Supporting Information for

Pd-Catalyzed Oxidative Annulation of Enamides with Diazabicyclic Olefins: A Rapid Access to Cyclopentene Fused 2-Pyrrolines

P. V. Santhini,^{ab} G. Nimisha,^{ab} Jubi John,^{*ab} E. Suresh,^c R. Luxmi Varma^{ab} and K. V. Radhakrishnan^{*ab}

^aAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India ^bOrganic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695 019, India ^c Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, India

E-mail: radhu2005@gmail.com, jubijohn@niist.res.in

Table of Contents

- General procedure for the Pd-catalyzed oxidative annulation of enamides : S2-S10 with diazabicyclic olefins, optimization studies and characterisation of the products
- 3. General procedure for the Rh-catalyzed desymmetrization of diazabicycles : S10-S16 with aromatic enamides, optimization studies and characterisation of the products
- 4. Typical procedure for the synthesis of pyrrolidine fused cyclopentyl amine : S16-S17 derivative and characterisation of the products

5.	¹ H NMR & ¹³ C NMR Spectra	: S18-S50

6. Single Crystal X-ray of 5ca & 4ca: S51

1. General Methods

All chemicals were of the best grade commercially available and are used without further purification. All solvents were purified according to standard procedure; dry solvents were obtained according to the literature methods and stored over molecular sieves. Analytical thin layer chromatography was performed on glass plates coated with silica gel containing calcium sulfate binder. Gravity column chromatography was performed using neutral alumina and mixtures of hexane-ethyl acetate were used for elution.

Melting points were determined on a Buchi melting point apparatus and are uncorrected. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker AMX 500 spectrophotometer (CDCl₃ and CD₃CN, MeOD as solvents). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.25ppm) CD₃CN (1.94 ppm), MeOD (3.31 ppm). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quadret); dd (double doublet); m (multiplet). Coupling constants are reported as J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.03 ppm). CD₃CN (1.32 ppm), MeOD (49.0 ppm). Mass spectra were recorded under ESI/HRMS at 60,000 resolution using Thermo Scientific Exactive mass spectrometer. IR spectra were recorded on Bruker FT-IR spectrometer.

- Most of the synthesized compounds bear an amide moiety and the ¹H & ¹³C NMR of these compounds were broadened due to the presence of rotamers. D. Hu, P. Grice, S. V. Ley J. Org. Chem., 2012, 77, 5198.
- The enamides were prepared by following literature reports. (a) R. B. Boar, J. F. Mc Ghie, M. Robinson, D. H. R. Barton, D. C. Horwell, R.V. Stick, J. Chem. Soc., Perkin Trans. I, 1975, 1237; (b) D. H. R. Barton, S. Z. Zard, J. Chem. Soc., Perkin Trans. I, 1985, 2191.

2. General procedure for the Pd-catalyzed oxidative annulation of enamides with diazabicyclic olefins

A mixture of azabicyclic olefin **1a** (100 mg, 0.399 mmol.), N-acetyl enamide **2a** (53 mg, 0.333 mmol) $Pd(OAc)_2$ (7 mg, 0.033), dppe (13 mg, 0.033 mmol), $Cu(OAc)_2$ (121 mg, 0.666 mmol) were weighed into a Schlenk tube and degassed for 10 minutes. Dry acetonitrile (2 mL) was added and the reaction mixture was purged with argon and allowed to stir at 80 °C for 12 hours. The solvent was evaporated in *vacuo* and the residue on column chromatography (activated neutral alumina) with hexane-ethylacetate mixtures yielded cyclopentene fused substituted 2-pyrrolines.

Optimization studies for suitable Pd-catalyzed oxidative annulation of enamide **2a** with diazabicyclic olefin **1a**

The interesting heteroannulation prompted us to optimize the reaction conditions (Table 1). From various solvents such as MeOH, CH₃CN, DMSO, DCE, DMF screened, CH₃CN was

found to be the best medium for the present transformation (Table 1, entries 1-5). Further experiments with different palladium salts proved $Pd(OAc)_2$ as the best choice for the catalyst precursor (Table 1, entries 6-8). It is noteworthy to mention that the reaction failed in the absence of either palladium catalyst or oxidant (Table 1, entries 9-10). From different phosphine ligands tested, dppe was found to be the best ligand furnishing the fused pyrroline in 65% yield (Table 1, entries 2, 12-14). The effect of different oxidants like Cu(OAc)₂, Ag₂CO₃ and O₂ was studied and better yield was obtained with Cu(OAc)₂ (Table 1, entries 12, 15-16). Finally, the use of 1.25 equivalents of alkene **1a** furnished the product in 71% yield.

