CuI-catalyzed Intramolecular Aminocyanation of Terminal Alkynes in N-(2-Ethynylphenyl)-N-sulfonylcyanamides via Cu-vinylidene Intermediates

Zhen-Yuan Liao, Pen-Yuan Liao, and Tun-Cheng Chien*

Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

tcchien@ntnu.edu.tw

A.	Table S1. Optimization of the reaction condition	2
B.	Reaction summary	3~7
C.	General chemical procedures	8
D.	 Synthesis of reaction precursors: Experimental details for Scheme S1 Experimental details for Scheme S2 Experimental details for Scheme S3 Experimental details for Scheme S4 Experimental details for Scheme S5 Experimental details for Scheme S6 Experimental details for Scheme S7 Experimental details for Scheme S8 	$9 \sim 19$ $20 \sim 24$ $25 \sim 26$ $27 \sim 29$ $30 \sim 31$ 32 33 $34 \sim 35$
E. F.	 <i>Reactions of N-(2-ethynylphenyl)cyanamides:</i> 1. Experimental details for Scheme 3(A), compound 9 2. Experimental details for Scheme 4 3. Experimental details for Scheme 5 4. Experimental details for Scheme 7(E), compound 23 	$36 \\ 37 \sim 40 \\ 41 \sim 47 \\ 48 \\ 49$

	C ^E C ^H cat	alyst (0.1 equiv) base (4 equiv)	CN H		
	`N ^{∠CN} s	olvent (0.5 M)	N N		
8a	Ts tem	perature, 3 h, Ar	10a ^{†s}		
ontry	base	solvent	catalyst	temperature	result ^a
entry	(4 equiv)	(0.5 M)	(0.1 equiv)	(°C)	(%)
1	Et ₃ N	DMF	CuI	80	67
2	DIPEA	DMF	CuI	80	65
3	DBU	DMF	CuI	80	$N.D.^{b}$
4	DABCO	DMF	CuI	80	0
5	NMM	DMF	CuI	80	63
6	pyridine	DMF	CuI	80	34
7	Na ₂ CO ₃	DMF	CuI	80	67^c
8	K_2CO_3	DMF	CuI	80	25
9	K ₃ PO ₄	DMF	CuI	80	55
10	NaOAc	DMF	CuI	80	51
11	Na ₂ CO ₃	DMF	CuBr	80	46
12	Na ₂ CO ₃	DMF	CuCl	80	$N.R.^d$
13	Na ₂ CO ₃	DMF	CuCN	80	66 ^{<i>c</i>}
14	Na ₂ CO ₃	MeCN	CuI	reflux	52
15	Na ₂ CO ₃	1,4-dioxane	CuI	80	88 ^c
16	Na ₂ CO ₃	1, 2- DCE	CuI	reflux	15
17	Na ₂ CO ₃	THF	CuI	reflux	59
18	Na ₂ CO ₃	toluene	CuI	80	46
19	Na ₂ CO ₃	DME	CuI	80	61
20	Na ₂ CO ₃	DMSO	CuI	80	20
21	Na ₂ CO ₃	1,4-dioxane	CuI / proline	80	78^c
22	Na ₂ CO ₃	1,4-dioxane	CuI / 1,10-Phen	80	$N.R.^d$
23		1,4-dioxane	CuI	80	$N.R.^d$
24	Na ₂ CO ₃	1,4-dioxane		80	$N.R.^d$

Table 1. Optimization of the reaction conditions a_{1}^{H} establish (0.1 equilibrium) (N)

^{*a*} unless specified otherwise, the yields were determined by ¹H NMR analysis of the crude products using 1,3,5-trimethoxybenzene as an internal standard; ^{*b*} N.D. = no desired product; ^{*c*} isolated yield; ^{*d*} N.R. = no reaction

Reaction Summary

Scheme S1

reagents and conditions

(a) X = I: trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d; (b) X = Br: trimethylsilylacetylene (1.5 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), PPh₃ (5 mol%), Et₃N / toluene (1 : 4, v/v, 0.2 M), 100 °C, Ar, 1 d; (c) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, 3 ~ 15 min; (d) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 15 min ~ 3 h; (e) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 3 ~ 24 h

	$\mathbf{R}^1 =$	S2	S3	S4	8		$R^1 =$	S2	S3	S4	8
a	Н	95%	N.I.	77%	43%	h	4-OMe	54%	N.I.	73%	74%
b	5-OMe	47%	N.I.	58%	43%	i	4-Me	74%	N.I.	57%	65%
c	5-Me	57%	N.I.	50%	39%	j	4- <i>i</i> -Pr	53%	N.I.	64%	43%
d	5-F	95%	N.I.	46%	26%	k	4- <i>t</i> -Bu	63%	N.I.	87%	52%
e	5-Cl	66%	N.I.	73%	28%	l	4- F	54%	N.I.	68%	37%
f	5-CF ₃	N.I.	21%	71%	22%	m	4-Cl	70%	N.I.	65%	19%
g	5-NO ₂	29%	N.I.	< 5%		n	4-CF ₃	65%	N.I.	< 5%	
						0	$4-NO_2$	63%	N.I.	< 5%	
						р	4,6-di-F	66%	N.I.	49%	45%
N.	N.I. = not isolated										

reagents and conditions

(a) TsCl (1.2 equiv), pyridine (2 equiv), DCM (0.5 M), 0 °C ~ rt, 12 h; (b) BrCN (1.3 equiv), Et₃N (2 equiv), ether (0.2 M), 0 °C, 3 h; (c) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, < 3 min

	R =	S5	7	8
g	5-NO ₂	48%	49%	43%
n	$4-CF_3$	71%	33%	38%
0	$4-NO_2$	26%	77%	23%

reagents and conditions

(a) trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.25 M), rt, Ar, 1 d, 78%; (b) NH₂OH (50 *wt*% aqueous solution, 2.0 equiv), EtOH (0.4 M), reflux, 4 h, 55%; (c) TsCl (1.1 equiv), pyridine (1.0 M), 0 °C ~ rt, 2 h, 93%; (d) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, < 3 min, 37%

reagents and conditions

(a) X = Ac, Bz, Ts, 4-NO₂C₆H₄SO₂, or 4-AcNHC₆H₄SO₂: X-Cl (1.5 equiv), DIPEA (3 equiv), MeCN (0.25 M), 0 °C ~ rt; (b) $X = Boc: Boc_2O$ (1.8 equiv), DIPEA (3 equiv), MeCN (0.25 M), 0 °C ~ rt

Scheme S5 $C^{\pm C}$ H SO_2R S4a 12f $R = C_6H_5SO_2$ (20%) 12h R = 4-MeOC₆H₄SO₂ (28%) 12j $R = MeSO_2$ (20%)

reagents and conditions (a) RSO₂Cl (3 equiv), pyridine (0.33 M), 0 $^{\circ}$ C ~ rt, 3 h

reagents and conditions

(a) premixed HCOOH (3.5 equiv) with Ac₂O (1.2 equiv), DCM (0.33 M), rt, 11 h; (b) NaBH₄ (4 equiv), BF₃OEt₂ (5 equiv), THF (0.13 M), 0 °C ~ rt, 1 d, 81% (after two steps from **S1a**); (c) trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d, 90%; (d) K₂CO₃ (1 equiv), MeOH, rt, 1 h; (e) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 2.5 h, 59% (after two steps from **S10**); (f) TsCl (1.5 equiv), pyridine (1 M), 0 °C ~ rt, 1 h, 83%

Scheme S7

reagents and conditions

(a) K_2CO_3 (1 equiv), MeOH, rt, 1 h; (b) Lindlar catalyst (10 mol%), MeOH (0.25 M), H₂ (1 atm), rt, 4.5 h, 45% (after two steps from **S2a**); (c) NaNCO (3 equiv), AcOH / H₂O (3 : 1, *v*/*v*, 0.25 M), rt, 4 h, 81%; (d) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 1 h, 68%

Scheme S8

reagents and conditions

(a) phenylacetylene or 1-octyne (1.5 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d; (b) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 5 h; (c) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 1 h

Scheme 5

EXPERIMENTAL SECTION

General chemical procedures

The chemical shift values are reported in δ values (parts per million, ppm) relative to the standard chemical shift for the hydrogen residue peak and carbon-13 peak in the deuterated solvent, CDCl₃, or DMSO- d_6 .¹ The coupling constant (*J*) values are expressed in hertz (Hz). The numbers of protons directly attached to the individual carbons were determined by ¹³C NMR DEPT experiments. Thin-layer chromatography (TLC) was performed on silica gel plates. Compounds on TLC were visualized by illumination under UV light (254 nm), or dipped into 10% phosphomolybdic acid in ethanol followed by charring on a hot plate. Solvent systems are expressed as a volumetric ratio (v / v) of the less polar component to the more polar component. Silica gel (230-400 mesh) was used for flash column chromatography and this technique has been described by W. C. Still *et al.*² Evaporations were carried out under reduced pressure (water aspirator or vacuum pump) with the bath temperature below 50 °C unless specified otherwise. Materials obtained from commercial suppliers were used without further purification.

reagents and conditions

(a) X = I: trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d; (b) X = Br: trimethylsilylacetylene (1.5 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), PPh₃ (5 mol%), Et₃N / toluene (1 : 4, v/v, 0.2 M), 100 °C, Ar, 1 d; (c) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, 3 ~ 15 min; (d) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 15 min ~ 3 h; (e) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 3 ~ 24 h

	$R^1 =$	S2	S3	S4	8		$R^1 =$	S2	S3	S4	8
a	Н	95%	N.I.	77%	43%	h	4-OMe	54%	N.I.	73%	74%
b	5-OMe	47%	N.I.	58%	43%	i	4-Me	74%	N.I.	57%	65%
c	5-Me	57%	N.I.	50%	39%	j	4- <i>i</i> -Pr	53%	N.I.	64%	43%
d	5-F	95%	N.I.	46%	26%	k	4- <i>t</i> -Bu	63%	N.I.	87%	52%
e	5-Cl	66%	N.I.	73%	28%	l	4- F	54%	N.I.	68%	37%
f	5-CF ₃	N.I.	21%	71%	22%	m	4-Cl	70%	N.I.	65%	19%
g	5-NO ₂	29%	N.I.	< 5%		n	4-CF ₃	65%	N.I.	< 5%	
						0	$4-NO_2$	63%	N.I.	< 5%	
						р	4,6-di-F	66%	N.I.	49%	45%

N.I. = not isolated

[General procedure S1] Preparation of 2-alkynylanilines (S2a,e, S15a,b, S7, S10) from 2-iodoanilines (S1a,e, S6, S9, respectively) via Sonogashira reaction³

To a mixture of $Pd(PPh_3)_2Cl_2$ (0.02 equiv), CuI (0.02 equiv) and 2-iodoaniline (1 equiv) in Et₃N / THF (1 : 1, v/v, 0.5 M) under Ar atmosphere at room temperature was added trimethylsilylacetylene or terminal alkynes (1.2 equiv). The reaction mixture was stirred at room temperature for 1 d. The solid was removed by filtration and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography.

[General procedure S2] Preparation of 2-alkynylanilines (S2b-d,f-p) from 2-bromoanilines (S1b-d,f-p) via Sonogashira reaction⁴

To a mixture of Pd(PPh₃)₂Cl₂ (0.02 equiv), CuI (0.02 equiv), PPh₃ (0.05 equiv) and 2-bromoaniline (1 equiv) in Et₃N / toluene (1 : 4, ν/ν , 0.2 M) under Ar atmosphere at room temperature was added trimethylsilylacetylene (1.5 equiv). The reaction mixture was stirred at 100 °C for 1 d. The solid was removed by filtration and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography.

[General procedure S3a] Preparation of 2-ethynylanilines from 2-(2-trimethylsilylethynyl)anilines by the reaction with TBAF in THF To a solution of 2-(2-trimethylsilylethynyl)aniline (1 equiv) in THF (0.5 M) was added TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv) at 0 °C. The solution was stirred at 0 °C for $3 \sim 15$ min and then the solvent was immediately evaporated under reduced pressure. The residue was purified by flash column chromatography, or used for the subsequent reaction without further purification.

[General procedure S3b] Preparation of 2-ethynylanilines from 2-(2-trimethylsilylethynyl) anilines by the reaction with K_2CO_3 in MeOH

To a solution of 2-(2-trimethylsilylethynyl)aniline (1 equiv) in MeOH (0.33 M) was added K_2CO_3 (1 equiv). The solution was stirred at room temperature for 1 h. The solid was removed by filtration and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography, or used for the subsequent reaction without further purification.

[General procedure S4] Preparation of N-(2-alkynylphenyl)ureas (S4a-f,h-m,p, S12, S14, S16a,b) from 2-alkynylanililines⁵ (S3a-f,h-m,p, S11, S13, S15a,b, respectively) To a solution of 2-alkynylanililine (1 equiv) in aqueous AcOH (H₂O / AcOH = 1 : 3, v/v, 0.25 M) was added sodium cyanate (3 equiv). The solution was stirred at room temperature for 15 min ~ 3 h. The reaction mixture was diluted with EtOAc. The solution was washed with saturated aqueous Na₂CO₃ solution, saturated aqueous NaCl solution and dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure and the resulting residue was purified by flash column chromatography.

[General procedure S5] Preparation of N-tosyl-N-(2-alkynylphenyl)cyanamides (8a-f,h-m,p, 12b,f,h,j, 6a,b, 16) from N-(2-alkynylphenyl)ureas⁶ (S4a-f,h-m,p, S12, S16a,b, S14, respectively)

To a freshly prepared solution of TsCl (3 equiv) in pyridine (0.5 M of N-(2-alkynylphenyl)urea) at 0 °C was added N-(2-alkynylphenyl)urea (1 equiv). The solution was stirred under Ar atmosphere for 3 ~ 24 h while the reaction temperature was allowed to rise to room temperature. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography.

$N-(2-Ethynylphenyl)urea^7$ (S4a)

Compound **S4a** was prepared from 2-ethynylaniline (**S3a**) by *General procedure S4*. The product (**S4a**, solid, 2.5499 g, 15.92 mmol, 81%) was purified by flash column chromatography (Hex / EtOAc = 6 : 4, R_f = 0.15). m.p. 160–162 °C (*lit*.169–171 °C);⁷ ¹H NMR (DMSO-*d*₆, 400 MHz) δ 8.10 (d, 1H, *J* = 8.4 Hz), 7.89 (br, 1H, NH), 7.37 (dd, 1H, *J* = 7.6, 1.2 Hz), 7.28 (dt, 1H, *J* = 7.8, 1.6 Hz), 6.91 (dt, 1H, *J* = 7.6, 0.8 Hz), 6.44 (br, 2H, NH₂), 4.55 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 155.6, 141.7, 132.2 (CH), 129.4 (CH), 121.1 (CH), 119.0 (CH), 109.9, 86.9 (CH), 79.7; MS (ESI⁺) *m/z* 161 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₉H₈N₂O: 161.0715 (M+H). Found: 161.0716.

N-(2-Ethynyl-5-methoxyphenyl)urea (S4b)

Compound **S4b** was prepared from 2-ethynyl-5-methoxyaniline (**S3b**) by *General* procedure S4. The product (**S4b**, white solid, 0.4486 g, 2.36 mmol, 58%, $R_f = 0.15$ (Hex / EtOAc = 5 : 5) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 183–184 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.85 (br, 1H, NH), 7.81 (d, 1H, J = 2.6 Hz), 7.28 (d, 1H, J = 8.6 Hz), 6.51 (dd, 1H, J = 8.6, 2.6 Hz), 6.50 (br, 2H, NH₂), 4.42 (s, 1H), 3.72 (s, 3H, Me); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 160.0, 155.6, 143.1, 133.3 (CH), 107.1 (CH), 104.2 (CH), 102.1, 85.6 (CH), 79.7, 55.1 (CH₃); MS (EI, 20 eV) m/z 104 (25), 132 (28), 147 (100), 190 (49) (M⁺); HRMS (EI, sector) calcd for C₁₀H₁₀N₂O₂: 190.0742. Found: 190.0748.

