	2135	42
H(10)	-1583	3431	2512	52
H(11)	-2086	1862	3511	53
H(12)	-198	523	4183	45
H(15)	4916	978	3461	41

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for a15781.

SFO1 100.823319 MHz NUC1 13C P1 10.00.9000 PLW1 46.0000000 FDPRG[2 walt-16 PCPDPRG[2 walt-16 PCPDPRG[2 walt-16 PCPDPRG[2 walt-16 PCPD2 90.00 usec PLW2 5.000000 W PLW13 0.27744001 W PLW13 0.27744001 W F2-Processing parameters SI 32768 SI 32768 SI 32768 SI 32768 SI 32768 SI 32768 SI 32768 SI 32764 SI 32765 SI 32755 SI 327555 SI 327555 SI 327555 SI 327555 SI 327555555555555555555555555555555555555	Ме	0	10	g st-Z D 	Z — 146.26	134.80	131.87	121.80	114.04	97.76	 Z17.32	76.68	 00.00		21.59			Current Data P NAME SD- EXPNO PROCNO F2 - Acquisition Date_ 20 Time 1 INSTRUM PROBHD 5 m PULPROG TD 32 SOLVENT NS 4 DS 5 SWH 240 FIDRES 0 AQ 0.68 RG 19 DW 20 DE 6 TE 300 D1 2.000 D11 0.031 TD0	arameters 103(new) 4 1 Parameters 140707 3.26 spect m PABBO BB/ zgpg30 768 CDCI3 56 0 038.461 Hz 15744 sec 8.09 8.09 8.09 0.0 K 00000 sec 1 1 1 1 1 1 1 1 1 1 1 1 1	
														 		<i></i>			NNEL f1 ===== 6233319 MHz 13C 000 usec 0000000 W NNEL f2 ===== 1316005 MHz 1H waltz16 90.00 usec 0000000 W 4252000 W 7744001 W parameters 68 127756 MHz EM 00 Hz .00	

157 / 187

1

	146.17 134.78 134.78 134.12 131.85 133.01 133.01 133.01 133.01 133.01 113.54 113.54 113.54 113.54		77.32 77.00 76.68		~21.58 ~21.19		Current Data Parameters NAME SD-063(old) EXPNO 3 PROCNO 1
Me N N 10i		I	¥		Ŷ		F2 - Acquisition Parameters Date 20140425 Time 19.35 INSTRUM spect PROBHD 5 mm SEI 1H-13 PULPROG 209930 TD 32768 SOLVENT CDC13 NS 968 CS 0 SWH 24038,461 Hz FDRES 0.733596 Hz AQ 0.6815744 sec RG 2896.3 DW 20.800 usec DE 6.50 usec TE 299.4 K D' 2.00000000 sec D11 0.03000000 sec TD0 1
							NUC1 13C P1 15.50 usec PL1 7.30 dB SFO1 100.6233325 MHz
					I		Emergence CHANNEL f2 CPDPRG[2 valt216 NUC2 1H PCPD2 90.00 usec PL2 -4.20 dB PL12 13.10 dB PL3 16.10 dB SFO2 400.1316005 MHz
							F2 - Processing parameters SI 32768 SF 100.6127767 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00
190 180 170 160	150 140 130 120 110 10	0 90	80 70	60 50 40	30 20 10	0 ppm	

171 / 187

product

 Table 1. Crystal data and structure refinement for a17991.