Lubic I . Optimization states

	N N CO	:O ₂ Et +	NHAC	Catalyst, ligand oxidant, sovent 80 ^o C, 12 h		AC H N H H N-CO ₂ Et
	1a		2a			3aa
-	Entry	Catalyst	Oxidant	Ligand	Solvent	Yield (%)
	1	Pd(OAc) ₂	Cu(OAc) ₂	PPh ₃	MeOH	47
	2	Pd(OAc) ₂	Cu(OAc) ₂	PPh ₃	CH₃CN	62
	3	Pd(OAc) ₂	Cu(OAc) ₂	PPh ₃	DMSO	45
	4	Pd(OAc) ₂	Cu(OAc) ₂	PPh ₃	DCE	40
	5	Pd(OAc) ₂	Cu(OAc) ₂	PPh ₃	DMF	40
	6	PdCl ₂	Cu(OAc) ₂	PPh ₃	CH ₃ CN	38
	7	Pd(TFA) ₂	Cu(OAc) ₂	PPh_3	CH ₃ CN	40
	8	$Pd(PPh_3)_2Cl_2$	Cu(OAc) ₂	PPh ₃	CH₃CN	Trace
	9	-	Cu(OAc) ₂	PPh ₃	CH₃CN	-
	10	Pd(OAc) ₂	-	PPh ₃	CH₃CN	-
	11	Pd(OAc) ₂	Cu(OAc) ₂	-	CH₃CN	48
	12	Pd(OAc) ₂	Cu(OAc) ₂	dppe	CH ₃ CN	65
	13	Pd(OAc) ₂	Cu(OAc) ₂	dppm	CH₃CN	48
	14	Pd(OAc) ₂	Cu(OAc) ₂	dppf	CH₃CN	55
	15	Pd(OAc) ₂	Ag ₂ CO ₃	dppe	CH₃CN	35
	16	Pd(OAc) ₂	O ₂	dppe	CH₃CN	30
	17 ^a	Pd(OAc) ₂	Cu(OAc) ₂	dppe	CH₃CN	71

Reaction conditions: **1a** (1.0 equiv.), **2a** (1.0 equiv.), catalyst (10.0 mol %), oxidant (2.0 equiv.), ligand (10.0 mol %), solvent (2.0 mL), 12 h, 80 °C. ^a **1a** (1.25 equiv.)

Characterisation of the products

Diethyl1-(1-acetyl-2-phenyl-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-yl)hydrazine-1,2dicarboxylate (**3aa**)

Yield: 94 mg, 71%; Colourless viscous liquid; R_{f} : 0.38 (hexane/ethyl acetate = 2:3). IR (neat) ν_{max} : 3284, 2982, 2935, 1709, 1654, 1519, 1386, 1319, 1257, 1224, 934, 762 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.48-7.14 (m, 6H), 6.11-6.08 (m, 1H), 5.88-5.77 (m, 1H), 5.44-5.32 (m, 2H), 5.15 (brs, 1H), 4.12-4.03 (m, 4H), 3.66-3.39 (m, 1H), 2.25 (s, 3H), 1.23 (t, *J* = 6.5 Hz, 6 H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 157.7, 156.5, 142.9, 135.7, 135.1, 131.5, 129.4, 128.1, 117.8, 71.4, 69.7, 63.2, 62.6, 49.7, 24.7, 14.9, 14.8 ppm. HRMS (ESI): Calcd for C₂₁H₂₅N₃O₅, (M+Na)⁺: 422.16919; Found: 422.16925.

Diisopropyl 1-(1-acetyl-2-phenyl-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-yl)hydrazine-

<u>1,2-dicarboxylate</u> (3ba)

Yield: 95 mg, 75%; Off white coloured solid; mp: 90-100 °C; R_f : 0.50 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3294, 2980, 2932, 2394, 1712, 1654, 1514, 1385, 1313, 1262, 1106, 946, 761 cm⁻¹. ¹H **NMR (500 MHz, CD₃CN, TMS):** δ 7.49-7.27 (m, 6H), 6.13-6.06 (m, 1H), 5.87-5.82 (m, 1H), 5.45-5.32 (m, 2H), 5.15- 5.11 (m, 1H), 4.85-4.84 (m, 2H), 3.67-3.40 (m, 1H), 2.37 (s, 3H), 1.22-1.19 (m, 12H) ppm. ¹³C **NMR (125 MHz, CD₃CN):** δ 169.6, 157.5, 156.0, 142.6, 135.1, 131.8, 129.3, 128.9, 128.4, 118.4, 71.4, 70.9, 70.2, 69.2, 49.9, 24.8, 22.3, 22.2 ppm. **HRMS (ESI):** Calcd for C₂₃H₂₉N₃O₅, (M+Na) +: 450.20049; Found: 450.20062.