N-(2-Ethynyl-5-methylphenyl)urea (S4c)

Compound **S4c** was prepared from 2-ethynyl-5-methylaniline (**S3c**) by *General procedure S4*. The product (**S4c**, solid, 0.7036 g, 4.039 mmol, 50%, $R_f = 0.16$ (Hex / EtOAc = 6 : 4)) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 184–186 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 7.90 (s, 1H), 7.83 (br, 1H, NH), 7.24 (d, 1H, *J* = 7.8 Hz), 6.74 (d, 1H, *J* = 7.9 Hz), 6.40 (br, 2H, NH₂), 4.40 (s, 1H), 2.25 (s, 3H, Me); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 155.9, 141.6, 139.5, 132.2 (CH), 122.4 (CH), 119.7 (CH), 107.5, 86.4 (CH), 80.0, 21.7 (CH₃); MS (ESI⁺) *m*/*z* 175 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₀H₁₁N₂O: 175.0871 (M+H). Found: 175.0876.

N-(2-Ethynyl-5-fluorophenyl)urea (S4d)

Compound **S4d** was prepared from 2-ethynyl-5-fluoroaniline (**S3d**) by *General* procedure S4. The product (**S4d**, yellow solid, 1.5426 g, 8.658 mmol, 46%, $R_f = 0.25$ (Hex / EtOAc = 5 : 5) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 184–185 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.07 (br, 1H, NH), 8.03 (dd, 1H, J = 12.7, 2.7 Hz), 7.42 (dd, 1H, J = 8.5, 6.7 Hz), 6.75 (dt, 1H, J = 8.4, 2.7 Hz), 6.63 (br, 2H, NH₂), 4.56 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 162.3 (d, J = 244 Hz), 155.5, 143.7 (d, J = 12.8 Hz), 134.1 (d, J = 10.3 Hz, CH), 108.1 (d, J = 22.9 Hz, CH), 105.8 (d, J = 2.8 Hz), 105.3 (d, J = 28.7 Hz, CH), 87.0 (CH), 78.7; ¹⁹F NMR(DMSO- d_6 , 376 MHz) δ -108; MS (EI, 20 eV) m/z 108 (48), 135 (100), 178 (37) (M⁺); HRMS (EI, sector) calcd for C₉H₇FN₂O: 178.0542. Found: 178.0542.

N-(2-Ethynyl-5-chlorophenyl)urea (S4e)

Compound **S4e** was prepared from 2-ethynyl-5-chloroaniline (**S3e**) by *General procedure S4*. The product (**S4e**, white solid, 1.8626 g, 9.570 mmol, 87%, $R_f = 0.18$ (Hex / EtOAc = 5 : 5)) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 200–201 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 8.27 (d, 1H, *J* = 2.1 Hz), 8.06 (br, 1H, NH), 7.38 (d, 1H, *J* = 8.3 Hz), 6.95 (dd, 1H, *J* = 8.3, 2.2 Hz), 6.62 (br, 2H, NH₂), 4.62 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 155.5, 143.0, 134.1, 133.7 (CH), 121.0 (CH), 118.1 (CH), 108.5, 88.1 (CH), 78.6; MS (EI, 70 eV) *m/z* 66 (83), 84 (89), 151 (100), 194 (45) (M⁺), 196 (14) (M⁺+2); HRMS (EI, sector) calcd for C₉H₇ClN₂O: 194.0247. Found: 194.0245.

N-(2-Ethynyl-5-trifluoromethylphenyl)urea (S4f)

Compound **S4f** was prepared from 2-ethynyl-5-trifluoromethylaniline (**S3f**) by *General procedure S4*. The product (**S4f**, solid, 1.0296 g, 4.512 mmol, 48%, $R_f = 0.25$ (Hex / EtOAc = 7 : 3)) was purified by flash column chromatography (Hex / EtOAc = 6 : 4). m.p. 183–185 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.57 (d, 1H, J = 1.2 Hz), 8.18 (br, 1H, NH), 7.59 (d, 1H, J = 8.0 Hz), 7.23 (dd, 1H, J = 8.4, 1.6 Hz), 6.66 (br, 2H, NH₂), 4.82 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.5, 142.4, 133.3 (CH), 129.4 (q, J = 31 Hz), 123.9 (q, J = 271 Hz), 117.2 (q, J = 4.0 Hz, CH), 114.6 (q, J = 4.0 Hz, CH), 113.4, 89.7 (CH), 78.3; ¹⁹F NMR (DMSO- d_6 , 376 MHz) δ -61.7; MS (EI, 70 eV) *m*/*z* 58 (29), 184 (74), 185 (100), 192 (45), 207 (40), 228 (56) (M⁺); HRMS (EI, sector) calcd for C₁₀H₇F₃N₂O: 228.0510. Found: 228.0512.

N-(2-Ethynyl-4-methoxyphenyl)urea (S4h)

Compound **S4h** was prepared from 2-ethynyl-4-methoxyaniline (**S3h**) by *General* procedure S4. The product (**S4h**, solid, 0.5181 g, 2.724 mmol, 73%) was purified by flash column chromatography (Hex / EtOAc = 5 : 5, $R_f = 0.08$). m.p. 168–170 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.90 (d, 1H, J = 8.6 Hz), 7.76 (br, 1H, NH), 6.92 (s, 1H), 6.90 (dd, 1H, J = 8.6, 2.8 Hz), 6.27 (br, 2H, NH₂), 4.55 (s, 1H), 3.70 (s, 3H, OMe); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.9, 153.5, 135.2, 121.4 (CH), 116.14 (CH), 116.07 (CH), 111.6, 86.6 (CH), 79.9, 55.3 (CH₃); MS (ESI⁺) m/z 191 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₀H₁₁N₂O₂: 191.0821 (M+H). Found:

191.0822.

N-(2-Ethynyl-4-methylphenyl)urea (S4i)

Compound **S4i** was prepared from 2-ethynyl-4-methylaniline (**S3i**) by *General* procedure S4. The product (**S4i**, solid, 1.9265 g, 11.19 mmol, 89%) was purified by flash column chromatography (Hex / EtOAc = 5 : 5, $R_f = 0.15$). m.p. 165–167 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.95 (d, 1H, J = 8.4 Hz), 7.80 (br, 1H, NH), 7.18 (d, 1H, J = 1.6 Hz), 7.09 (dd, 1H, J = 8.4, 2.0 Hz), 6.36 (br, 2H, NH₂), 4.50 (s, 1H), 2.20 (s, 3H, Me); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.7, 139.3, 132.2 (CH), 130.1 (C+CH), 119.2 (CH), 110.0, 86.5 (CH), 79.9, 19.9 (CH₃); MS (EI, 70 eV) m/z 130 (95), 131 (100), 174 (52) (M⁺); HRMS (EI, sector) calcd for C₁₀H₁₀N₂O: 174.0793 (M⁺). Found: 174.0796.

N-(2-Ethynyl-4-(*i*-propyl)phenyl)urea (S4j)

Compound **S4j** was prepared from 2-ethynyl-4-(*i*-propyl)aniline (**S3j**) by *General* procedure S4. The product (**S4j**, white solid, 0.6847 g, 3.39 mmol, 64%, $R_f = 0.18$ (Hex / EtOAc = 5 : 5)) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 191–192 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.97 (d, 1H, J = 8.6 Hz), 7.82 (br, 1H, NH), 7.22 (d, 1H, J = 2.1 Hz), 7.16 (dd, 1H, J = 8.6, 2.2 Hz), 6.35 (br, 2H, NH2), 4.50 (s, 1H), 2.79 (sept, 1H, J = 6.9 Hz, CH), 1.15 (d, 6H, J = 7.2 Hz, Me); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.7, 141.3, 139.6, 129.6 (CH), 127.6 (CH), 119.4 (CH), 110.0, 86.4 (CH), 80.1, 32.4 (CH), 23.7 (CH3); MS (EI, 20 eV) *m/z* 144 (100), 159 (20), 202 (13) (M⁺); HRMS (EI, sector) calcd for C₁₂H₁₄N₂O: 202.1106. Found: 202.1106.

N-(2-Ethynyl-4-(t-butyl)phenyl)urea (S4k)

Compound **S4k** was prepared from 2-ethynyl-4-(*t*-butyl)aniline (**S3k**) by *General* procedure S4. The product (**S4k**, solid, 1.5248 g, 7.050 mmol, 87%, $R_f = 0.16$ (Hex / EtOAc = 6 : 4)) was purified by flash column chromatography (Hex / EtOAc = 8 : 2). m.p. 200–203 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 7.96 (d, 1H, *J* = 9.2 Hz), 7.84 (br, 1H, NH), 7.33–7.30 (m, 2H), 6.35 (br, 2H, NH₂), 4.46 (s, 1H), 1.23 (s, 9H, *t*-Bu); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 155.8, 143.7, 139.3, 128.6 (CH), 126.7 (CH), 119.3 (CH), 109.9, 86.3 (CH), 80.3, 33.8, 31.0 (CH₃); MS (ESI⁺) *m/z* 217 (100) (M+H);

N-(2-Ethynyl-4-fluorophenyl)urea (S4l)

Compound **S4I** was prepared from 2-ethynyl-4-fluoroaniline (**S3I**) by *General* procedure S4. The product (**S4I**, solid, 1.2873 g, 7.225 mmol, 68%, $R_f = 0.08$ (Hex / EtOAc = 6 : 4)) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 187–189 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.06 (dd, 1H, J = 9.2, 5.4 Hz), 7.93 (br, 1H, NH), 7.23 (dd, 1H, J = 9.0, 3.0 Hz), 7.16 (dt, 1H, J = 8.7, 3.1 Hz), 6.41 (br, 2H, NH₂), 4.64 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 156.1 (d, J = 238 Hz), 155.7, 138.3 (d, J = 2 Hz), 121.1 (d, J = 8 Hz, CH), 118.0 (d, J = 24 Hz, CH), 116.5 (d, J = 22 Hz, CH), 111.6 (d, J = 9 Hz), 87.8 (CH), 78.6 (d, J = 3 Hz); ¹⁹F NMR (DMSO- d_6 , 376 MHz) δ -121.9; MS (EI, 70 eV) m/z 66 (60), 84 (67), 107 (41), 108 (53), 135 (100), 178 (37) (M⁺); HRMS (EI, sector) calcd for C₉H₇FN₂O: 178.0542. Found: 178.0539.

N-(2-Ethynyl-4-chlorophenyl)urea (S4m)

Compound **S4m** was prepared from 2-ethynyl-4-chloroaniline (**S3m**) by *General* procedure S4. The product (**S4m**, yellow solid, 1.0532 g, 5.411 mmol, 65%, $R_f = 0.18$ (Hex / EtOAc = 5 : 5)) was purified by flash column chromatography (Hex / EtOAc = 7 : 3). m.p. 197–198 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.14 (d, 1H, J = 9.0 Hz), 7.99 (br, 1H, NH), 7.42 (d, 1H, J = 2.6 Hz), 7.33 (dd, 1H, J = 9.1, 2.6 Hz), 6.52 (br, 2H, NH₂), 4.68 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.5, 140.8, 131.2 (CH), 129.4 (CH), 124.5, 120.4 (CH), 111.6, 88.3 (CH), 78.3; MS (EI, 20 eV) m/z 89 (87), 151 (100), 194 (17) (M⁺), 196 (5) (M+2); HRMS (EI, sector) calcd for C₉H₇ClN₂O: 194.0247. Found: 194.0244.

N-(2-Ethynyl-4,6-difluorophenyl)urea (S4p)

Compound **S4p** was prepared from 2-ethynyl-4,6-difluoroaniline (**S3p**) by *General* procedure S4. The product (**S4p**, solid, 0.4950 g, 2.52 mmol, 80%, $R_f = 0.08$ (Hex / EtOAc = 5 : 5)) was purified by flash column chromatography (Hex / EtOAc = 6 : 4). m.p. 201–202 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.85 (br, 1H, NH), 7.35 (ddd, 1H, J = 8.8, 2.8, 1.2 Hz), 7.21 (ddd, 1H, J = 8.8, 2.8, 1.6 Hz), 6.00 (br, 2H, NH₂), 4.58 (s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 158.9 (dd, J = 243, 13 Hz), 157.7 (dd, J =

247, 14 Hz), 155.7, 125.8 (dd, J = 14, 3.0 Hz), 122.2 (dd, J = 12, 5.0 Hz), 114.5 (dd, J = 24, 4.0 Hz, CH), 105.7 (t, J = 26 Hz, CH), 86.9 (CH), 78.9; ¹⁹F NMR ((DMSO- d_6 , 376 MHz) δ -113.3 (d, J = 7.5 Hz), -113.8 (d, J = 7.5 Hz); MS (ESI⁺) m/z 197 (15) (M+H), 219 (100, M+Na); HRMS (ESI⁺, TOF) calcd for C₉H₆F₂N₂NaO: 219.0346 (M+Na). Found: 219.0337.

N-Tosyl-*N*-(2-ethynylphenyl)cyanamide (8a)

Compound **8a** was prepared from compound **S4a** by *General procedure S5*. The product (**8a**, solid, 0.5727 g, 1.93 mmol, 27%, $R_f = 0.25$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 9 : 1). m.p. 85–86 °C (Hex / EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, 2H, J = 8.4 Hz, Ts), 7.52–7.50 (m, 1H), 7.45–7.42 (m, 2H), 7.38–7.35 (m, 1H), 7.35 (d, 2H, J = 8.4 Hz, Ts), 3.03 (s, 1H), 2.49 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.9, 134.9, 134.3 (CH), 133.2, 130.7 (CH), 130.4 (CH), 130.2 (CH), 129.8 (CH), 128.8 (CH), 122.1, 107.4, 84.7 (CH), 77.2, 22.0 (CH₃); MS (EI, 70 eV) m/z 91 (100), 155 (100), 248 (100), 267 (52), 271 (49), 296 (52) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₂N₂O₂S: 296.0619. Found: 296.0619; IR (cm⁻¹) 3282, 3071, 2926, 2231, 2113, 1596, 1484, 1448.

N-Tosyl-*N*-(2-ethynyl-5-methoxyphenyl)cyanamide (8b)

Compound **8b** was prepared from compound **S4b** by *General procedure S5*. The product (**8b**, white soild, 0.2712 g, 0.831 mmol, 46%, $R_f = 0.18$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 128–129 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 7.71 (d, 2H, *J* = 8.4 Hz, Ts), 7.527 (d, 2H, *J* = 8.8 Hz, Ts), 7.525 (d, 1H, *J* = 7.3 Hz), 7.14 (dd, 1H, *J* = 8.7, 2.6 Hz), 6.93 (d, 1H, *J* = 2.6 Hz), 4.13 (s, 1H), 3.78 (s, 3H, OMe), 2.45 (s, 3H, Me); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 160.1, 147.2, 134.98, 134.96 (CH), 132.1, 130.7 (CH), 128.3 (CH), 117.2 (CH), 115.1 (CH), 113.3, 107.0, 86.0 (CH), 76.9, 55.9 (CH₃), 21.3 (CH₃); MS (EI, 20 eV) *m*/*z* 187 (83), 326 (100) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₄N₂O₃S: 326.0725. Found: 326.0717; IR (cm⁻¹) 3284, 2925, 2854, 2234, 2111, 1608, 1563, 1505, 1463, 1444.