	17001					
Identification code	a17991					
Empirical formula	C19 H16 N2 O2 S					
Formula weight	336.40					
Temperature	296(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	P 21/c					
Unit cell dimensions	$a = 9.3811(4) \text{ Å}$ $\alpha = 90^{\circ}.$					
	b = 20.8484(10) Å	$\beta = 99.098(2)^{\circ}.$				
	c = 8.6963(4) Å	$\gamma = 90^{\circ}$.				
Volume	1679.43(13) Å ³					
Z	4					
Density (calculated)	1.330 Mg/m ³					
Absorption coefficient	0.206 mm ⁻¹					
F(000)	704					
Crystal size	0.52 x 0.28 x 0.20 mm ³					
Theta range for data collection	1.95 to 25.05°.					
Index ranges	-9<=h<=11, -13<=k<=24, -10<	=l<=9				
Reflections collected	11240					
Independent reflections	2958 [R(int) = 0.0313]					
Completeness to theta = 25.05°	99.4 %					
Absorption correction	multi-scan					
Max. and min. transmission	0.9600 and 0.9005					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	2958 / 0 / 217					
Goodness-of-fit on F ²	1.026					
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.1392$					
R indices (all data)	R1 = 0.0786, $wR2 = 0.1575$					
Largest diff. peak and hole	0.296 and -0.228 e.Å ⁻³					
	X	у	Z	U(eq)		
-------	---------	---------	----------	--------		
C(1)	2001(3)	6776(1)	11365(3)	64(1)		
C(2)	2547(4)	7363(2)	11887(4)	88(1)		
C(3)	1815(4)	7914(1)	11372(4)	89(1)		
C(4)	552(3)	7896(1)	10344(3)	70(1)		
C(5)	-229(4)	8503(2)	9781(4)	97(1)		
C(6)	29(3)	7302(2)	9856(4)	90(1)		
C(7)	734(3)	6744(1)	10354(4)	83(1)		
C(8)	3163(3)	5570(1)	9156(3)	61(1)		
C(9)	1814(3)	5295(1)	8741(4)	78(1)		
C(10)	1479(4)	5050(2)	7268(5)	90(1)		
C(11)	2449(4)	5067(2)	6214(4)	89(1)		
C(12)	3788(4)	5331(1)	6630(4)	78(1)		
C(13)	4159(3)	5583(1)	8119(3)	62(1)		
C(14)	5429(3)	5890(1)	8910(3)	63(1)		
C(15)	6733(4)	5990(2)	8308(4)	84(1)		
C(16)	5233(3)	6064(1)	10365(3)	66(1)		
C(17)	6328(4)	6392(2)	11555(4)	92(1)		
C(18)	6367(4)	7099(2)	11461(5)	108(1)		
C(19)	5768(6)	7460(2)	10493(6)	136(2)		
N(1)	3836(2)	5865(1)	10553(2)	66(1)		
N(2)	7768(4)	6072(2)	7822(4)	123(1)		
O(1)	4006(3)	6219(1)	13329(2)	107(1)		
O(2)	1931(3)	5574(1)	12085(3)	107(1)		
S(1)	2934(1)	6075(1)	12016(1)	81(1)		

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for a17991. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(7)	1.364(4)
C(1)-C(2)	1.376(4)
C(1)-S(1)	1.750(3)
C(2)-C(3)	1.376(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.368(4)
C(3)-H(3)	0.9300
C(4)-C(6)	1.374(4)
C(4)-C(5)	1.507(4)
C(5)-H(5A)	0.9600
C(5)-H(5B)	0.9600
C(5)-H(5C)	0.9600
C(6)-C(7)	1.374(4)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.384(4)
C(8)-C(13)	1.397(3)
C(8)-N(1)	1.418(3)
C(9)-C(10)	1.368(5)
C(9)-H(9)	0.9300
C(10)-C(11)	1.390(5)
C(10)-H(10)	0.9300
C(11)-C(12)	1.367(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.390(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.429(4)
C(14)-C(16)	1.357(4)
C(14)-C(15)	1.421(4)
C(15)-N(2)	1.131(4)
C(16)-N(1)	1.409(3)
C(16)-C(17)	1.502(4)
C(17)-C(18)	1.478(5)
C(17)-H(17A)	0.9700

Table 3. Bond lengths [Å] and angles [°] for a 17991.

0.9700
1.200(5)
0.9300
0.9300
0.9300
1.693(2)
1.429(2)
1.414(2)
119 8(3)
120 5(2)
120.3(2) 119 7(2)
119.7(2)
120.2
120.2
120.2
119.1
119.1
117.2(3)
121.1(3)
121.7(3)
109.5
109.5
109.5
109.5
109.5
109.5
122.4(3)
118.8
118.8
119.2(3)
120.4
120.4
121.1(3)
131.9(2)
107.0(2)