Di-tert-butyl 1-(1-acetyl-2-phenyl-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-yl)hydrazine-

```
<u>1,2-dicarboxylate</u> (3ca)
```

N∼CO₂^tBu ^tBuO₂CHN

Yield: 83 mg, 68%; off white coloured solid; mp: 120-130 °C; R_f: 0.70 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3291, 3063, 3032, 2957, 1956, 1883, 1715, 1655, 1497, 1399, 1317, 1218, 1135, 1048, 737 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.32-7.06 (m, 6H),

6.13-6.03 (m, 1H), 5.89-5.81 (m, 1H), 5.45-5.06 (m, 3H), 3.68-3.38 (m, 1H), 2.24 (s, 3H), 1.43 (s, 18H) ppm. ¹³C **NMR (125 MHz, CD₃CN):** δ 169.4, 156.9, 155.5, 142.9, 135.1, 131.8, 129.2, 128.3, 127.9, 118.6, 81.6, 81.2, 71.4, 68.5, 50.1, 28.4, 24.7 ppm. **HRMS (ESI):** Calcd for C₂₅H₃₃N₃O₅, (M+H)⁺: 478.23179; Found: 478.23218.

Dibenzyl-1-(1-acetyl-2-phenyl-1,3a,4,6a-tetrahydrocyclo[b]pyrrol-4-yl)hydrazine1,2

dicarboxylate (3da)

Ac N∼CO₂Bn BnO₂CHN

Yield: 74 mg, 65%; colourless viscous liquid; R_f : 0.57 (hexane/ethyl acetate = 1:1). **IR (neat)** v_{max} : 3311, 2978, 2933, 1706, 1627, 1485, 1450, 1257, 1164, 1050, 940, 861, 763 cm⁻¹. ¹H **NMR (500 MHz, CD₃CN, TMS):** δ 7.96-7.76 (m, 1H), 7.35-7.25 (m, 15H), 6.11-6.02 (m, 1H), 5.82-5.75 (m, 1H), 5.43-5.12 (m, 7H), 3.68-3.39 (m, 1H), 2.44 (s, 3H) ppm. ¹³C **NMR (125 MHz, CD₃CN):** δ 169.7, 157.7, 156.3, 142.8, 137.5, 136.1, 134.9, 131.1, 129.6, 129.1, 128.6, 117.8, 71.4, 70.0, 68.6, 67.8, 50.1, 24.5 ppm.

HRMS (ESI): Calcd for C₃₁H₂₉N₃O₅, (M+H)⁺: 546.20049; Found: 546.20087.

Diethyl-1-(1-Acetyl-2-(4-chlorophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3ab**)

Yield: 104 mg, 72%; Pale yellow viscous liquid; R_f: 0.40 (hexane/ethyl acetate = 2:3). **IR** (neat) ν_{max} : 3294, 3059, 2982, 2935, 2347, 1708, 1655, 1589, 1490, 1382, 1226, 1174, 1093, 933, 826 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.31 (d, J = 5.5 Hz, 2H), 7.21 (d, J = 5.5 Hz, 2H), 6.55-6.40 (m, 1H), 6.15 (s, 1H), 5.84-5.64 (m, 2H), 5.30-5.18 (m, 2H), 4.21-4.17 (m, 4H), 3.62-3.35 (m, 1H), 1.69 (s, 3H), 1.30-1.25 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 168.9, 156.4, 155.4, 140.1, 134.6, 132.2, 128.7, 128.6, 118.0, 70.5, 68.5, 62.6, 62.1, 48.2, 24.9, 14.6, 14.4 ppm.

HRMS (ESI): Calcd for C₂₁H₂₄ClN₃O₅, (M+Na)⁺: 456.1302; Found: 456.1295.

Diisopropyl-1-(1-Acetyl-2-(4-chlorophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3bb**)

^{∕N}∼CO₂ⁱPr

Yield: 92 mg, 67%; Yellow viscous liquid; R_{f} : 0.54 (hexane/ethyl acetate = 1:1). **IR (neat)** v_{max} : 3287, 2983, 2940, 1688, 1659, 1386, 1309, 1260, 1108, 1038, 825 cm⁻¹. ¹H NMR (500 **MHz, CD₃CN, TMS)**: δ 7.31-7.24 (m, 5H), 6.12-6.07 (m, 1H), 5.87-5.82 (m, 1H), 5.37 (s, 2H), 5.14-5.08 (m, 1H), 4.86-4.83 (m, 2H), 3.70-3.43 (m, 1H),2.30 (s, 3H), 1.29-1.22 (m, 12H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 167.3, 157.5, 156.1, 136.7, 135.4, 133.8, 131.5, 130.6, 129.7, 129.3, 118.4, 71.4, 70.9, 70.8, 70.2, 55.1, 23.0, 22.2, 22.1 ppm. HRMS (ESI): Calcd for C₂₃H₂₈ClN₃O₅, (M+Na)⁺: 484.16152; Found: 484.16234.