N-Tosyl-*N*-(2-ethynyl-5-methylphenyl)cyanamide (8c) Compound 8c was prepared from compound S4c by *General procedure S5*. The product (**8c**, solid, 0.4711 g, 1.52 mmol, 39%, $R_f = 0.11$ (Hex / EtOAc = 9: 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 164–166 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, 2H, J = 8.4 Hz, Ts), 7.37 (d, 1H, J = 8.0 Hz), 7.35 (d, 2H, J = 8.8 Hz, Ts), 7.22 (d, 1H, J = 8.1 Hz), 7.19 (s, 1H), 2.94 (s, 1H), 2.48 (s, 3H, Me), 2.39 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.8, 141.2, 134.9, 134.1 (CH), 133.5, 131.5 (CH), 130.5 (CH), 130.4 (CH), 129.0 (CH), 119.0, 107.6, 83.8 (CH), 77.4, 22.0 (CH₃), 21.5 (CH₃); MS (ESI⁺) m/z 333 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₁₇H₁₅N₂O₂S: 311.0854 (M+H). Found: 311.0853; IR (cm⁻¹) 3287, 2925, 2235, 2113, 1608, 1596, 1499, 1410.

N-Tosyl-*N*-(2-ethynyl-5-fluorophenyl)cyanamide (8d)

Compound **8d** was prepared from compound **S4d** by *General procedure S5*. The product (**8d**, white soild, 0.2496 g, 0.794 mmol, 26%, $R_f = 0.25$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 146–147 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, 2H, J = 8.3 Hz, Ts), 7.48 (dd, 1H, J = 8.5, 5.9 Hz), 7.37 (d, 2H, J = 8.2 Hz, Ts), 7.19–7.13 (m, 2H), 3.01 (s, 1H), 2.49 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 162.2 (d, J = 255 Hz), 147.0, 136.1 (d, J = 10.3 Hz), 135.4 (d, J = 9.0 Hz, CH),132.9, 130.3 (CH), 128.7 (CH), 118.2 (d, J = 21.8 Hz, CH), 118.1 (d, J = 4.1 Hz), 117.5 (d, J = 24.5 Hz, CH), 106.7, 84.5 (d, J = 1.4 Hz, CH), 76.1, 21.8 (CH₃); ¹⁹ F NMR (CDCl₃, 376 MHz) δ -106; MS (ESI⁺) m/z 239 (100), 315 (56) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₆H₁₂FN₂O₂S: 315.0604 (M+H). Found: 315.0598; IR (cm⁻¹) 3288, 2925, 2232, 2117, 1596, 1495, 1419.

N-Tosyl-*N*-(2-ethynyl-5-chlorophenyl)cyanamide (8e)

Compound **8e** was prepared from compound **S4e** by *General procedure S5*. The product (**8e**, white solid, 0.0338 g, 0.10 mmol, 28%, $R_f = 0.28$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 145–147 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, 2H, *J* = 8.3 Hz, Ts), 7.45–7.36 (m, 5H), 3.07 (s, 1H), 2.49 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.0, 135.7, 135.6, 134.8 (CH), 132.9, 130.9 (CH), 130.3 (CH), 130.0 (CH), 128.7 (CH), 120.4, 106.7, 85.6 (CH), 76.2, 21.8 (CH₃); MS (EI, 20 eV) *m*/*z* 91 (100), 155 (91), 330 (15) (M⁺), 332 (5) (M+2); HRMS (EI, sector) calcd for C₁₆H₁₁ClN₂O₂S: 330.0230. Found: 330.0217; IR (cm⁻¹) 3291, 3101, 2923, 2235, 2118, 1593, 1472, 1403.

N-Tosyl-N-(2-ethynyl-5-trifluoromethylphenyl)cyanamide (8f)

Compound **8f** was prepared from compound **S4f** by *General procedure S5*. The product (**8f**, white soild, 0.1939 g, 0.532 mmol, 22%, $R_f = 0.23$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 124–125 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, 2H, J = 8.4 Hz, Ts), 7.69 (dd, 1H, J = 7.6, 0.8 Hz), 7.64 (d, 1H, J = 8.2 Hz), 7.58 (s, 1H), 7.39 (d, 2H, J = 8.2 Hz, Ts), 3.21 (s, 1H), 2.50 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.2, 135.5, 134.8 (CH), 132.8, 132.1 (q, J = 34.1 Hz), 130.4 (CH), 128.7 (CH), 127.2 (q, J = 3.5 Hz, CH), 126.8 (q, J = 3.8 Hz, CH), 125.7, 122.6 (q, J = 273 Hz), 106.7, 87.3 (CH), 76.1, 21.8 (CH₃); MS (EI, 20 eV) m/z 91 (77), 155 (100), 364 (12) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₁F₃N₂O₂S: 364.0493. Found: 364.0492; IR (cm⁻¹) 3286, 2926, 2854, 2240, 2119, 1598.

N-Tosyl-N-(2-ethynyl-4-methoxyphenyl)cyanamide (8h)

Compound **8h** was prepared from compound **S4h** by *General procedure S5*. The product (**8h**, oil, 0.3228 g, 0.989 mmol, 74%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2 , $R_f = 0.15$). ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (d, 2H, J = 8.4 Hz, Ts), 7.35 (d, 2H, J = 8.0 Hz, Ts), 7.23 (d, 1H, J = 8.8 Hz), 6.96 (d, 1H, J = 3.2 Hz), 6.92 (dd, 1H, J = 8.8, 2.8 Hz), 3.81 (s, 3H, Me), 2.99 (s, 1H), 2.48 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 160.8, 146.8, 133.3, 131.1 (CH), 130.4 (CH), 128.9 (CH), 127.7, 123.3, 118.7 (CH), 116.3 (CH), 107.7, 84.2 (CH), 77.4, 55.9 (CH₃), 22.0 (CH₃); MS (ESI⁺) m/z 349 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₁₇H₁₄NaO₃N₂S: 349.0623 (M+Na). Found: 349.0610; IR (cm⁻¹) 3279, 2943, 2844, 2231, 2114, 1597, 1574, 1486.

N-Tosyl-*N*-(2-ethynyl-4-methylphenyl)cyanamide (8i)

Compound **8i** was prepared from compound **S4i** by *General procedure S5*. The product (**8i**, oil, 0.8054 g, 2.60 mmol, 65%, $R_f = 0.2$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). ¹H NMR (CDCl₃, 400 MHz) δ 7.67 (d, 2H, J = 8.4 Hz, Ts), 7.34 (d, 2H, J = 8.1 Hz, Ts), 7.29 (s, 1H), 7.207 (s, 1H), 7.205 (s, 1H), 2.99 (s, 1H), 2.46 (s, 3H, Me), 2.34 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.6, 141.1, 134.5 (CH), 133.1, 132.2, 130.8 (CH), 130.1 (CH), 129.3 (CH), 128.6 (CH), 121.5, 107.4, 83.9 (CH), 77.2, 21.7 (CH₃), 20.9 (CH₃); MS (EI, 70 eV)

m/z 155 (100), 246 (45), 262 (47), 310 (43) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₄N₂O₂S: 310.0776. Found: 310.0780; IR (cm⁻¹) 3252, 3056, 2926, 2238, 2109, 1918, 1596, 1488.

N-Tosyl-*N*-(2-ethynyl-4-(*i*-propyl)phenyl)cyanamide (8j)

Compound **8j** was prepared from compound **S4j** by *General procedure S5*. The product (**8j**, white soild, 0.2883 g, 0.852 mmol, 43%, $R_f = 0.38$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 104–106 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (dd, 2H, J = 6.6 Hz, 1.8 Hz, Ts), 7.36 (d, 2H, J = 7.2 Hz, Ts), 7.35 (d, 1H, J = 2.0 Hz), 7.27 (dd, 1H, J = 8.4, 2.0 Hz), 7.24 (d, 1H, J = 8.4 Hz), 2.99 (s, 1H), 2.91 (sept, 1H, J = 6.8 Hz, CH), 2.48 (s, 3H, Me), 1.24 (d, 6H, J = 7.2 Hz, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 151.8, 146.5, 133.4, 132.5 (CH), 132.1, 130.2 (CH), 129.5 (CH), 128.7 (CH), 128.4 (CH), 121.7, 107.4, 83.7 (CH), 77.6, 33.7 (CH), 23.5 (CH₃), 21.8 (CH₃); MS (ESI⁺) m/z 251 (21), 297 (26), 339 (M+H); HRMS (ESI⁺, TOF) calcd for C₁₉H₁₉N₂O₂S: 339.1167 (M+H). Found: 339.1161; IR (cm⁻¹) 3284, 2965, 2233, 2113, 1596, 1488, 1463.

N-Tosyl-*N*-(2-ethynyl-4-(*t*-butyl)phenyl)cyanamide (8k)

Compound **8k** was prepared from compound **S4k** by *General procedure S5*. The product (**8k**, solid, 0.5436 g, 1.54 mmol, 52%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.15$). m.p. 106–108 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, 2H, J = 8.4 Hz, Ts), 7.50 (d, 1H, J = 2.3 Hz), 7.43 (dd, 1H, J = 8.5, 2.3 Hz), 7.36 (d, 2H, J = 8.2 Hz, Ts), 7.24 (d, 1H, J = 8.6 Hz), 3.00 (s, 1H), 2.49 (s, 3H, Me), 1.31 (s, 9H, *t*-Bu); ¹³C NMR (CDCl₃, 100 MHz) δ 154.3, 146.7, 133.6, 132.5, 131.5 (CH), 130.4 (CH), 129.4 (CH), 128.9 (CH), 127.7 (CH), 121.5, 107.7, 83.8 (CH), 78.0, 35.1, 31.2 (CH₃), 22.0 (CH₃); MS (ESI⁺) *m/z* 375 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₂₀H₂₁N₂O₂S: 353.1324 (M+H). Found: 353.1330; IR (cm⁻¹) 3282, 2966, 2872, 2234, 2112, 1596, 1493, 1467.

N-Tosyl-N-(2-ethynyl-4-fluorophenyl)cyanamide (8l)

Compound **81** was prepared from compound **S41** by *General procedure S5*. The product (**81**, solid, 0.5880 g, 1.87 mmol, 37%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.1$). m.p. 106–108 °C; ¹H NMR (CDCl₃, 400 MHz)

δ 7.69 (d, 2H, J = 8.4 Hz, Ts), 7.37 (d, 2H, J = 8.4 Hz, Ts), 7.35 (dd, 1H, J = 9.2, 4.8 Hz), 7.19 (dd, 1H, J = 8.4, 2.8 Hz), 7.14 (ddd, 1H, J = 8.8, 7.6, 2.8 Hz), 3.08 (s, 1H), 2.49 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 163.0 (d, J = 252 Hz), 147.1, 133.2, 132.0 (d, J = 10 Hz, CH), 131.2 (d, J = 3Hz), 130.5 (CH), 129.0 (CH), 124.2 (d, J = 9 Hz), 121.0 (d, J = 24 Hz, CH), 117.8 (d, J = 23 Hz, CH), 107.3, 85.8 (CH), 76.3, 22.0 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -108.1; MS (EI, 70 eV) *m*/*z* 91 (100), 155 (91), 266 (21), 314 (23) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁FN₂O₂S: 314.0525. Found: 314.0526; IR (cm⁻¹) 3270, 3063, 2924, 2238, 2120, 1929, 1584.

N-Tosyl-N-(2-ethynyl-4-chlorophenyl)cyanamide (8m)

Compound **8m** was prepared from compound **S4m** by *General procedure S5*. The product (**8m**, white soild, 0.1312 g, 0.397 mmol, 19%, $R_f = 0.33$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 126–128 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (d, 2H, *J* = 8.3 Hz, Ts), 7.46 (d, 1H, *J* = 2.3 Hz), 7.40 (dd, 1H, *J* = 8.6, 2.4 Hz), 7.36 (d, 2H, *J* = 8.1 Hz, Ts), 7.30 (d, 1H, *J* = 8.6 Hz), 3.09 (s, 1H), 2.48 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.9, 136.6, 133.8 (CH), 133.3, 132.8, 130.8 (CH), 130.3 (2xCH), 128.6 (CH), 123.3, 106.8, 85.8 (CH), 75.9, 21.8 (CH₃); MS (EI, 70 eV) *m*/*z* 65 (61), 91 (100), 92 (53), 139 (47), 155 (82), 156 (47), 282 (51), 330 (30) (M⁺), 332 (12) (M+2); HRMS (EI, sector) calcd for C₁₆H₁₁ClN₂O₂S: 330.0230. Found: 330.0229; IR (cm⁻¹) 3246, 3076, 2926, 2229, 2111, 1595, 1479.

N-Tosyl-N-(2-ethynyl-4,6-difluorophenyl)cyanamide (8p)

Compound **8p** was prepared from compound **S4p** by *General procedure S5*. The product (white soild, 0.1490 g, 0.448 mmol, 45%, $R_f = 0.25$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 118–119 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (d, 2H, J = 8.4 Hz, Ts), 7.40 (d, 2H, J = 8.3 Hz, Ts), 7.08 (dt, 1H, J = 8.0, 2.2 Hz), 6.98 (dt, 1H, J = 8.6, 2.8 Hz), 3.20 (s, 1H), 2.50 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 163.2 (dd, J = 255, 13.1 Hz), 159.4 (dd, J = 258, 14.1 Hz), 147.0, 133.4, 130.3 (CH), 128.8 (CH),126.0 (d, J = 14.1 Hz), 120.1 (dd, J = 14.6, 4.5 Hz), 116.7 (dd, J = 24.7, 3.5 Hz, CH), 106.8, 106.6 (dd, J = 26.2, 24.1 Hz, CH), 86.6 (CH), 75.8, 21.9 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -103.0 (d, J = 10.5 Hz), -109.8 (d, J = 10.2 Hz); MS (EI, 20 eV) *m/z* 91 (100), 155 (91), 284 (6), 332 (4) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₀F₂N₂S: 332.0431. Found: 332.0428; IR (cm⁻¹) 3292, 3094, 2926, 2855, 2238, 2119, 1613, 1588, 1469, 1439.

reagents and conditions

(a) TsCl (1.2 equiv), pyridine (2 equiv), DCM (0.5 M), 0 °C ~ rt, 12 h; (b) BrCN (1.3 equiv), Et₃N (2 equiv), ether (0.2 M), 0 °C, 3 h; (c) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, < 3 min

	R =	S5	7	8
g	5-NO ₂	48%	49%	43%
n	$4-CF_3$	71%	33%	38%
0	$4-NO_2$	26%	77%	23%

[General procedure S6] Preparation of N-tosyl-2-(2-trimethylsilylethynyl)anilines (S5g,n,o) from 2-(2-trimethylsilylethynyl)anilines⁸ (S2g,n,o)

To a solution of 2-(2-trimethylsilylethynyl)aniline (1 equiv) and pyridine (2 equiv) in CH_2Cl_2 (0.5 M) at 0 °C was added TsCl (1.2 equiv). The solution was stirred for 12 h while the reaction temperature was allowed to rise to room temperature. The solution was diluted with CH_2Cl_2 , washed with H_2O and saturated aqueous NaCl solution, and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography.

[GeneralprocedureS7]PreparationofN-tosyl-N-(2-(2-trimethylsilylethynyl))cyanamides(7g,n,o)fromN-tosyl-2-(2-trimethylsilylethynyl)anilines⁸ (S5g,n,o)(5g,n,o)(7g,n,o)

To a solution of *N*-tosyl-2-(2-trimethylsilylethynyl)aniline (1 equiv) in ethyl ether (0.2 M) at 0 °C was added BrCN (1.5 equiv, *caution:* toxic and hydrolyzed readily to release hydrogen cyanide) in one portion. The solution was stirred at 0 °C and Et₃N (2.0 equiv) was added dropwise. After the addition was completed, the reaction mixture was stirred for 3 h while the reaction temperature was allowed to rise to room temperature. The solid was removed by filteration, and the solution was diluted with EtOAc. The solution was washed with saturated aqueous Na₂CO₃ solution, saturated aqueous NaCl solution, and dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography.