C(10)-C(9)-C(8)	117.6(3)
C(10)-C(9)-H(9)	121.2
C(8)-C(9)-H(9)	121.2
C(9)-C(10)-C(11)	122.1(3)
C(9)-C(10)-H(10)	119.0
С(11)-С(10)-Н(10)	119.0
C(12)-C(11)-C(10)	120.3(3)
C(12)-C(11)-H(11)	119.8
C(10)-C(11)-H(11)	119.8
C(11)-C(12)-C(13)	118.9(3)
С(11)-С(12)-Н(12)	120.6
C(13)-C(12)-H(12)	120.6
C(12)-C(13)-C(8)	119.9(3)
C(12)-C(13)-C(14)	133.2(3)
C(8)-C(13)-C(14)	106.8(2)
C(16)-C(14)-C(15)	123.8(3)
C(16)-C(14)-C(13)	110.1(2)
C(15)-C(14)-C(13)	126.1(3)
N(2)-C(15)-C(14)	179.7(4)
C(14)-C(16)-N(1)	107.1(3)
C(14)-C(16)-C(17)	125.9(3)
N(1)-C(16)-C(17)	127.0(3)
C(18)-C(17)-C(16)	115.8(3)
C(18)-C(17)-H(17A)	108.3
C(16)-C(17)-H(17A)	108.3
C(18)-C(17)-H(17B)	108.3
C(16)-C(17)-H(17B)	108.3
H(17A)-C(17)-H(17B)	107.4
C(19)-C(18)-C(17)	130.6(4)
C(19)-C(18)-H(18)	114.7
C(17)-C(18)-H(18)	114.7
C(18)-C(19)-H(19A)	120.0
C(18)-C(19)-H(19B)	120.0
H(19A)-C(19)-H(19B)	120.0
C(16)-N(1)-C(8)	108.9(2)
C(16)-N(1)-S(1)	126.6(2)

C(8)-N(1)-S(1)	123.25(18)	
O(2)-S(1)-O(1)	120.66(15)	
O(2)-S(1)-N(1)	104.81(13)	
O(1)-S(1)-N(1)	106.39(14)	
O(2)-S(1)-C(1)	109.19(14)	
O(1)-S(1)-C(1)	109.66(14)	
N(1)-S(1)-C(1)	104.88(11)	

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	68(2)	68(2)	60(2)	0(1)	25(1)	1(1)
C(2)	86(2)	85(2)	88(2)	-14(2)	-5(2)	3(2)
C(3)	94(2)	63(2)	106(2)	-14(2)	10(2)	-2(2)
C(4)	70(2)	72(2)	73(2)	-3(1)	25(2)	7(1)
C(5)	102(2)	81(2)	113(3)	5(2)	30(2)	24(2)
C(6)	71(2)	84(2)	111(3)	-16(2)	-1(2)	10(2)
C(7)	70(2)	65(2)	116(3)	-14(2)	15(2)	-3(1)
C(8)	70(2)	51(1)	67(2)	12(1)	20(1)	9(1)
C(9)	78(2)	66(2)	93(2)	7(2)	28(2)	1(1)
C(10)	85(2)	72(2)	112(3)	-3(2)	7(2)	-8(2)
C(11)	112(3)	74(2)	79(2)	-9(2)	8(2)	1(2)
C(12)	95(2)	70(2)	75(2)	2(2)	27(2)	7(2)
C(13)	75(2)	51(1)	63(2)	7(1)	22(1)	12(1)
C(14)	64(2)	57(1)	72(2)	9(1)	20(1)	7(1)
C(15)	81(2)	80(2)	96(2)	0(2)	32(2)	-1(2)
C(16)	71(2)	61(2)	66(2)	11(1)	12(1)	10(1)
C(17)	92(2)	98(2)	81(2)	5(2)	2(2)	-1(2)
C(18)	116(3)	107(3)	96(3)	-8(2)	5(2)	-2(2)
C(19)	195(5)	108(3)	104(3)	13(3)	17(3)	14(3)
N(1)	79(2)	63(1)	59(1)	9(1)	21(1)	11(1)
N(2)	98(2)	135(3)	149(3)	-6(2)	58(2)	-17(2)
O(1)	142(2)	128(2)	50(1)	14(1)	10(1)	39(2)
O(2)	150(2)	79(1)	112(2)	26(1)	78(2)	4(1)
S (1)	109(1)	78(1)	63(1)	18(1)	37(1)	17(1)

Table 4.Anisotropic displacement parameters (Ųx 10³)for a17991.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	у	Z	U(eq)
H(2)	3406	7388	12584	106
H(3)	2189	8309	11733	106
H(5A)	-1089	8398	9072	146
H(5B)	387	8765	9258	146
H(5C)	-483	8734	10654	146
H(6)	-832	7277	9163	108
H(7)	351	6348	10005	100
H(9)	1158	5278	9438	93
H(10)	575	4867	6964	109
H(11)	2184	4898	5220	107
H(12)	4441	5341	5929	94
H(17A)	6138	6273	12583	110
H(17B)	7276	6228	11453	110
H(18)	6952	7297	12289	129
H(19A)	5164	7299	9628	164
H(19B)	5909	7900	10608	164

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for a17991.