Di-tert-butyl 1-(1-acetyl-2-(4-chlorophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3cb**)

Yield: 85 mg, 65%; Pale yellow liquid; R_f: 0.66 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3298, 3045, 2976, 2943, 2347, 1698, 1655, 1584, 1492, 1382, 1226, 861 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.31-7.08(m, 5H), 6.11-6.05 (m, 1H), 5.88-5.80 (m, 1H), 5.49-5.36 (m, 2H), 5.11-5.10 (m, 1H), 3.72-3.47 (m, 1H), 2.30 (s, 3H), 1.43 (s, 15H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 156.8, 155.5, 133.9, 132.0, 130.6, 130.5, 129.7, 129.4, 129.0, 118.3, 81.5, 81.2, 71.4, 68.2, 55.1, 28.6, 28.5, 23.0 ppm.

HRMS (ESI): Calcd for C₂₅H₃₂ClN₃O₅, (M+Na)⁺: 512.19282; Found: 512.19362.

Diethyl1-(1-acetyl-2-(p-tolyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-yl)hydrazine-1,2-

dicarboxylate (3ac)

Yield: 76 mg, 55%; Colourless viscous liquid; R_f: 0.43 (hexane/ethyl acetate = 2:3). **IR** (neat) ν_{max} : 3293, 2982, 2934, 2873, 1710, 1656, 1511, 1406, 1317, 1257, 1099, 1061, 825, 760 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.39 (brs, 1H), 7.19-7.07 (m, 4H), 6.07-6.06 (m, 1H), 5.86-5.82 (m, 1H), 5.45-5.13 (m, 3H), 4.11-4.07 (m, 4H), 3.66-3.41 (m, 1H), 2.32 (s, 3H), 2.25 (s, 3H), 1.23-1.19 (m, 6H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 157.8, 156.5, 142.5, 135.0, 132.1, 131.3, 129.9, 128.1, 126.6, 117.1, 71.4, 69.6, 63.2, 62.6, 50.0, 24.4, 21.3, 14.8 ppm.

HRMS (ESI): Calcd for C₂₂H₂₇N₃O₅, (M+Na)⁺: 372.18451; Found: 372.18520.

Diethyl-1-(1-acetyl-2-(4-bromophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine 1,2 dicarboxylate (**3ad**)

Yield: 119 mg, 75%; White solid; mp: 110-120°C R_f: 0.33 (hexane/ethyl acetate = 2:3). **IR** (neat) ν_{max} : 3294, 2982, 2938, 2309, 1711, 1630, 1387, 1264, 1167, 1035, 958, 800, 737 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.87-7.85 (m, 1H), 7.62-7.47 (m, 3H), 7.17 (s, 1H), 6.08 (s, 1H), 5.87-5.82 (m, 1H), 5.41-5.38 (m, 2H), 5.12-5.07 (m, 1H), 4.12-4.08 (m, 4H), 3.70-3.39 (m, 1H), 2.32 (s, 3H), 1.26-1.20 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 170.5, 156.5, 135.6, 133.1, 132.4, 131.9, 129.5, 128.4, 67.2, 62.6, 62.2, 62.1, 55.7, 23.3, 14.4 ppm.

HRMS (ESI): Calcd for C₂₁H₂₄BrN₃O₅, (M+Na)⁺: 500.07970; Found: 500.08072.

Diisopropyl-1-(1-acetyl-2-(4-bromophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine 1,2 dicarboxylate (**3bd**)

Yield: 106 mg, 70%; White solid; mp: 110-120°C R_f: 0.55 (hexane/ethyl acetate = 1:1). **IR** (neat) ν_{max} : 3294, 3064, 2982, 2938, 2309, 1711, 1630, 1387, 1264, 1167, 1035, 958, 800, 737 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.58-7.50 (m, 4H), 7.33-7.23 (m, 1H), 6.13-6.10 (m, 1H), 5.89-5.83 (m, 1H), 5.47- 5.38 (m, 2H), 5.16 (brs, 1H), 4.86-4.85 (m, 2H), 3.76-3.48 (m, 1H), 2.25 (s, 3H), 1.26-1.18 (m, 12H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 157.5, 156.1, 141.6, 136.0, 134.6, 131.7, 129.7, 124.5, 119.5, 71.4, 70.8, 70.3, 61.0, 50.5, 24.0, 22.3, 22.2 ppm.

HRMS (ESI): Calcd for C₂₃H₂₈BrN₃O₅, (M+Na)⁺: 528.11100; Found: 528.11010.