N-Tosyl-2-(2-trimethylsilylethynyl)-5-nitroaniline (S5g)

Compound **S5g** was prepared from 2-(2-trimethylsilylethynyl)-5-nitroaniline (**S3g**) by *General procedure S6*. The product (**S5g**, oil, 0.5660 g, 1.46 mmol, 48%) was purified by flash column chromatography (Hex / CHCl₃ = 7 : 3, $R_f = 0.08$). ¹H NMR (CDCl₃, 400 MHz) δ 8.42 (d, 1H, J = 2.0 Hz), 7.84 (dd, 1H, J = 8.4, 2.4 Hz), 7.73 (d, 2H, J = 8.4 Hz, Ts), 7.45 (d, 1H, J = 8.4 Hz), 7.39 (br, 1H, NH), 7.27 (d, 2H, J = 8.0 Hz, Ts), 2.39 (s, 3H, Me), 0.31 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 148.2, 145.0, 139.4, 135.8, 132.8 (CH), 130.2 (CH), 127.6 (CH), 119.5, 118.7 (CH), 113.5 (CH), 108.4, 97.9, 21.8 (CH₃), -0.13 (CH₃); MS (EI, 70 eV) m/z 91 (28), 373 (100), 388 (76) (M⁺); HRMS (EI, sector) calcd for C₁₈H₂₀N₂O₄SSi: 388.0913. Found: 388.0912.

N-Tosyl-2-(2-trimethylsilylethynyl)-4-trifluoromethylaniline (S5n)

Compound **S5n** was prepared from 2-(2-trimethylsilylethynyl)-4-trifluoromethyl aniline (**S3n**) by *General procedure S6*. The product (**S5n**, oil, 2.1713 g, 5.276 mmol, 89%, $R_f = 0.28$ (Hex / EtOAc = 95 : 5)) was purified by flash column chromatography (Hex / EtOAc = 99 : 1). ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, 2H, *J* = 8.4 Hz, Ts), 7.70 (d, 1H, *J* = 8.8 Hz), 7.59 (s, 1H), 7.51 (dd, 1H, *J* = 8.8, 1.2 Hz), 7.43 (br, 1H, NH), 7.28 (d, 2H, *J* = 7.6 Hz, Ts), 2.42 (s, 3H, Me), 0.32 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 144.8, 141.2, 136.1, 130.1 (CH), 129.4 (q, *J* = 4.0 Hz, CH), 127.4 (CH), 126.8 (q, *J* = 4.0 Hz, CH), 126.3 (q, *J* = 33 Hz), 123.7 (q, *J* = 270 Hz), 118.6 (CH), 114.0, 104.7, 98.2, 21.8 (CH₃), -0.04 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.5; MS (EI, 70 eV) *m*/z 396 (100), 397 (26), 411 (72) (M⁺); HRMS (EI, sector) calcd for C₁₉H₂₀F₃NO₂SSi: 411.0936. Found: 411.0933.

N-Tosyl-2-(2-trimethylsilylethynyl)-4-nitroaniline (S50)

Compound **S50** was prepared from 2-(2-trimethylsilylethynyl)-4-nitroaniline (**S30**) by *General procedure S6*. The product (**S50**, oil, 0.3054 g, 0.786 mmol, 26%) was purified by flash column chromatography (Hex / EtOAc = 95 : 5, $R_f = 0.18$). ¹H NMR (CDCl₃, 400 MHz) δ 8.19 (d, 1H, J = 2.7 Hz), 8.09 (dd, 1H, J = 9.1, 2.5 Hz), 7.73 (d, 2H, J = 8.3 Hz, Ts), 7.67 (d, 1H, J = 9.2 Hz), 7.61 (br, 1H, NH), 7.28 (d, 2H, J = 8.2 Hz, Ts), 2.39 (s, 3H, Me), 0.31 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 145.2, 143.6, 143.3, 135.7, 130.3 (CH), 127.8 (CH), 127.5 (CH), 125.3 (CH), 117.4 (CH), 113.7, 106.0, 97.2, 21.8 (CH₃), -0.12 (CH₃); MS (EI, 70 eV) m/z 91 (21), 155 (22), 316 (25), 373 (100), 388 (87) (M⁺); HRMS (EI, sector) calcd for C₁₈H₂₀N₂O₄SSi: 388.0913. Found: 388.0912.

N-Tosyl-*N*-(2-(2-trimethylsilylethynyl)-5-nitrophenyl)cyanamide (7g)

Compound **7g** was prepared from compound **S5g** by *General procedure S7*. The product (**7g**, oil, 0.2948 g, 0.713 mmol, 49%, $R_f = 0.13$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). ¹H NMR (CDCl₃, 400 MHz) δ 8.26 (dd, 1H, J = 8.4, 2.0 Hz), 8.17 (d, 1H, J = 2.0 Hz), 7.72 (d, 2H, J = 8.4 Hz, Ts), 7.66 (d, 1H, J = 8.8 Hz), 7.40 (d, 2H, J = 8.0 Hz, Ts), 2.51 (s, 3H, Me), 0.226 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.4, 147.3, 135.6, 134.7 (CH), 133.4, 130.8 (CH), 129.4, 128.8 (CH), 125.1 (CH), 124.7 (CH), 110.9, 106.3, 96.6, 22.1 (CH₃), -0.43 (CH₃); MS (EI, 70 eV) m/z 92 (100), 155 (100), 228 (44), 398 (98), 399 (98), 400 (86), 413 (65) (M⁺); HRMS (EI, sector) calcd for C₁₉H₁₉N₃O₄SSi: 413.0866. Found: 413.0867; IR (cm⁻¹) 2962, 2231, 1596, 1527, 1391.

N-Tosyl-*N*-(2-(2-trimethylsilylethynyl)-4-trifluoromethylphenyl)cyanamide (7n) Compound 7n was prepared from compound S5n by *General procedure S7*. The product (7n, solid, 0.5303 g, 1.21 mmol, 33%, $R_f = 0.2$ (Hex / EtOAc = 95 : 5)) was purified by flash column chromatography (Hex / EtOAc = 98 : 2). m.p. 113–115 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, 1H, *J* = 1.8 Hz,Ar), 7.68 (d, 2H, *J* = 8.4 Hz, Ts), 7.63 (dd, 1H, *J* = 8.5, 2.0 Hz), 7.52 (d, 1H, *J* = 8.4 Hz), 7.37 (d, 2H, *J* = 8.1 Hz, Ts), 2.49 (s, 3H, Me), 0.20 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.1, 137.4, 133.5, 132.7 (q, *J* = 33 Hz), 131.1 (q, *J* = 4.0 Hz, CH), 130.6 (CH), 130.2 (CH), 128.8 (CH), 126.2 (q, *J* = 4.0 Hz, CH), 123.8, 123.1 (q, *J* = 271 Hz), 106.4 (q, *J* = 2.0 Hz), 96.7, 77.4, 22.0 (CH₃), -0.37 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.2; MS (EI, 70 eV) *m*/*z* 91 (100), 139 (29), 155 (66), 251 (58), 267 (52), 421 (79), 422 (60), 423 (58), 436 (34) (M⁺); HRMS (EI, sector) calcd for C₂₀H₁₉F₃N₂O₂SSi: 436.0889. Found: 436.0886; IR (cm⁻¹) 3068, 2963, 2240, 2166, 1596, 1493.

N-Tosyl-N-(2-(2-trimethylsilylethynyl)-4-nitrophenyl)cyanamide (70)

Compound **70** was prepared from compound **S50** by *General procedure S7*. The product (**70**, oil, 0.7405 g, 1.79 mmol, 77%) was purified by flash column chromatography (Hex / EtOAc = 95 : 5, $R_f = 0.10$). ¹H NMR (CDCl₃, 400 MHz) δ 8.29 (d, 1H, J = 2.8 Hz), 8.21 (dd, 1H, J = 9.2, 2.8 Hz), 7.66 (d, 2H, J = 8.4 Hz, Ts), 7.60 (d, 1H, J = 8.8 Hz), 7.37 (d, 2H, J = 8.4 Hz, Ts), 2.49 (s, 3H, Me), 0.19 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 148.3, 147.3, 139.3, 133.2, 130.7 (CH), 130.6 (CH), 128.9

(CH), 128.7 (CH), 124.2, 124.1 (CH), 107.9, 105.9, 95.9, 22.0 (CH₃), -0.47 (CH₃); MS (EI, 70 eV) m/z 91 (100), 139 (41), 155 (100), 182 (55), 228 (66), 244 (60), 398 (100), 399 (100), 400 (97), 413 (64) (M⁺); HRMS (EI, sector) calcd for C₁₉H₁₉N₃O₄SSi: 413.0866. Found: 413.0866; IR (cm⁻¹) 3091, 2962, 2239, 1596, 1574, 1533, 1477.

N-Tosyl-*N*-(2-ethynyl-5-nitrophenyl)cyanamide (8g)

Compound **8g** was prepared from *compound* **7g** by *General procedure S3a*. The product (**8g**, solid, 0.1035 g, 0.3032 mmol, 43%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2, $R_f = 0.18$). m.p. 159–161 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.30 (dd, 1H, J = 8.8, 2.4 Hz), 8.20 (d, 1H, J = 2.4 Hz), 7.73 (d, 2H, J = 8.4 Hz, Ts), 7.71 (d, 1H, J = 8.8 Hz), 7.41 (d, 2H, J = 8.4 Hz, Ts), 3.40 (s, 1H), 2.51 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.9, 147.7, 136.2, 135.2 (CH), 133.0, 130.8 (CH), 128.9 (CH), 128.6, 125.3 (CH), 125.1 (CH), 106.6, 90.1 (CH), 76.1, 22.1 (CH₃); MS (EI, 70 eV) 91 (100), 155 (100), 316 (56), 341 (26) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁N₃O₄S: 341.0470. Found: 341.0468; IR (cm⁻¹) 3281, 3102, 2925, 2231, 2116, 1595, 1529.

N-Tosyl-*N*-(2-ethynyl-4-trifluoromethylphenyl)cyanamide (8n)

Compound **8n** was prepared from *compound* **7n** by *General procedure S3a*. The product (**8n**, solid, 0.0734 g, 0.30 mmol, 43%, $R_f = 0.18$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 158–160 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (s, 1H), 7.71 (d, 2H, *J* = 8.4 Hz,Ts), 7.69 (dd, 1H, *J* = 8.8, 1.6 Hz), 7.54 (d, 1H, *J* = 8.4 Hz), 7.39 (d, 2H, *J* = 8.0 Hz, Ts), 3.14 (s, 1H), 2.50 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.4, 138.0, 133.2, 133.0 (q, *J* = 34 Hz), 131.4 (q, *J* = 3.0 Hz, CH), 130.7 (2xCH), 128.9 (CH), 127.0 (q, *J* = 3.0 Hz, CH), 123.0, 122.97 (q, *J* = 272 Hz), 106.8, 86.7 (CH), 76.1, 22.1 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.2; MS (EI, 70 eV) *m*/*z* 91 (93), 139 (25), 155 (100), 316 (82), 364 (32) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₁F₃N₂O₂S: 364.0493. Found: 364.0493; IR (cm⁻¹) 3244, 2925, 2856, 2230, 2113, 1601.

N-Tosyl-*N*-(2-ethynyl-4-nitrophenyl)cyanamide (80) Compound 80 was prepared from *compound* 70 by *General procedure S3a*. The product (**80**, oil, 0.0538 g, 0.16 mmol, 23%) was purified by flash column chromatography (Hex / EtOAc = 85 : 15, $R_f = 0.13$). ¹H NMR (CDCl₃, 400 MHz) δ 8.34 (s, 1H, *J* = 2.4 Hz), 8.27 (dd, 1H, *J* = 8.8, 2.8 Hz), 7.71 (d, 2H, *J* = 8.4 Hz, Ts), 7.62 (d, 1H, *J* = 8.8 Hz), 7.39 (d, 2H, *J* = 8.0 Hz, Ts), 3.23 (s, 1H), 2.51 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 148.5, 147.7, 140.0, 132.9, 131.2 (CH), 130.8 (CH), 129.3 (CH), 128.9 (CH), 124.9 (CH), 123.6, 106.4, 87.8 (CH), 75.5, 22.1 (CH₃); MS (EI, 70 eV) *m*/*z* 91 (100), 155 (100), 293 (25), 341 (25) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁N₃O₄S: 341.0470. Found: 341.0470; IR (cm⁻¹) 3281, 3091, 2926, 2236, 2116, 1731, 1595, 1538, 1479.

reagents and conditions

(a) trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.25 M), rt, Ar, 1 d, 78%; (b) NH₂OH (50 wt% aqueous solution, 2.0 equiv), EtOH (0.4 M), reflux, 4 h, 55%; (c) TsCl (1.1 equiv), pyridine (1.0 M), 0 °C ~ rt, 2 h, 93%; (d) TBAF (1 M in THF, containing *ca*. 5% H₂O, 1 equiv), THF (0.5 M), 0 °C, < 3 min, 37%

2-(2-Trimethylsilylethynyl)benzamidoxime (S8)

To a solution of 2-(2-trimethylsilylethynyl)benzonitrile⁹ (**S7**, 1.6045 g, 8.050 mmol) in EtOH (20 mL) was added hydroxylamine (50wt% aqueous solution, 1.12 g, 16.95 mmol, 2.1 equiv).^{10,11} The mixture was stirred at reflux temperature for 4 h under nitrogen. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (Hex / EtOAc = 8 : 2, $R_f = 0.1$) to give the product (**S8**, solid, 1.0266 g, 4.418 mmol, 55%). m. p. 124–126 °C; ¹H NMR (CDCl₃, 400 MHz) δ 9.38 (br, 1H, OH), 7.68–7.64 (m, 1H), 7.53–7.50 (m, 1H), 7.36–7.31 (m, 2H), 5.40 (br, 2H, NH₂), 0.25 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 152.7, 134.4, 134.0 (CH), 129.4 (CH), 129.1 (CH), 128.8 (CH), 120.7, 103.3, 100.4, -0.09 (CH₃); MS (ESI⁺) *m/z* 233 (100) (M+H); HRMS (ESI⁺, TOF) calcd. for C₁₂H₁₇N₂OSi: 233.1110 (M+H). Found: 233.1111.

N-(2-(2-Trimethylsilylethynyl)phenyl)cyanamide (2)

To the mixture of 2-(2-trimethylsilylethynyl)benzamidoxime (**S8**, 0.8584 g, 3.694 mmol) in pyridine (4.0 mL) at 0 °C was added TsCl (0.7781 g, 4.081 mmol, 1.1 equiv).¹⁰ The mixture was stirred under nitrogen for 2 h while the reaction temperature was allowed to rise to room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (Hex / EtOAc = 95 : 5, $R_f = 0.2$) to give the product (**2**, 0.7378 g, oil, 3.442 mmol, 93%). ¹H NMR (CDCl₃, 400 MHz) δ 7.40 (dd, 1H, *J* = 7.6, 1.2 Hz), 7.34 (dt, 1H, *J* = 8.0, 1.2 Hz), 7.21 (d, 1H, *J* = 8.0 Hz), 7.01 (dt, 1H, *J* = 7.6, 0.8 Hz), 6.65 (br, 1H, NH), 0.28 (s, 9H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 138.7, 132.6 (CH), 130.5 (CH),

123.2 (CH), 114.2 (CH), 110.3, 110.2, 103.4, 98.7, 0.05 (CH₃); MS (EI, 70 eV) m/z 127 (47), 199 (100), 214 (64) (M⁺); HRMS (EI, sector) calcd. for C₁₂H₁₄N₂Si: 214.0926. Found: 214.0925; IR (cm⁻¹) 3250, 2961, 2242, 2158, 1579, 1499, 1422.

N-(2-Ethynylphenyl)cyanamide (12a)

Compound **12a** was prepared from *N*-(2-(2-trimethylsilylethynyl)phenyl)cyanamide (**2**) by *General procedure S3a*. The product (**12a**, solid, 0.1537 g, 1.081 mmol, 37%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.12). m. p. 96-98 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.43 (dd, 1H, *J* = 7.6, 1.6 Hz), 7.38 (dt, 1H, *J* = 8.0, 1.6 Hz), 7.23 (d, 1H, *J* = 8.4 Hz), 7.02 (dt, 1H, *J* = 7.6, 1.2 Hz), 5.50 (br, 1H, NH), 3.51 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 139.7, 132.9 (CH), 130.8 (CH), 123.2 (CH), 114.6 (CH), 110.7, 109.1, 85.3 (CH), 78.3; MS (EI, 70 eV) *m*/*z* 115 (54), 142 (100) (M⁺); HRMS (EI, sector) calcd for C₉H₆N₂: 142.0531. Found: 142.0531; IR (cm⁻¹) 3271, 3208, 2241, 1581, 1504, 1432.

reagents and conditions

(a) X = Ac, Bz, Ts, 4-NO₂C₆H₄SO₂, or 4-AcNHC₆H₄SO₂: X-Cl (1.5 equiv), DIPEA (3 equiv), MeCN (0.25 M), 0 °C ~ rt; (b) X = Boc: Boc₂O (1.8 equiv), DIPEA (3 equiv), MeCN (0.25 M), 0 °C ~ rt

[General procedure S8] Preparation of N-acyl-N-(2-ethynylphenyl)cyanamides (**12c-e**) and N-arylsulfonyl-N-(2-ethynylphenyl)cyanamides (**12g,i,7a**) from N-(2-ethynylphenyl)cyanamide (**12a,2**)

To a solution of *N*-(2-ethynylphenyl)cyanamide (**12a**, 1 equiv) and DIPEA (3 equiv) in acetonitrile (0.25 M) at 0 °C was added acyl chloride, arylsulfonyl chloride or Boc₂O, respectively (X-Cl or Boc₂O, 1.5 equiv). The reaction mixture was stirred and monitored by TLC while the reaction temperature was allowed to rise to room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography.

N-Acetyl-*N*-(2-ethynylphenyl)cyanamide (12c)

Compound **12c** was prepared from compound **12a** by *General procedure S8* with acetyl chloride. The product (**12c**, oil, 0.8972 g, 4.874 mmol, 87%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.15). ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (dd, 1H, *J* = 7.2, 2.0 Hz), 7.51–7.44 (m, 2H), 7.37 (d, 1H, *J* = 7.2 Hz), 3.43 (s, 1H), 2.50 (br, 3H, Ac); ¹³C NMR (CDCl₃, 100 MHz) δ 169.1, 136.3, 134.3 (CH), 130.6 (CH), 130.3 (CH), 128.1 (CH), 121.7, 109.2, 84.7 (CH), 78.0, 21.9 (CH₃); MS (EI, 70 eV) *m/z* 88 (32), 89 (44), 114 (65), 115 (100), 142 (100), 143 (94), 184 (65) (M⁺); HRMS (EI, sector) calcd for C₁₁H₈N₂O: 184.0637. Found: 184.0637; IR (cm⁻¹) 3277, 2237, 2112, 1739, 1504, 1487, 1446.

N-Benzoyl-*N*-(2-ethynylphenyl)cyanamide (12d)

Compound **12d** was prepared from compound **12a** by *General procedure S8* with benzoyl chloride. The product (**12d**, solid, 0.1816 g, 0.737 mmol, 60%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.15). m.p. 105–109 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (d, 2H, *J* = 7.6 Hz, Bz), 7.64 (d, 1H, *J* = 8.0 Hz), 7.61 (t, 1H, *J* = 8.0 Hz), 7.51–7.42 (m, 5H), 3.41 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 137.2, 134.3 (CH), 133.6 (CH), 130.7, 130.6 (CH), 130.0 (CH), 129.3 (CH), 128.8 (CH), 127.8 (CH), 121.4, 109.8, 84.7 (CH), 78.4; MS (EI, 70 eV) *m/z* 77 (100), 105 (100), 151 (58), 162 (64), 190 (30), 205 (44), 245 (34), 246 (70) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₀N₂O: 246.0793. Found: 246.0794; IR (cm⁻¹) 3276, 2928, 2238, 2110, 1722, 1623, 1486, 1448.

N-(*t*-Butoxycarbonyl)-*N*-(2-ethynylphenyl)cyanamide (12e)

Compound **12e** was prepared from compound **12a** by *General procedure S8* with Boc₂O. The product (**12e**, oil, 0.0516 g, 0.217 mmol, 47%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.25). ¹H NMR (CDCl₃, 400 MHz) δ 7.59 (d, 1H, *J* = 7.6 Hz), 7.46–7.37 (m, 3H), 3.40 (s, 1H), 1.53 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 150.0, 136.5, 134.0 (CH), 130.2 (CH), 129.8 (CH), 127.8 (CH), 121.6, 108.5, 86.6, 84.3 (CH), 78.3, 27.8 (CH₃); MS (ESI⁺) *m*/*z* 265 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₁₄H₁₄N₂NaO₂: 265.0953 (M+Na). Found: 265.0951; IR (cm⁻¹) 3269, 2984, 2930, 2246, 2113, 1760, 1487, 1451.

N-(*p*-Nosyl)-*N*-(2-ethynylphenyl)cyanamide (12g)

Compound **12g** was prepared from compound **12a** by *General procedure S8* with *p*-nitrobenzenesulfonyl chloride. The product (**12g**, solid, 0.1572 g, 0.480 mmol, 32%, $R_f = 0.25$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 9 : 1). m.p. 177–179 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (d, 2H, *J* = 8.8 Hz, Ns), 8.02 (d, 2H, *J* = 8.9 Hz, Ns), 7.54–7.46 (m, 4H), 2.98 (s, 1H, CH); ¹³C NMR (CDCl₃, 100 MHz) δ 151.6, 141.5, 134.6 (CH), 134.0, 131.1 (CH), 130.6 (CH), 130.14 (CH), 130.09 (CH), 124.8 (CH), 121.5, 106.2, 85.0 (CH), 76.8; MS (EI, 70 eV)

m/z 89 (49), 114 (76), 115 (87), 122 (73), 141 (100), 142 (100), 157 (31), 186 (43), 205 (74), 252 (25), 298 (85), 327 (17) (M⁺); HRMS (EI, sector) calcd for C₁₅H₉N₃O₄S: 327.0314. Found: 327.0313; IR (cm⁻¹) 3249, 3107, 2924, 2233, 2109, 1532, 1406.

N-(4-Acetamidobenzenesulfonyl)-N-(2-ethynylphenyl)cyanamide (12i)

Compound **12i** was prepared from compound **12a** by *General procedure S8* with 4-acetamidobenzenesulfonyl chloride. The product (**12i**, solid, 0.1267 g, 0.373 mmol, 65%) was purified by flash column chromatography (Hex / EtOAc = 5 : 5, $R_f = 0.1$). m.p. 159 °C (decomp.); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.57 (s, 1H, NH), 7.88 (d, 2H, *J* = 9.2 Hz), 7.73 (d, 2H, *J* = 8.8 Hz), 7.64–7.62 (m, 1H), 7.58–7.56 (m, 2H), 7.40–7.38 (m, 1H), 4.37 (s, 1H), 2.12 (s, 3H, Me); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 170.4, 146.9, 135.1 (CH), 135.0, 132.2 (CH), 131.6 (CH), 130.9 (CH), 130.4 (CH), 128.6, 122.5, 120.1 (CH), 108.2, 88.8 (CH), 78.2, 25.2 (CH₃); MS (EI, 70 eV) *m/z* 92 (33), 108 (34), 134 (99), 142 (34), 198 (100), 199 (34), 291 (45), 339 (32) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₃N₃O₃S: 339.0678. Found: 339.0679; IR (cm⁻¹) 3282, 3109, 2231, 2112, 1706, 1590, 1532, 1405.

N-Tosyl-*N*-(2-(2-trimethylsilylethynyl)phenyl)cyanamide (7a)

Compound **7a** was prepared from compound **2** by *General procedure S8* with TsCl. The product (**7a**, oil, 0.2049 g, 0.5560 mmol, 68%, $R_f = 0.2$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5 ~ 9 : 1). ¹H NMR (CDCl₃, 400 MHz) δ 7.65 (d, 2H, J = 8.3 Hz), 7.48-7.46 (m,1H), 7.41-7.37 (m, 2H), 7.35-7.31 (m, 3H), 2.46 (s, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 146.5, 134.4, 133.9 (CH), 133.5, 130.3 (CH), 130.2 (CH), 129.5 (CH), 129.2 (CH), 128.6 (CH), 122.9, 106.9, 103.6, 98.0, 21.8 (CH₃), -0.37 (CH₃); MS (EI, 70 eV) *m*/*z* 91 (58), 155 (28), 183 (36), 198 (20), 353 (100), 368 (15) (M⁺); HRMS (EI, sector) calcd for C₁₉H₂₀N₂O₂SSi: 368.1015. Found: 368.1016; IR (cm⁻¹) 3366, 3069, 2962, 2230, 2163, 1719, 1599.

reagents and conditions (a) RSO₂Cl (3 equiv), pyridine (0.33 M), 0 $^{\circ}$ C ~ rt, 3 h

N-Benzenesulfonyl-N-(2-ethynylphenyl)cyanamide (12f)

Compound **12f** was prepared from compound **S4a** by *General procedure S5* with benzenesulfonyl chloride. The product (**12f**, solid, 0.1805 g, 0.639 mmol, 20%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2, R_f = 0.20). m.p. 80 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (dd, 2H, *J* = 8.2, 1.0 Hz), 7.75 (dt, 1H, *J* = 7.5, 1.0 Hz), 7.57 (t, 2H, *J* = 7.7 Hz), 7.51–7.48 (m, 1H), 7.46–7.43 (m, 2H), 7.40–7.37 (m, 1H), 2.98 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 136.3, 135.4 (CH), 134.9, 134.4 (CH), 130.8 (CH), 130.3 (CH), 130.1 (CH), 129.9 (CH), 128.9 (CH), 122.1, 107.3, 84.8 (CH), 77.1; MS (EI, 70 eV) *m*/*z* 77 (97), 141 (95), 234 (100), 237 (47), 253 (85), 282 (39) (M⁺); HRMS (EI, sector) calcd for C₁₅H₁₀N₂O₂S: 282.0463. Found: 282.0463; IR (cm⁻¹) 3281, 2231, 2114, 1483, 1450.

N-(4-Methoxybenzenesulfonyl)-N-(2-ethynylphenyl)cyanamide (12h)

Compound **12h** was prepared from compound **S4a** by *General procedure S5* with 4-methoxybenzenesulfonyl chloride. The product (**12h**, solid, 0.2636 g, 0.844 mmol, 28%, $R_f = 0.15$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 9 : 1). m.p. 110–113 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, 2H, *J* = 9.0 Hz), 7.51–7.49 (m, 1H), 7.44–7.41 (m, 2H), 7.38–7.35 (m, 1H), 6.99 (d, 2H, *J* = 9.0 Hz), 3.90 (s, 3H, OMe), 3.08 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.3, 135.1,

134.4 (CH), 131.3 (CH), 130.6 (CH), 130.3 (CH), 129.9 (CH), 127.4, 122.1, 115.0 (CH), 107.6, 84.7 (CH), 77.4, 56.1 (CH₃); MS (EI, 70 eV) m/z 77 (74), 92 (63), 107 (100), 123 (77), 171 (100), 172 (62), 264 (96), 312 (67) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₂N₂O₃S: 312.0569. Found: 312.0569; IR (cm⁻¹) 3280, 2948, 2845, 2230, 2113, 1594, 1576, 1498, 1484, 1447.

$$C^{=C^{-H}}$$

N-Mesyl-*N*-(2-ethynylphenyl)cyanamide (12j)

Compound **12j** was prepared from compound **S4a** by *General procedure S5* with methanesulfonyl chloride. The product (**12j**, oil, 0.1337 g, 0.607 mmol, 20%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2, $R_f = 0.13$). ¹H NMR (CDCl₃, 400 MHz) δ 7.67–7.64 (m, 1H), 7.54–7.48 (m, 3H), 3.60 (s, 1H), 3.35 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 134.6 (C+CH), 131.1 (CH), 130.8 (CH), 130.3 (CH), 121.4, 106.8, 86.1 (CH), 78.2, 41.5 (CH₃); MS (EI, 70 eV) *m/z* 89 (60), 114 (80), 141 (81), 142 (100), 191 (72), 205 (80), 220 (60) (M⁺); HRMS (EI, sector) calcd for C₁₀H₈N₂O₂S: 220.0306. Found: 220.0306; IR (cm⁻¹) 3283, 3030, 2932, 2234, 2113, 1708, 1565, 1501, 1484, 1447, 1412.

reagents and conditions

(a) premixed HCOOH (3.5 equiv) with Ac₂O (1.2 equiv), DCM (0.33 M), rt, 11 h; (b) NaBH₄ (4 equiv), BF₃OEt₂ (5 equiv), THF (0.13 M), 0 °C ~ rt, 1 d, 81% (after two steps from **S1a**); (c) trimethylsilylacetylene (1.2 equiv), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d, 90%; (d) K₂CO₃ (1 equiv), MeOH, rt, 1 h; (e) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 2.5 h, 59% (after two steps from **S10**); (f) TsCl (1.5 equiv), pyridine (1 M), 0 °C ~ rt, 1 h, 83%

N-(2-Ethynylphenyl)-*N*-methylurea (S12)

Compound **S12** was prepared from *N*-methyl-2-ethynylaniline¹² (**S11**) by *General* procedure S4. The product (**S12**, solid, 0.7543 g, 4.330 mmol, 59%) was purified by flash column chromatography (Hex / EtOAc = 4 : 6, $R_f = 0.1$). m.p. 132–134 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.53 (dd, 1H, J = 7.6, 1.4 Hz), 7.43 (dt, 1H, J = 7.6, 1.6 Hz), 7.30 (dt, 1H, J = 7.6, 1.2 Hz), 7.28 (d, 1H, J = 8.9 Hz), 5.64 (br, 2H, NH₂), 4.33 (s, 1H), 3.08 (s, 3H, Me); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 157.3, 146.0, 133.5 (CH), 130.1 (CH), 129.1 (CH), 127.2 (CH), 121.1, 84.7 (CH), 80.4, 36.5 (CH₃); MS (ESI⁺) m/z 175 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₀H₁₁N₂O: 175.0871 (M+H). Found: 175.0871.

12b ^{Me}

N-(2-Ethynylphenyl)-*N*-methylcyanamide (12b)

Compound **12b** was prepared from compound **S12** by *General procedure S5*. The product (**12b**, oil, 0.5594 g, 3.582 mmol, 83%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.15). ¹H NMR (CDCl₃, 400 MHz) δ 7.52 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.37 (dt, 1H, *J* = 8.0, 1.2 Hz), 7.30 (dd, 1H, *J* = 8.4, 1.2 Hz), 7.20 (dt, 1H, *J* = 7.6, 1.6 Hz), 3.48 (s, 1H), 3.42 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 143.3, 135.1 (CH), 130.3 (CH), 126.6 (CH), 122.5 (CH), 116.9, 115.5, 85.0 (CH), 79.4, 41.4 (CH₃); MS (ESI⁺) *m*/*z* 157 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₀H₉N₂: 157.0766 (M+H). Found: 157.0767; IR (cm⁻¹) 3286, 2947, 2221, 2108, 1598, 1571, 1488, 1448.

reagents and conditions

(a) K_2CO_3 (1 equiv), MeOH, rt, 1 h; (b) Lindlar catalyst (10 mol%), MeOH (0.25 M), H_2 (1 atm), rt, 4.5 h, 45% (after two steps from **S2a**); (c) NaNCO (3 equiv), AcOH / H_2O (3 : 1, v/v, 0.25 M), rt, 4 h, 81%; (d) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 1 h, 68%

N-(2-Vinylphenyl)urea (S14)

Compound **S14** was prepared from 2-vinylaniline¹³ (**S13**) by *General procedure S4*. The product (**S14**, solid, 0.3230 g, 1.9915 mmol, 81%) was purified by flash column chromatography (Hex / EtOAc = 5 : 5, $R_f = 0.13$). m.p. 194–198 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.34 (br, 1H, NH), 7.71 (d, 1H, J = 8.2 Hz), 7.47 (dd, 1H, J = 7.6, 0.7 Hz), 7.17 (dt, 1H, J = 7.6, 1.1 Hz), 7.01 (dd, 1H, J = 17.6, 11.4 Hz), 6.98 (t, 1H, J = 7.2 Hz), 6.17 (br, 2H, NH₂), 5.69 (dd, 1H, J = 17.3, 1.1 Hz), 5.28 (dd, 1H, J = 10.3, 1.0 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 156.4, 137.0, 132.6 (CH), 128.4, 127.9 (CH), 125.5 (CH), 122.7 (CH), 122.6 (CH), 115.4 (CH₂); MS (ESI⁺) m/z 163 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₉H₁₁N₂O: 163.0871 (M+H). Found: 163.0871.