Di-tert-butyl -1-(1-acetyl-2-(4-bromophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-

yl)hydrazine 1,2 dicarboxylate (3cd)

Yield: 98 mg, 68%; Pale yellow solid; mp: 120-125 °C; R_f: 0.73 (hexane/ethyl acetate = 4:1). **IR (neat)** ν_{max} : 3294, 3059, 2982, 2935, 2347, 1708, 1655, 1589, 1490, 1382, 1226, 1174, 1093, 933, 826 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.87-7.82 (m, 2H), 7.67-7.63 (m, 2H), 7.29-7.04 (m, 1H), 6.35-6.31 (m, 1H), 5.93-5.70 (m, 2H), 5.23-4.97 (m, 2H), 3.39-3.20 (m, 1H), 2.26 (m, 3H), 1.41 (s, 18H). ¹³C NMR (125 MHz, CD₃CN): δ 170.5, 157.0, 155.3, 141.5, 137.2, 134.2, 132.8, 131.5, 131.4, 130.7, 129.0, 119.0, 81.8, 81.6, 69.9, 66.8, 55.2, 28.4, 23.0 ppm. HRMS (ESI): Calcd for C₂₅H₃₂BrN₃O₅, (M+H)⁺: 534.16036; Found: 534.15990

Di-ethyl-1-(1-acetyl-2-(4-(triflouromethyl)phenyl)-1,3a,4,6a tetrahydrocyclopenta[b]pyrrol-4-yl)hydrazine-1,2-dicarboxylate (**3ae**)

EtO₂CHN

Yield: 110 mg, 71%; Pale yellow viscous liquid; R_f : 0.32 (hexane/ethyl acetate = 1:1 IR (neat) ν_{max} : 3307, 3069, 2976, 2933, 1708, 1652, 1484, 1391, 1328, 1262, 1167, 1071, 802, 760 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.57-7.48 (m, 4H), 7.31-7.17 (m, 1H), 6.11-6.10 (m, 1H), 5.87-5.83 (m, 1H), 5.47-5.14 (m, 3H), 4.11-4.08 (m, 4H), 3.74-3.48 (m, 1H), 2.27.(s, 3H), 1.24-1.18 (m, 6H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.7, 157.9, 156.6, 141.5, 136.0, 134.7, 131.8, 130.4, 126.4, 125.2, 124.2, 119.7, 71.5, 69.6, 63.3, 62.7, 51.1, 24.1, 14.8, 14.5 ppm.

HRMS (ESI): Calcd for C₂₂H₂₄F₃N₃O₅, (M+Na)⁺: 467.16681; Found: 467.16754.

Di-tert-butyl-1-(1-acetyl-2-(4-(triflouromethyl)phenyl)-1,3a,4,6a tetrahydrocyclopenta[b] pyrrol-4-yl)hydrazine-1,2-dicarboxylate (3ce)

Yield: 89 mg, 63%; pale yellow solid; mp: 170-180 °C; R_f: 0.65 (hexane/ethyl acetate = 4:1). **IR (neat)** ν_{max} : 3306, 3049, 2965, 2944, 1698, 1654, 1456, 1371, 1368, 808 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.60-7.50(m, 4H), 7.19-7.09 (m, 1H), 6.18-6.09 (m, 1H), 5.89-5.82 (m, 1H), 5.47-5.39 (m, 2H), 5.16-5.09 (m, 1H), 3.74-3.46 (m, 1H), 2.29 (s, 3H), 1.43 (s, 18H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 156.9, 155.3, 141.7, 136.2, 135.2, 132.0, 129.4, 126.4, 124.2, 119.8, 81.8, 81.3, 71.5, 68.6, 50.0, 28.4, 23.9 ppm.

HRMS (ESI): Calcd for C₂₆H₃₂F₃N₃O₅, (M+Na)⁺: 546.21918; Found: 546.22032.

Diethyl-1-(1-acetyl-2-(3-nitrophenyl)-1,3a,4,6atetrahydrocyclopenta[b]pyrrol4-yl)hydrazine-1,2-dicarboxylate (**3af**)

Yield: 118 mg, 76%; Colourless viscous liquid; R_f: 0.40 (hexane/ethyl acetate = 2:3). IR (neat) ν_{max} : 3488, 3119, 3075, 3015, 2365, 2333, 1762, 1730, 1590, 1409, 1266, 1060 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.50-7.22 (m, 4H), 6.12-6.07 (m, 1H), 5.86-5.81 (m,

1H), 5.45-5.14 (m, 3H), 4.11-4.05 (m, 4H), 3.78-3.51 (m, 1H), 2.13 (s, 3H), 1.22 (t, J = 7.5Hz, 6H) ppm. ¹³C **NMR (125 MHz, CD₃CN):** δ 168.2, 157.9, 156.4, 139.7, 135.1, 134.2, 131.6, 130.3, 129.4, 128.7, 127.5, 118.7, 70.8, 69.5, 63.2, 62.6, 51.0, 23.3, 14.8 ppm. **HRMS (ESI)**: Calcd for C₂₁H₂₃Cl₂N₂O₅, (M+Na)⁺: 490.09125; Found: 490.09133.

Diisopropyl-1-(1-acetyl-2-(3,4-dichlorophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3bf**)

Yield: 106 mg, 72%; Colourless viscous liquid; R_f: 0.60 (hexane/ethyl acetate = 1:1). **IR** (neat) ν_{max} : 3277, 3085, 2961, 2936, 2390, 1719, 1672, 1530, 1367, 1349, 1144, 1108, 1030, 942, 804 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.50-7.37 (m, 2H), 7.26-7.16 (m, 2H), 6.17-6.08 (m, 1H), 5.85-5.83 (m, 1H), 5.45-5.13 (m, 3H), 4.85 (s, 2H), 3.80-3.56 (m, 1H), 2.12 (s, 3H), 1.22 (s, 12H) ppm.¹³C NMR (125 MHz, CD₃CN): δ 168.2, 157.5, 156.1, 139.7, 138.4, 136.2, 134.2, 132.6, 131.6, 129.4, 128.7, 127.5, 119.3, 70.9, 70.8, 70.2, 69.2, 51.2, 23.2, 22.3, 22.2 ppm.

HRMS (ESI): Calcd for C₂₃H₂₇Cl₂N₃O₅, (M+Na)⁺: 518.12255; Found: 518.12344.

<u>Di-*tert*-butyl</u> 1-(1-acetyl-2-(3,4-dichlorophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3cf**)

Yield: 94 mg, 67%; Colourless viscous liquid; R_f: 0.65 (hexane/ethyl acetate = 1:1). **IR (neat)** v_{max} : 3297, 3086, 2961, 2936, 2390, 1690, 1672, 1530, 1368, 1361, 1154, 1108, 1030, 944, 808 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 7.50-7.09 (m, 4H), 6.15-6.09 (m, 1H), 5.91-5.83 (m, 1H), 5.47-5.26 (m, 2H), 5.13-5.02 (m, 1H) 3.82-3.49 (m, 1H), 2.12 (s, 3H), 1.42 (m, 18H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 167.7, 156.8, 155.2, 139.6, 138.3, 135.0, 134.2, 133.4, 131.6, 129.1, 127.2, 119.3, 81.9, 81.3, 70.8, 68.5, 51.1, 28.1, 23.3 ppm. HRMS (ESI): Calcd for C₂₅H₃₁Cl₂N₃O₅, (M+Na)⁺: 546.15385; Found: 546.15445.

Diethyl-1-(1-acetyl-2-(3-nitrophenyl)-1,3a,4,6atetrahydrocyclopenta[b]pyrrol4-yl)hydrazine-1,2-dicarboxylate (**3ag**)

CO₂Et

Yield: 123 mg, 83%; Pale yellow liquid; R_{f} : 0.30 (hexane/ethyl acetate = 2:3). **IR (neat)** ν_{max} : 3287, 3086, 2934, 1650, 1616, 1530, 1256, 810 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 8.11-8.04 (m, 2H), 7.64-7.34 (m, 3H), 6.17 (s, 1H), 5.91-5.85 (m, 1H), 5.55-5.41 (m, 2H), 5.17-5.10 (m, 1H), 4.12-4.08 (m, 4H), 3.77-3.52 (m, 1H), 2.29 (m, 3H), 1.24-1.21 (m, 6H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.4, 157.9, 156.4, 148.8, 136.8, 131.7, 129.6, 122.1, 120.3, 71.4, 69.1, 63.2, 62.6, 50.6, 23.9, 14.9, 14.8 ppm.

HRMS (ESI): Calcd for C₂₁H₂₄N₄O₇, (M+Na)⁺: 467.15427; Found: 467.15365.

Diisopropyl-1-(1-acetyl-2-(3-nitrophenyl)-1,3a,4,6atetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3bg**)

Yield: 110 mg, 78%; Pale yellow solid; mp: 120-140 °C; R_f: 0.30 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3297, 3075, 2961, 2936, 2390, 1710, 1672, 1530, 1367, 1349, 1144, 1108, 1030, 942, 804 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, TMS): δ 8.10-8.03 (m, 2H), 7.63-7.51 (m, 2H), 7.31 (brs, 1H), 6.16-6.12 (m, 1H), 5.89-5.84 (m, 1H), 5.55-5.17 (m, 3H), 4.86-4.85 (m, 2H), 3.77-3.52 (m, 1H), 2.31 (s, 3H), 1.23-1.18 (m, 12H) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 169.6, 157.6, 156.0, 148.9, 141.2, 136.7, 133.9, 132.0, 130.0, 123.1, 122.2, 120.4, 71.5, 70.9, 70.3, 69.0, 51.1, 24.0, 22.3, 22.2 ppm.

HRMS (ESI): Calcd for C₂₃H₂₈N₄O₇, (M+Na)⁺: 495.18557; Found: 495.18637.