N-Tosyl-*N*-(2-vinylphenyl)cyanamide (16)

Compound **16** was prepared from compound **S14** by *General procedure S5*. The product (**16**, oil, 0.4023 g, 1.348 mmol, 68%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.13). ¹H NMR (CDCl₃, 400 MHz) δ 7.69 (d, 2H, *J* = 8.4 Hz, Ts), 7.63 (dd, 1H, *J* = 8.0, 1.2 Hz), 7.43 (dt, 1H, *J* = 7.6, 0.8 Hz), 7.37 (d, 2H, *J* = 8.4 Hz, Ts), 7.25 (dt, 1H, *J* = 7.6, 0.8 Hz), 6.96 (dd, 1H, *J* = 8.0, 1.2 Hz), 6.69 (dd, 1H, *J* = 17.2, 10.8 Hz), 5.73 (d, 1H, *J* = 17.6 Hz), 5.30 (d, 1H, *J* = 10.8 Hz), 2.49 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.1, 137.3, 133.0, 131.6, 131.2 (CH), 130.5 (CH), 130.3 (CH), 129.1 (CH), 128.9 (CH), 128.8 (CH), 127.2 (CH), 118.5 (CH₂), 108.6, 22.0 (CH₃); MS (ESI⁺) *m*/*z* 200 (24), 299 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₆H₁₅N₂O₂S: 299.0854 (M+H). Found: 299.0856; IR (cm⁻¹) 3069, 2927, 2228, 1629, 1596, 1483, 1451.

reagents and conditions

(a) phenylacetylene or 1-octyne (1.5 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol%), CuI (2 mol%), Et₃N / THF (1 : 1, v/v, 0.5 M), rt, Ar, 1 d; (b) NaNCO (3 equiv), AcOH / H₂O (3 : 1, v/v, 0.25 M), rt, 5 h; (c) TsCl (3 equiv), pyridine (0.5 M), 0 °C ~ rt, 1 h

N-(2-(Phenylethynyl)phenyl)urea⁵ (S16a)

Compound **S16a** was prepared from 2-(phenylethynyl)aniline¹⁴ (**S15a**) by *General* procedure S4. The product (**S16a**, solid, 1.2158 g, 5.146 mmol, 90%) was purified by flash column chromatography (Hex / EtOAc = 7 : 3, $R_f = 0.05$). m.p. 195–197 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.09 (d, 1H, J = 8.0 Hz), 7.94 (br, 1H, NH), 7.66–7.64 (m, 2H), 7.47–7.43 (m, 4H), 7.30 (dt, 1H, J = 8.8, 1.6 Hz), 6.97 (dt, 1H, J = 8.0, 0.8 Hz), 6.46 (br, 2H, NH₂); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 155.6, 140.9, 132.0 (CH), 131.6 (CH), 129.3 (CH), 128.8 (CH), 128.6 (CH), 122.4, 121.4 (CH), 119.4 (CH), 110.9, 95.0, 85.4; MS (EI, 70 eV) m/z 84 (24), 165 (28), 193 (100), 236 (56) (M⁺); HRMS (EI, sector) calcd for C₁₅H₁₂N₂O: 236.0950. Found: 236.0954.

N-(2-(Oct-1-ynyl)phenyl)urea (S16b)

Compound **S16b** was prepared from 2-(oct-1-ynyl)aniline¹⁵ (**S15b**) by *General procedure S4*. The product (**S16b**, solid, 0.8694 g, 3.558 mmol, 48%, $R_f = 0.25$ (Hex / EtOAc = 6 : 4) was purified by flash column chromatography (Hex / EtOAc = 8 : 2). m.p. 130–132 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (d, 1H, *J* = 8.3 Hz), 7.67 (br, 1H, NH), 7.31 (dd, 1H, *J* = 7.6, 1.3 Hz), 7.16 (dt, 1H, *J* = 7.6, 1.3 Hz), 6.90 (dt, 1H, *J* = 7.6, 1.3 Hz), 5.65 (br, 2H, NH₂), 2.39 (t, 2H, *J* = 7.2 Hz, CH₂), 1.59–1.52 (m, 2H), 1.41–1.36 (m, 2H), 1.34–1.25 (m, 4H), 0.88 (t, 3H, *J* = 7.1 Hz, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 157.1, 139.7, 132.1 (CH), 128.5 (CH), 122.5 (CH), 119.7 (CH), 113.7, 97.5, 76.3, 31.4 (CH₂), 28.7 (2xCH₂), 22.6 (CH₂), 19.6 (CH₂), 14.1 (CH₃); MS (ESI⁺) *m*/z 245 (100) (M+H); HRMS (ESI⁺, TOF) calcd for C₁₅H₂₁N₂O: 245.1654 (M+H). Found: 245.1651.

N-Tosyl-*N*-(2-(phenylethynyl)phenyl)cyanamide¹⁶ (6a)

Compound **6a** was prepared from compound **S16a**⁵ by *General procedure S5*. The product (**6a**, solid, 1.2109 g, 3.251 mmol, 63%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.18$). m.p. 104–110 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (d, 2H, J = 8.4 Hz, Ts), 7.50–7.49 (m, 2H), 7.45–7.40 (m, 4H), 7.36–7.31 (m, 3H), 7.06 (d, 2H, J = 8.4 Hz, Ts), 2.20 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.6, 134.4, 133.6, 133.5 (CH), 132.0 (CH), 130.6 (CH), 130.4 (2xCH), 129.6 (CH), 129.2 (CH), 128.6 (CH), 128.4 (CH), 122.8, 122.4, 107.7, 97.0, 83.3, 21.8 (CH₃); MS (ESI⁺) m/z 395 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₂₂H₁₇N₂O₂S: 373.1011 (M+H). Found: 373.1015; IR (cm⁻¹) 3064, 2924, 2226, 1596, 1497, 1447.

N-Tosyl-*N*-(2-(oct-1-ynyl)phenyl)cyanamide (6b)

Compound **6b** was prepared from compound **S16b** by *General procedure S5*. The product (**6b**, oil, 0.4173 g, 1.097 mmol, 34 %) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.20). ¹H NMR (CDCl₃, 400 MHz) δ 7.79 (d, 2H, *J* = 7.6 Hz, Ts), 7.40–7.31 (m, 6H), 2.47 (s, 3H, Me), 2.16 (t, 2H, *J* = 7.2 Hz), 1.51–1.44 (m, 2H), 1.41–1.26 (m, 6H), 0.90 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 146.4, 134.4, 134.0, 133.7 (CH), 130.5 (CH), 130.2 (CH), 129.6 (CH), 128.8 (CH), 128.7 (CH), 124.0, 107.5, 99.2, 74.7, 31.5 (CH₂), 28.9 (CH₂), 28.5 (CH₂), 22.7 (CH₂), 22.0 (CH₃), 19.7 (CH₂), 14.2 (CH₃); MS (ESI⁺) *m/z* 381 (7) (M+H), 403 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₂₂H₂₅N₂O₂S: 381.1637 (M+H). Found: 381.1631; IR (cm⁻¹) 2931, 2859, 2232, 1597, 1487, 1448.

1-Cyano-2-phenylindole¹⁷ (9)

A mixture of *N*-(2-(phenylethynyl)phenyl)-*N*-tosylcyanamide (**6a**, 0.0484 g, 0.130 mmol), CuI (0.0025 g, 0.013 mmol, 0.01 equiv) and triethylamine (0.5 mL) in DMF (0.5 mL) was stirred at 80 °C for 3 h. The mixture was diluted with EtOAc, and the organic solution was washed with *conc*. aqueous NH₄OH solution and saturated aqueous NaCl solution. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (Hex / EtOAc = 95 : 5, $R_f = 0.3$) to give the product (**9**, solid, 0.0232 g, 0.062 mmol, 48 %). An analytical sample was recrystallized from Hex / EtOAc. m.p. 88–90 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, 2H, *J* = 6.8 Hz), 7.64 (dd, 2H, *J* = 8.0, 1.2 Hz), 7.55–7.45 (m, 3H), 7.42 (dt, 1H, *J* = 8.0, 1.2 Hz), 7.35 (t, 1H, *J* = 7.6 Hz), 6.79 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 139.8, 138.4, 129.8 (CH), 129.32 (CH), 129.30, 128.8, 127.8 (CH), 125.4 (CH), 124.7 (CH), 121.8 (CH), 111.8 (CH), 107.6, 107.3 (CH); MS (EI, 70 eV) *m*/*z* 190 (21), 218 (100) (M⁺); HRMS (EI, sector) calcd for C₁₅H₁₂N₂: 218.0844. Found: 218.0843; IR (cm⁻¹) 3062, 2923, 2242, 1456.

[General procedure 1] Preparation of 3-cyano-1-tosylindoles (**10a-p**, **13f-j**) from N-(2-ethynylphenyl)-N-tosylcyanamides (**8a-p**, **12f-j**) ('standard condition')

A mixture of *N*-(2-ethynylphenyl)-*N*-tosylcyanamide (**8**, 0.50 mmol), Na₂CO₃ (2 mmol, 4 equiv) and CuI (0.050 mmol, 0.1 equiv) in 1,4-dioxane (1.0 mL) was stirred at 80 °C under argon atmosphere for 3 h. After cooling to room temperature, the solution was diluted with EtOAc. The organic solution was washed with *conc*. aqueous NH₄OH solution, saturated aqueous NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The resulting residue was purified by flash column chromatography to give the corresponding 3-cyano-1-tosylindole (**10**).

Scheme 4

1-Benzenesulfonyl-3-cyanoindole¹⁸ (13f)

Compound **13f** was prepared from compound **12f** by *General procedure 1*. The product (**13f**, solid, 0.1176 g, 0.417 mmol, 65%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.15). m.p. 148–150 °C (*lit.* 148–149 °C);¹⁸ ¹H NMR (CDCl₃, 400 MHz) δ 8.11 (s, 1H), 8.01 (d, 2H, *J* = 8.4 Hz), 7.95 (d, 2H, *J* = 7.5 Hz), 7.70 (d, 1H, *J* = 7.8 Hz), 7.63 (t, 1H, *J* = 7.5 Hz), 7.53 (t, 2H, *J* = 7.8 Hz), 7.45 (dt, 1H, *J* = 7.9, 0.9 Hz), 7.38 (dt, 1H, *J* = 7.5, 0.68 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 137.4, 135.1 (CH), 133.9, 133.3 (CH), 130.0 (CH), 128.5, 127.4 (CH), 126.8 (CH), 125.1 (CH), 120.5 (CH), 114.0 (CH), 113.6, 94.2; MS (EI, 70 eV) *m*/*z* 77 (50), 141 (73), 282 (100) (M⁺); HRMS (EI, sector) calcd for C₁₅H₁₀N₂O₂S: 282.0463. Found: 282.0463; IR (cm⁻¹) 3147, 2925, 2233, 1924, 1597, 1445.

1-(4-Nitrobenzenesulfonyl)-3-cyanoindole (13g)

Compound **13g** was prepared from compound **12g** by *General procedure 1*. The product (**13g**, solid, 0.1117 g, 0.341 mmo1, 77%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.17). m.p. 179–182 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.36 (d, 2H, *J* = 9.2 Hz, Ns), 8.14 (d, 2H, *J* = 9.2 Hz, Ns), 8.09 (s, 1H), 8.00 (d, 1H, *J* = 8.4 Hz), 7.73 (d, 1H, *J* = 7.6 Hz), 7.50 (dt, 1H, *J* = 7.2, 1.2 Hz), 7.43 (dt, 1H, *J* = 7.2, 0.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 151.5, 142.6, 133.8, 132.9 (CH), 128.7 (CH), 128.6, 127.5 (CH), 125.8 (CH), 125.2 (CH), 121.0 (CH), 113.8 (CH), 113.0, 95.7; MS (EI, 70 eV) *m*/*z* 114 (33), 122 (38), 141 (65), 186 (62), 327 (100) (M⁺); HRMS (EI, sector) calcd for C₁₅H₉N₃O₄S: 327.0314. Found: 327.0313; IR (cm⁻¹) 3148, 3100, 2924, 2229, 1528.

1-(4-Methoxybenzenesulfonyl)-3-cyanoindole (13h)

Compound **13h** was prepared from compound **12h** by *General procedure 1*. The product (**13h**, solid, 0.0837 g, 0.268 mmol, 65%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.11). m.p. 103–105 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (s, 1H), 7.99 (d, 1H, *J* = 8.4 Hz), 7.88 (d, 2H, *J* = 9.2 Hz), 7.68 (d, 1H, *J* = 7.6 Hz), 7.43 (dt, 1H, *J* = 7.6, 1.2 Hz), 7.36 (dt, 1H, *J* = 7.6, 0.8 Hz), 6.94 (d, 2H, *J* = 8.8 Hz), 3.82 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 164.8, 133.8, 133.3 (CH), 129.8 (CH), 128.53, 128.48, 126.6 (CH), 124.9 (CH), 120.4 (CH), 115.2 (CH), 113.9 (CH), 113.7, 93.6, 56.0 (CH₃); MS (EI, 70 eV) *m*/*z* 92 (28), 107 (43), 141 (25), 171 (100), 312 (64) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₂N₂O₃S: 312.0569. Found: 312.0569; IR (cm⁻¹) 3138, 3067, 2927, 2845, 2231, 1594, 1576, 1543, 1497, 1448.

1-(4-Acetamidobenzenesulfonyl)-3-cyanoindole (13i)

Compound **13i** was prepared from compound **12i** by *General procedure 1*. The product (**13i**, solid, 0.0688 g, 0.203 mmol, 67%) was purified by flash column chromatography (Hex / EtOAc = 5 : 5, $R_f = 0.15$). m.p. 217–219 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 10.46 (s, 1H, NH), 8.84 (s, 1H), 8.06 (d, 2H, J = 8.8 Hz), 8.00 (d, 1H, J = 8.0Hz), 7.79 (d, 2H, J = 8.8 Hz), 7.70 (d, 1H, J = 8.0 Hz), 7.50 (t, 1H, J = 7.6 Hz), 7.43 (t, 1H, J = 7.6 Hz), 2.05 (s, 3H, Me); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.3, 145.4, 135.5 (CH), 132.8, 128.9 (CH), 128.7, 127.7, 126.5 (CH), 124.9 (CH), 119.7 (CH), 119.0 (CH), 113.60 (CH), 113.56, 92.1, 24.1 (CH₃); MS (EI, 70 eV) *m*/*z* 92 (31), 134 (44), 142 (62), 198 (100), 218 (20), 339 (92) (M^+); HRMS (EI, sector) calcd for $C_{17}H_{13}N_3O_3S$: 339.0678, Found: 339.0679; IR (cm⁻¹) 3568, 3180, 3129, 3066, 2925, 2229, 1686, 1591, 1542, 1447, 1406.