Diethyl 1-(1-acetyl-2-(4-methoxyphenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4yl)hydrazine-1,2-dicarboxylate (**3ah**)

Yield: 57 mg, 40%; Pale yellow liquid; R_f: 0.43 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3297, 3117, 2961, 2601, 1700, 1655, 1530, 1252, 1057, 1030, 842, 680, 647 cm⁻¹. ¹H NMR **(500 MHz, CD₃CN, TMS):** δ 7.34-7.19 (m, 3H), 7.03-6.88 (m, 2H), 6.14-6.02 (m, 1H), 5.86-5.82 (m, 1H), 5.49-5.13 (m, 3H), 4.11-4.04 (m, 4H), 3.78 (s, 3H), 3.62-3.33 (m, 1H), 2.19 (s, 3H), 1.22 (t, *J* = 7 Hz, 6H) ppm. ¹³C NMR **(125 MHz, CD₃CN):** δ 169.4, 160.7, 157.6, 156.5, 142.4, 135.2, 131.4, 129.6, 128.1, 127.4, 116.5, 114.5, 71.2, 69.8, 63.2, 62.6, 56.0, 49.9, 24.7, 14.9, 14.8 ppm. **HRMS (ESI)**: Calcd for C₂₂H₂₇N₃O₆, (M+H) +: 430.19781; Found: 430.19711.

3. General procedure for the Rh-catalyzed desymmetrization of diazabicycles with aromatic enamides

A mixture of azabicyclic olefin **1a** (50 mg, 0.208 mmol), N-acetyl enamide **2a** (34 mg, 0.208 mmol), $[RhCl_2Cp^*]_2$ (6 mg, 0.010 mmol), $Cu(OAc)_2.H_2O$ (83 mg, 0.416 mmol) were

weighed into a Schlenk tube and degassed for 10 minutes. Dry acetonitrile (2 mL) was added and the reaction mixture was purged with argon and allowed to stir at 80 °C for 12 hours. The solvent was evaporated in *vacuo* and the residue on activated neutral alumina column chromatography with hexane-ethylacetate mixtures yielded 3,4-*trans* disubstituted cyclopentene.

Optimization studies for suitable catalyst system for Rh-catalyzed C-N bond cleavage of alkene 1a with enamide 2a

Detailed optimization studies were carried out to find out the best condition for the transformation (Table 2). The solvent optimisation revealed acetonitrile as the most effective reaction medium. Use of other solvents such as DMSO, DMF, DCE, MeOH and xylene resulted in lower yields. The efficiency of various additives such as NaOAc, CsOAc, $Cu(OAc)_2.H_2O$ and AgOAc was tested, from which $Cu(OAc)_2.H_2O$ gave the highest yield. Among the additives tested, Ag_2CO_3 was found to be ineffective for the present transformation. Ultimately, **1a** (1 equiv.) and **2a** (1 equiv.) in the presence of [RhCl₂Cp*]₂ (5.0 mol %) and Cu(OAc)₂.H₂O (2.0 equiv.) in CH₃CN at 80 °C for 12 hour was found to be the optimal condition for the reaction.

Table 2 . Optimization studies	Table 2	Optimization	studies
---------------------------------------	---------	--------------	---------

[]			NHAc [Cp*RhCl ₂]2		
Ľ	N CO ₂ 1a	² 2 ^{Et} + 2 Et 2a	additive solvent, 80 °C	EtO 4aa	,Ñ-N ₂C H
	Entry	Catalyst	Additive	Solvent	Yield
	1	(RhCp*Cl ₂) ₂	Cu(OAc) _{2.} H ₂ O	DMF	40
	2	,,	,,	MeOH	45
	3	3 3	"	O-Xylene	15
	4	,,	33	DCE	45
	5	"	,,	DMSO	35
	6	,,	"	CH ₃ CN	88
	^a 7	"	,,	Toluene	52
	^b 8	"	"	CH ₃ CN	50
	9	"	AgOAc	,,	65
	10	"	NaOAc	"	58
	11	,,	CsOAc	"	46
	12	"	Ag ₂ CO ₃	,,	Trace

Reaction Conditions: **1a** (1.0 equiv.), **2a** (1.0 equiv.), (RhCp*Cl₂)₂ (5 mol %), Cu(OAc)₂.H₂O (2.0 equiv.), solvent (2 mL), 80 °C, 12 h, ^a100 °C, ^bCu(OAc)₂.H₂O (1.0 equiv).

Characterisation of the products

<u>Diethyl</u> 1-((1S,2R)-2-((Z)-2-acetamido-2-phenylvinyl)cyclopent-3-en-1-yl)hydrazine-1,2dicarboxylate (4aa)

Yield: 73 mg, 88%; Colourless viscous liquid; R_{f} : 0.39 (hexane/ethyl acetate = 2:3). IR (neat) ν_{max} : 3284, 2979, 2856, 1708, 1498, 1265, 1106, 954, 813 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.06-9.79 (m, 1H), 7.45-7.14 (m, 6H), 5.77-5.71 (m, 1H), 5.53-5.38(m, 2H), 4.67-4.66 (m, 1H), 4.21-4.08 (m, 4H), 3.75 (s, 1H), 2.48 (brs, 2H), 2.09 (s, 3H), 1.32-1.00 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 158.0, 156.0, 138.0, 136.3, 132.8, 132.1, 129.9, 128.7, 128.1, 127.6, 125.7, 124.0, 119.8, 65.2, 62.7, 62.4, 46.7, 34.4, 22.9, 14.4, 14.3 ppm.HRMS (ESI): Calcd for C₂₁H₂₇N₃O₅, (M+H)⁺: 402.20290; Found: 402.20322.