1-Methanesulfonyl-3-cyanoindole¹⁹ (13j)

Compound **13j** was prepared from compound **12j** by *General procedure 1*. The product (**13j**, solid, 0.0503 g, 0.228 mmol, 75%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2, $R_f = 0.24$). m.p. 150–153 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (s, 1H), 7.93 (d, 1H, J = 8.0 Hz), 7.80 (d, 1H, J = 7.6 Hz), 7.52 (t, 1H, J = 7.2 Hz), 7.47 (t, 1H, J = 8.8 Hz), 3.27 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 134.0, 133.1 (CH), 128.6, 127.1 (CH), 125.3 (CH), 120.8 (CH), 113.5 (CH), 113.4, 94.0, 42.1 (CH₃); MS (EI, 70 eV) m/z 114 (31), 141 (92), 142 (98), 220 (100) (M⁺); HRMS (EI, sector) calcd for C₁₀H₈N₂O₂S: 220.0306. Found: 220.0306; IR (cm⁻¹) 3125, 3018, 2927, 2855, 2230, 1710, 1544, 1449.

1-Cyanoindole¹⁷ (**14**)

Compound **14** was obtained from the reaction of compound **12a** under the condition described in *General procedure 1*. The product (**14**, oil, 0.0174 g, 0.122 mmol, 39%) was purified by flash column chromatography (Hex / EtOac = 98 : 2; $R_f = 0.16$). ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (dd, 1H, J = 7.6, 1.2 Hz), 7.62 (dd, 1H, J = 8.4, 0.8 Hz), 7.43 (dt, 1H, J = 7.6, 1.2 Hz), 7.34 (dt, 1H, J = 7.6, 0.8 Hz), 7.24 (d, 1H, J = 3.6 Hz), 6.71 (dd, 1H, J = 3.6, 0.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 137.0, 128.1, 126.3 (CH), 125.6 (CH), 124.3 (CH), 122.2 (CH), 111.6 (CH), 109.7 (CH), 107.8. The NMR spectroscopic data are consistent with the same compound previously reported in the literature.¹⁷

Scheme 4e

1,4-Bis(2-(*N-t*-butyloxycarbonyl-*N*-cyanoamino)phenyl)-1,3-butadiyne (15)

Compound **15** was obtained from the reaction of compound **12e** under the condition described in *General procedure 1*. The product (**15**, oil, 0.0191 g, 0.0395 mmol, 16%) was purified by flash column chromatography (Hex / EtOAc = 8 : 2; $R_f = 0.20$). ¹H NMR (CDCl₃, 400 MHz) δ 7.66–7.64 (m, 2H), 7.52–7.42 (m, 6H), 1.59 (s, 18H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 149.7, 137.2, 134.7 (CH), 131.0 (CH), 129.9 (CH), 127.7 (CH), 121.1, 108.5, 87.3, 79.4, 78.0, 28.0 (CH₃); MS (ESI⁺) *m/z* 443 (48), 505 (100) (M+Na); HRMS (ESI⁺, TOF) calcd for C₂₈H₂₆N₄NaO₄: 505.1852 (M+Na). Found: 505.1852; IR (cm⁻¹) 2925, 2854, 2244, 1762, 1458.

Scheme 5 Cul (0.1 equiv) JΗ CN Na₂CO₃ (4 equiv) 1,4-dioxane (0.5 M) **10а-р** ^{Тѕ} **8а-р** †s 80 °C, 3 h, Ar CN CN CN R⁴ R⁵ Τs Τ́s Τs **10a** R⁵ = H **10p** 34% (53%)^a 88% **10h** R^4 = OMe 61% 10b OMe 49% 59% 10i Me $(^{a} \text{ time} = 17 \text{ h})$ 10c Me 70% 10j *i-*Pr 74% 10d 59% 10k t-Bu 83% F 10e CI 79% 10I F 66% CF₃ 60% 63% 10f 10m CI CF_3 58% 10g NO₂ 73% 10n **10**o NO₂ 53% CN

10a^{Ts}

Compound **10a** was prepared from compound **8a** by *General procedure 1*. The product (**10a**, solid, 0.1422 g, 0.480 mmol, 88%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.16$). An analytical sample was recrystallized from Hex / EtOAc. m.p. 156–157 °C (*lit.* 157–158 °C);^{20 1}H NMR (CDCl₃, 400 MHz) δ 8.10 (s, 1H), 7.99 (d, 1H, J = 8.4 Hz), 7.83 (d, 2H, J = 8.4 Hz, Ts), 7.69 (d, 1H, J = 8.0 Hz), 7.44 (t, 1H, J = 7.8 Hz), 7.38 (t, 1H, J = 8.4 Hz), 7.30 (d, 2H, J = 8.2 Hz, Ts), 2.38 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.6, 134.4, 133.9, 133.3 (CH), 130.6 (CH), 128.6, 127.4 (CH), 126.7 (CH), 125.0 (CH), 120.5 (CH), 114.0 (CH), 113.8, 93.9, 21.9 (CH3); MS (EI, 70 eV) *m*/*z* 91 (75), 155 (84), 296 (100) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₂N₂O₂S: 296.0619. Found: 296.0619; IR (cm⁻¹) 3148, 3056, 2927, 2234, 1924, 1596, 1546, 1447.

1-Tosyl-3-cyano-6-methoxyindole (10b)

Compound **10b** was prepared from compound **8b** by *General procedure 1*. The product (**10b**, yellow solid, 0.1087 g, 0.333 mmol, 49%, $R_f = 0.33$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 154–156 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (s, 1H), 7.80 (d, 2H, *J* = 8.4 Hz, Ts), 7.52 (d, 1H, *J* = 8.8 Hz), 7.47 (d, 1H, *J* = 2.2 Hz), 7.30 (d, 2H, *J* = 8.4 Hz, Ts), 6.98 (dd, 1H, *J* = 8.8 Hz, 2.2 Hz), 3.88 (s, 3H, Me), 2.38 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ

159.2, 146.3, 134.8, 134.1, 131.9 (CH), 130.3 (CH), 127.1 (CH), 121.8, 120.7 (CH), 114.0 (CH), 113.5, 97.8 (CH), 93.6, 55.8 (CH₃), 21.6 (CH₃); MS (EI, 20 eV) m/z 91 (20), 171 (100), 326 (28) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₄N₂O₃S: 326.0725. Found: 326.0721; IR (cm⁻¹) 3142, 3068, 2926, 2854, 2232, 1616, 1596, 1543, 1495, 1436.

1-Tosyl-3-cyano-6-methylindole (10c)

Compound **10c** was prepared from compound **8c** by *General procedure 1*. The product (**10c**, solid, 0.2063 g, 0.665 mmol, 70%, $R_f = 0.23$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 146–150 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.02 (s, 1H), 7.82 (d, 2H, J = 8.4 Hz, Ts), 7.79 (s, 1H), 7.55 (d, 1H, J = 8.1 Hz), 7.30 (d, 2H, J = 8.3 Hz, Ts), 7.19 (dd, 1H, J = 8.0, 0.6 Hz), 2.50 (s, 3H, Me), 2.38 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.4, 137.3, 134.5, 134.3, 132.7 (CH), 130.6 (CH), 127.4 (CH), 126.6 (CH), 126.3, 120.0 (CH), 113.9 (CH), 113.8, 93.8, 22.2 (CH₃), 21.9 (CH₃); MS (EI, 70 eV) *m/z* 91 (84), 155 (100), 310 (98) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₄N₂O₂S: 310.0776. Found: 310.0777; IR (cm⁻¹) 3137, 2925, 2856, 2230, 1596, 1542, 1428

1-Tosyl-3-cyano-6-fluoroindole (10d)

Compound **10d** was prepared from compound **8d** by *General procedure 1*. The product (**10d**, yellow solid, 0.1478 g, 0.470 mmol, 59%, $R_f = 0.45$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 159–160 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (s, 1H), 7.83 (d, 2H, *J* = 8.4 Hz, Ts), 7.72 (dd, 1H, *J* = 9.2, 2.2 Hz), 7.62 (dd, 1H, *J* = 8.7, 5.1 Hz), 7.33 (d, 2H, *J* = 8.2 Hz, Ts), 7.14 (dt, 1H, *J* = 8.9, 2.2 Hz), 2.40 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 161.7 (d, *J* = 245.7 Hz), 146.6, 134.0, 133.8, 133.4 (d, *J* = 3.0 Hz, CH), 130.5 (CH), 127.2 (CH), 124.5, 121.3 (d, *J* = 10.0 Hz, CH), 113.6 (d, *J* = 24 Hz, CH), 113.1, 101.2 (d, *J* = 29 Hz, CH), 93.6, 21.7 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -112.7; MS (EI, 20 eV) *m/z* 91 (100), 155 (88), 314 (27) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁FN₂O₂S: 314.0525. Found: 314.0519; IR (cm⁻¹) 3152, 3122, 2924, 2235, 1616, 1595, 1548, 1487, 1426.

1-Tosyl-3-cyano-6-chloroindole (10e)

Compound **10e** was prepared from compound **8e** by *General procedure 1*. The product (**10e**, yellow solid, 0.0267 g, 0.081 mmol, 79%, $R_f = 0.43$ (Hex / EtOAc = 8 : 2))

was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 276–278 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (s, 1H), 8.01 (d, 1H, *J* = 1.7 Hz), 7.83 (d, 2H, *J* = 8.4 Hz, Ts), 7.60 (d, 1H, *J* = 8.6 Hz), 7.35 (dd, 1H, *J* = 8.4, 2.0 Hz), 7.34 (d, 2H, *J* = 8.8 Hz, Ts), 2.41 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.7, 134.0, 133.8, 133.5 (CH), 132.8, 130.6 (CH), 127.2 (CH), 126.8, 125.6 (CH), 121.1(CH), 114.0 (CH), 113.0, 93.6, 21.7 (CH₃); MS (EI, 20 eV) *m*/*z* 91 (100), 155 (88), 330 (12) (M⁺), 332 (4) (M+2); HRMS (EI, sector) calcd for C₁₆H₁₁ClN₂O₂S: 330.0230. Found: 330.0227; IR (cm⁻¹) 3138, 2928, 2854, 2234, 1596, 1422.

1-Tosyl-3-cyano-6-trifluoromethylindole (10f)

Compound **10f** was prepared from compound **8f** by *General procedure 1*. The product (**10f**, yellow solid, 0.0666 g, 0.183 mmol, 60%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, R_f = 0.18). m.p. 174–175 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.29 (s, 1H), 8.23 (s, 1H), 7.85 (d, 2H, *J* = 8.4 Hz, Ts), 7.82 (d, 1H, *J* = 8.4 Hz), 7.64 (d, 1H, *J* = 8.4 Hz), 7.35 (d, 2H, *J* = 8.4 Hz, Ts), 2.41 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.0, 135.3 (CH), 133.7, 132.9, 130.8, 130.6 (CH), 128.9 (q, *J* = 32.8 Hz), 127.3 (CH), 123.9 (q, *J* = 271 Hz), 121.6 (q, *J* = 3.5 Hz, CH), 121.0 (CH), 112.7, 111.4 (q, *J* = 4.4 Hz, CH), 93.6, 21.7 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -61.5; MS (EI, 20 eV) *m*/*z* 91 (82), 155(100), 364 (13) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₁F₃N₂O₂S: 364.0493. Found: 364.0493; IR (cm⁻¹) 3134, 2926, 2856, 2232, 1598, 1432

1-Tosyl-3-cyano-6-nitroindole (10g)

Compound **10g** was prepared from compound **8g** by *General procedure 1*. The product (**10g**, solid, 0.0760 g, 0.227 mmol, 73%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.10$). m.p. 196–198 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (d, 1H, J = 2.0 Hz), 8.33 (s, 1H), 8.28 (dd, 1H, J = 8.8, 2.0 Hz), 7.89 (d, 2H, J = 8.4 Hz, Ts), 7.83 (d, 1H, J = 8.8 Hz), 7.37 (d, 2H, J = 8.4 Hz, Ts), 2.42 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.6, 146.7, 137.4 (CH), 133.7, 133.1, 132.9, 131.1 (CH), 127.7 (CH), 121.1 (CH), 120.2 (CH), 112.5, 110.6 (CH), 93.9 , 22.0 (CH₃); MS (EI, 70 eV) m/z 91 (100), 155 (100), 341 (47) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁N₃O₄S: 341.0470. Found: 341.0468; IR (cm⁻¹) 3124, 2924, 2856, 2232, 1745, 1594, 1520, 1462, 1428.

1-Tosyl-3-cyano-5-methoxyindole (10h)

Compound **10h** was prepared from compound **8h** by *General procedure 1*. The product (**10h**, solid, 0.1069 g, 0.328 mmol, 61%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.15$). m.p. 156–158 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (s, 1H), 7.86 (d, 1H, J = 9.0 Hz), 7.79 (d, 2H, J = 8.4 Hz, Ts), 7.29 (d, 2H, J = 8.4 Hz, Ts), 7.07 (d, 1H, J = 2.4 Hz), 7.03 (dd, 1H, J = 9.0, 2.5 Hz), 3.84 (s, 3H, Me), 2.38 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 157.8, 146.5, 134.4, 133.5 (CH), 130.6 (CH), 129.7, 128.4, 127.3 (CH), 116.8 (CH), 115.0 (CH), 113.8, 101.9 (CH), 93.7, 56.0 (CH₃), 21.9 (CH₃); MS (ESI⁻) m/z 297 (23), 325 (100) (M-H); HRMS (ESI⁺, TOF) calcd for C₁₇H₁₅N₂O₃S: 327.0803 (M+H). Found: 327.0801; IR (cm⁻¹) 3133, 2963, 2926, 2230, 1615, 1596, 1541, 1484, 1447.

1-Tosyl-3-cyano-5-methylindole (10i)

Compound **10i** was prepared from compound **8i** by *General procedure 1*. The product (**10i**, yellow solid, 0.2644 g, 0.852 mmol, 59%, $R_f = 0.38$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 149–150 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (s, 1H), 7.84 (d, 1H, *J* = 8.6 Hz), 7.80 (d, 2H, *J* = 8.4 Hz, Ts), 7.45 (s, 1H, CH), 7.28 (d, 2H, *J* = 8.1 Hz, Ts), 7.24 (dd, 1H, *J* = 8.6 Hz, 1.4 Hz, CH), 2.43 (s, 3H, Me), 2.36 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.2, 134.8, 134.2, 133.0 (CH), 131.9, 130.3 (CH), 128.6, 128.0 (CH), 127.1 (CH), 119.9 (CH), 113.5, 113.4 (CH), 93.3, 21.6 (CH₃), 21.2 (CH₃); MS (EI, 70 eV) *m/z* 91 (75), 155 (94), 310 (100) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₄N₂O₂S: 310.0776. Found: 310.0778; IR (cm⁻¹) 3139, 3069, 2924, 2870, 2231, 1732, 1596, 1543, 1456.

1-Tosyl-3-cyano-5-(*i*-propyl)indole (10j)

Compound **10j** was prepared from compound **8j** by *General procedure 1*. The product (**10j**, yellow solid, 0.2139 g, 0.632 mmol, 74%, $R_f = 0.55$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 106–108 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.05 (s, 1H), 7.89 (d, 1H, *J* = 8.6 Hz), 7.82 (d, 2H, *J* = 8.4 Hz, Ts), 7.51 (d, 1H, *J* = 1.5 Hz), 7.31 (dd, 1H, *J* = 8.4, 1.6 Hz), 7.30 (d, 2H, *J* = 8.1 Hz, Ts), 3.01 (sept, 1H, *J* = 6.9 Hz, CH), 2.38 (s, 3H, Me), 1.27 (d, 6H, *J* = 6.9 Hz, *i*-Pr); ¹³C NMR (CDCl₃, 100 MHz) δ 146.2, 146.0, 134.3, 133.0 (CH), 132.1, 130.3 (CH), 128.5, 127.2 (CH), 125.8 (CH), 117.3 (CH), 113.7, 113.5 (CH), 93.6, 34.0 (CH), 24.2 (CH₃), 21.7 (CH₃); MS (EI, 20 eV) *m*/*z* 155 (100), 323 (41), 338 (48) (M⁺); HRMS (EI, sector) calcd for C₁₉H₁₈N₂O₂S: 338.1089. Found: 338.1086; IR (cm⁻¹) 3141, 2962, 2930, 2872, 2231, 1596, 1543, 1474, 1447.

1-Tosyl-3-cyano-5-(t-butyl)indole (10k)

Compound **10k** was prepared from compound **8k** by *General procedure 1*. The product (**10k**, solid, 0.2532 g, 0.718 mmol, 83%, $R_f = 0.25$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 137–141 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.06 (s, 1H), 7.90 (d, 1H, *J* = 8.9 Hz), 7.84 (d, 2H, *J* = 8.4 Hz, Ts), 7.65 (d, 1H, *J* = 1.7 Hz), 7.50 (dd, 1H, *J* = 8.9, 1.8 Hz), 7.30 (d, 2H, *J* = 8.2 Hz, Ts), 2.38 (s, 3H, Me), 1.35 (s, 9H, *t*-Bu); ¹³C NMR (CDCl₃, 100 MHz) δ 148.5, 146.4, 134.4, 133.2 (CH), 131.9, 130.5 (CH), 128.4, 127.4 (CH), 124.9 (CH), 116.5 (CH), 114.0, 113.4 (CH), 93.9, 35.1, 31.7 (CH₃), 21.9 (CH₃); MS (ESI⁺) *m/z* 114 (49), 173 (70), 217 (100), 261 (56), 305 (33), 338 (44), 353 (12) (M+H); HRMS (ESI⁺, TOF) calcd for C₂₀H₂₁N₂O₂S: 353.1324 (M+H). Found: 353.1312; IR (cm⁻¹) 3139, 2964, 2870, 2231, 1738, 1596, 1544, 1464.

1-Tosyl-3-cyano-5-fluoroindole (10l)

Compound **10I** was prepared from compound **8I** by *General procedure 1*. The product (**10I**, solid, 0.1887 g, 0.600 mmol, 66%, $R_f = 0.20$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 177–180 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.12 (s, 1H), 7.95 (dd, 1H, J = 9.2, 4.2 Hz), 7.81 (d, 2H, J = 8.4 Hz, Ts), 7.33 (dd, 1H, J = 7.5, 2.4 Hz), 7.32 (d, 2H, J = 8.5 Hz, Ts), 7.17 (dt, 1H, J = 9.0, 2.5 Hz), 2.39 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 160.4 (d, J = 243 Hz), 146.8, 134.7 (CH), 134.2, 130.7 (CH), 130.3, 129.7 (d, J = 10.0 Hz), 127.4 (CH), 115.34 (CH), 115.25 (d, J = 35 Hz, CH), 113.1, 106.3 (d, J = 25 Hz, CH), 93.8 (d, J = 4 Hz), 21.9 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -116.4; MS (EI, 70 eV) m/z 93 (100), 155 (77), 314 (53) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁FN₂O₂S: 314.0525. Found: 314.0524; IR (cm⁻¹) 3149, 3084, 2930, 2233, 1618, 1593, 1540, 1475, 1449.

1-Tosyl-3-cyano-5-chloroindole (10m)

Compound **10m** was prepared from compound **8m** by *General procedure 1*. The product (**10m**, yellow solid, 0.0812 g, 0.245 mmol, 63%, $R_f = 0.23$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 176–178 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (s, 1H), 7.92 (d, 1H, *J* = 8.8 Hz), 7.81 (d, 2H, *J* = 8.4 Hz, Ts), 7.67 (d, 1H, *J* = 1.8 Hz), 7.40 (dd, 1H, *J* = 8.9, 2.0 Hz), 7.32 (d, 2H, *J* = 8.1 Hz, Ts), 2.40 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 146.7, 134.2 (CH), 133.9, 132.1, 131.1, 130.5 (CH), 129.5, 127.2 (CH), 127.0 (CH), 120.0 (CH), 114.9 (CH), 112.8, 93.2, 21.7 (CH₃); MS (EI, 20 eV) *m/z* 91 (100), 155 (100), 330 (21)

 (M^+) , 332 (7) (M+2); HRMS (EI, sector) calcd for $C_{16}H_{11}ClN_2O_2S$: 330.0230. Found: 330.0232; IR (cm⁻¹) 3133, 3067, 2922, 2855, 2231, 1594, 1574, 1543, 1448.

1-Tosyl-3-cyano-5-trifluoromethylindole (10n)

Compound **10n** was prepared from compound **8n** by *General procedure 1*. The product (**10n**, solid, 0.0747 g, 0.205 mmol, 58%, $R_f = 0.23$ (Hex / EtOAc = 9 : 1)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 151–155 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (s, 1H), 8.11 (d, 1H, *J* = 8.8 Hz), 8.00 (s, 1H), 7.84 (d, 2H, *J* = 8.4 Hz, Ts), 7.69 (dd, 1H, *J* = 8.8, 1.2 Hz), 7.34 (d, 2H, *J* = 8.0 Hz, Ts), 2.40 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.2, 135.3, 134.9 (CH), 134.0, 130.8 (CH), 128.4, 127.7 (q, *J* = 24 Hz), 127.5 (CH), 124.1 (q, *J* = 270 Hz), 123.5 (q, *J* = 4.0 Hz, CH), 114.6 (CH), 112.8, 94.3, 21.9 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -61.6; MS (EI, 70 eV) *m*/*z* 91 (100), 155 (70), 364 (60) (M⁺); HRMS (EI, sector) calcd for C₁₇H₁₁F₃N₂O₂S: 364.0493. Found: 364.0493; IR (cm⁻¹) 3142, 2925, 2236, 1596, 1449.

1-Tosyl-3-cyano-5-nitroindole (10o)

Compound **10o** was prepared from compound **8o** by *General procedure 1*. The product (**10o**, solid, 0.0511 g, 0.150 mmo1, 53%) was purified by flash column chromatography (Hex / EtOAc = 9 : 1, $R_f = 0.13$). m.p. 210–213 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.64 (d, 1H, J = 2.4 Hz), 8.33 (dd, 1H, J = 8.8, 2.4 Hz), 8.26 (s, 1H), 8.14 (d, 1H, J = 9.2 Hz), 7.85 (d, 2H, J = 8.4 Hz, Ts), 7.36 (d, 2H, J = 8.4 Hz, Ts), 2.41 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 147.6, 145.4, 136.6, 136.0 (CH), 133.7, 131.0 (CH), 128.6, 127.6 (CH), 121.9 (CH), 117.0 (CH), 114.6 (CH), 112.3 , 94.9 , 22.0 (CH₃); MS (EI, 70 eV) m/z 91 (85), 155 (100), 341 (70) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₁N₃O₄S: 341.0470. Found: 341.0470; IR (cm⁻¹) 3129, 2924, 2856, 2237, 1618, 1594, 1546, 1532, 1444.

1-Tosyl-3-cyano-5,7-difluoroindole (10p)

Compound **10p** was prepared from compound **8p** by *General procedure 1*. The product (**10p**, yellow solid, 0.0467 g, 0.14 mmol, 34%, $R_f = 0.4$ (Hex / EtOAc = 8 : 2)) was purified by flash column chromatography (Hex / EtOAc = 95 : 5). m.p. 195–196 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (s, 1H), 7.86 (d, 2H, *J* = 8.3, Hz, Ts), 7.36 (d, 2H, *J* = 8.2 Hz, Ts), 7.19 (dd, 1H, *J* = 7.5, 2.1 Hz), 6.88 (ddd, 1H, *J* = 11.5, 9.1, 2.3 Hz), 2.42 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) δ 159.6 (dd, *J* = 247, 9.8 Hz),

149.2 (dd, J = 256, 13.3 Hz), 146.7, 136.6 (CH), 133.7, 132.4 (dd, J = 11.9, 4.8 Hz), 130.3 (CH), 128.2 (d, J = 2.8 Hz, CH), 118.2 (dd, J = 12.4, 2.3 Hz), 112.5, 102.7 (dd, J = 29.3 Hz, 23.3 Hz, CH), 102.0 (dd, J = 24.8, 4.5 Hz, CH), 92.9 (dd, J = 4.4, 2.8 Hz), 21.7 (CH₃); ¹⁹F NMR (CDCl₃, 376 MHz) δ -113.0 (d, J = 5.6 Hz), -116.0 (d, J =5.8 Hz); MS (EI, 20 eV) m/z 91 (100), 155 (83), 332 (8) (M⁺); HRMS (EI, sector) calcd for C₁₆H₁₀F₂N₂O₂S: 332.0431. Found: 332.0428; IR (cm⁻¹) 3282, 3163, 3096, 2927, 2236, 1594, 1424.

1-Tosyl-2-allyl-3-cyanoindole (23)

To a mixture of N-(2-ethynylphenyl)-N-tosylcyanamide (8a, 0.0896, 0.302 mmol), CuI (0.0056 g, 0.029 mmol, 0.1 equiv), Na₂CO₃ (0.1282 g, 1.210 mmol, 4.0 equiv) in 1.4-dioxane (0.6 mL) under argon atmosphere was added allyl bromide (0.0759 g. 0.63 mmol, 2.0 equiv). The mixture was stirred at 80 °C under argon atmosphere for 3 h. The mixture was diluted with EtOAc, and the organic solution was washed with conc. aqueous NH₄OH solution and saturated aqueous NaCl solution. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (Hex / EtOAc = 95 : 5) to give the 1-tosyl-2-allyl-3-cyanoindole (23, solid, 0.0281 g, 0.0837 mmol, 28%, $R_f = 0.25$ (Hex / EtOAc = 9 : 1)) and 1-tosyl-3-cyanoindole (10a, solid, 0.0351) g, 0.119 mmol, 39%, $R_f = 0.16$ (Hex / EtOAc = 9 : 1)). Compound 23: An analytical sample was recrystallized from Hex / EtOAc. m.p. 109-110 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.16 (d, 1H, J = 8.0 Hz), 7.72 (d, 2H, J = 8.4 Hz, Ts), 7.61 (d, 1H, J = 6.8 Hz), 7.38 (dt, 1H, J = 7.3, 1.4 Hz), 7.35 (dt, 1H, J = 7.6, 1.5 Hz), 7.26 (d, 2H, J = 8.0 Hz, Ts), 6.05 (ddt, 1H, J = 16.9, 10.2, 6.3 Hz), 5.23 (dd, 1H, J = 17.0, 1.2 Hz), 5.18 (dd, 1H, J = 10.1, 1.2 Hz), 4.01 (dt, 2H, J = 6.5, 1.4 Hz), 2.38 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz) & 148.3, 146.3, 135.7, 135.4, 133.1 (CH), 130.4 (CH), 127.4, 127.0 (CH), 126.2 (CH), 125.1 (CH), 119.6 (CH), 118.8 (CH₂), 115.3 (CH), 114.1, 95.2, 32.4 (CH₂), 21.9 (CH₃); MS (EI, 70 eV) m/z 91 (67), 155 (76), 181 (45), 272 (17), 336 (100) (M^+); HRMS (EI, sector) calcd for C₁₉H₁₆N₂O₂S: 336.0932. Found: 336.0933; IR (cm⁻¹) 3069, 2925, 2855, 2226, 1638, 1597, 1562, 1451.

References

- 1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- 2. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- 3. Nissen, F.; Detert, H. Eur. J. Org. Chem. 2011, 2845.
- 4. Jung, K.-Y.; Vanommeslaeghe, K.; Lanning, M. E.; Yap, J. L.; Gordon, C.; Wilder, P. T.; MacKerell, A. D.; Fletcher, S. *Org. Lett.* **2013**, *15*, 3234.
- 5. Wang, H.; Liu, L.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. *Tetrahedron Lett.* **2009**, *50*, 6841.
- 6. Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519.
- Gimeno, A.; Medio-Simon, M.; Ramirez de Arellano, C.; Asensio, G.; Cuenca, A. B. Org. Lett. 2010, 12, 1900.
- 8. Pan, Z.; Pound, S. M.; Rondla, N. R.; Douglas, C. J. Angew. Chem. Int. Ed. 2014, 53, 5170.
- (a) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280; (b) Varela-Fernandez, A.; Varela, J. A.; Saa, C. Synthesis, 2012, 44, 3285.
- Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.; Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Org. Lett. 2014, 16, 892.
- 11. Berry, D. A.; Chien, T. C.; Townsend, L. B. Heterocycles, 2004, 63, 2475.
- (a) Xing, Y.; Sheng, G.; Wang, J.; Lu, P.; Wang, Y. Org. Lett. 2014, 16, 1244; (b) Hirano, K.; Inaba, Y.; Takahashi, N.; Shimano, M.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2011, 76, 1212.
- 13. (a) Voth, S.; Hollett, J. W.; McCubbin, J. A. J. Org. Chem. 2015, 80, 2545; (b) Green, R. A.; Hartwig, J. F. Angew. Chem. Int. Ed. 2015, 54, 3768; (c) Vo, G. D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11049; (d) Lee, B. S.; Lee, J. H.; Chi, D. Y. J. Org. Chem. 2002, 67, 7884; (e) Green, R. A.; Hartwig, J. F. Org. Lett. 2014, 16, 4388.
- 14. (a) Brand, J. P.; Chevalley, C.; Waser, J. *Beil. J. Org. Chem.* 2011, 7, 565; (b) Nair, R. N.; Lee, P. J.; Rheingold, A. L.; Grotjahn, D. B. *Chem. Eur. J.* 2010, *16*, 7992; (c) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. *Tetrahedron*, 2003, *59*, 1571.
- (a) Murarka, S.; Studer, A. Angew. Chem. Int. Ed. 2012, 51, 12362; (b) Shen, Z.; Lu, X. Adv. Synth. Catal. 2009, 351, 3107; (c) Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. Chem. Commun. 2008, 172
- (a) Martinez-Esperon, M. F.; Rodriguez, D.; Castedo, L.; Saa, C. *Tetrahedron*, 2006, 62, 3843; (b) Martinez-Esperon, M. F.; Rodriguez, D.; Castedo, L.; Saa, C. *Org. Lett.* 2005, 7, 2213.
- 17. Kamijo, S.; Jin, T.; Yamamoto, Y. J. Org. Chem. 2002, 67, 7413.
- 18. (a) Tsuchiya, D.; Kawagoe, Y.; Moriyama, K.; Togo, H. Org. Lett. 2013, 15, 4194;
 (b) Kawagoe, Y.; Moriyama, K.; Togo, H. Eur. J. Org. Chem. 2014, 4115; (c) Sakamoto, T.; Ohsawa, K. J. Chem. Soc., Perkin Trans. 1, 1999, 2323; (c) Ketcha, D. M.; Gribble, G. W. J. Org. Chem. 1985, 50, 5451.
- 19. Jiang, B.; Kan, Y.; Zhang, A. Tetrahedron 2001, 57, 1581.
- (a) Shimojo, H.; Moriyama, K.; Togo, H. Synthesis, 2013, 45, 2155; (b) Okamoto, K.; Watanabe, M.; Murai, M.; Hatano, R.; Ohe, K. Chem. Commun. 2012, 48, 3127; (c) Singh, M. K.; Lakshman, M. K. J. Org. Chem. 2009, 74, 3079; (d) Iida, S.; Ohmura, R.; Togo, H. Tetrahedron, 2009, 65, 6257; (e) Iida, S.; Togo, H. Tetrahedron, 2007, 63, 8274.