Diisopropyl 1-((1S,2R)-2-((Z)-2-acetamido-2-phenylvinyl)cyclopent-3-en-1-yl)hydrazine-

1,2-dicarboxylate (4ba)

Yield: 62 mg, 78%; Colourless viscous liquid; R_{f} : 0.51 (hexane/ethyl acetate = 1:1). IR (neat) ν_{max} : 3286, 2981, 2933, 1710, 1514, 1408, 1273, 1108, 956, 819 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.04-8.81 (m, 1H), 7.39-7.37 (m, 2H), 7.28-7.26 (m, 2H), 7.22-7.20 (m, 1H), 6.57 (brss, 1H), 5.78-5.38 (m, 3H), 4.99-4.67 (m, 3H), 3.77 (s, 1H) 2.52-2.44 (m, 2H), 2.11 (s, 3H), 1.32-1.17 (m, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 158.2, 156.1, 136.9, 135.6, 133.2, 132.8, 128.8, 128.3, 127.0, 124.3, 71.1, 70.9, 65.2, 46.9, 34.4, 23.5, 23.3, 22.9 ppm. HRMS (ESI): Calcd for C₂₃H₃₁N₃O₅, (M+Na) +: 452.21614; Found: 452.21500.

Di-tert-butyl 1-((1S,2R)-2-((Z)-2-acetamido-2-phenylvinyl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate (**4ca**)

Yield: 58 mg, 75%; Off white coloured solid; mp: 165-175 °C; R_f: 0.70 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3292, 3056, 2979, 2932, 1702, 1686, 1448, 1285, 1100, 1054, 951, 860 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.20-8.98 (m, 1H), 7.48-7.40 (m, 2H), 7.29-7.26 (m, 2H), 7.23-7.20 (m, 1H), 6.34 (s, 1H), 5.81-5.74 (m, 1H), 5.58-5.57 (m, 1H), 5.36-

5.34 (m, 1H), 4.70-4.61 (m, 1H), 3.83-3.78 (m, 1H), 2.57-2.47 (m, 2H), 2.15 (s, 3H), 1.52 (s, 18H) ppm. ¹³C NMR (125 MHz, CDCl₃): 169.7, 157.4, 154.8, 138.3, 136.4, 132.9, 128.9, 128.1, 127.4, 125.7, 124.2, 81.9, 81.8, 65.6, 47.4, 34.2, 28.2, 28.0, 23.1 ppm. HRMS (ESI): Calcd for C₂₅H₃₅N₃O₅, (M+Na)⁺: 480.24744; Found: 480.24691 Diethyl-1-((1S,2R)-2-((Z)-2-acetamido-2-(4-chlorophenyl)vinyl)cyclopent-3-en-1-

yl)hydrazine-1,2-dicarboxylate (4ab)

Yield: 64 mg, 74%; Yellow coloured liquid R_f : 0.58 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3284, 2982, 2936, 1706, 1679, 1468, 1373, 1252, 1107, 1044, 954, 829 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.25-9.02 (m, 1H), 7.30-7.28 (m, 2H), 7.22-7.21 (m, 2H), 7.15-7.11 (m, 1H), 5.71 (s, 1H), 5.51-5.32 (m, 2H), 4.97-4.65 (m, 3H), 3.73 (s, 1H), 2.48-2.43 (m, 2H), 2.09 (s, 3H), 1.31-0.88 (m, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃): 169.7, 157.7, 155.4, 135.5, 133.0, 132.4, 129.2, 128.9, 128.5, 128.3, 128.1, 127.0, 124.6, 70.4, 64.8, 47.0, 34.2, 22.8, 22.0 ppm. HRMS (ESI): Calcd for C₂₃H₃₀ ClN₃O₅, (M+Na) +: 486.17717; Found: 486.17688.

Diethyl-1-(1-acetyl-2-(4-bromophenyl)-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-

yl)hydrazine 1,2 dicarboxylate (4ac)

Yield: 62 mg, 72%; viscous liquid, 0.36 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3291, 2982, 2934, 1717, 1708, 1510, 1250, 1060, 951, 817 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, **TMS)**: δ 8.93-8.66 (m, 1H), 7.27-7.26 (m, 2H), 7.16-7.12 (m, 1H), 7.08-7.07 (m, 1H), 6.77 (s, 1H), 5.75-5.72 (m, 1H), 5.56-5.35 (m, 2H), 4.68-4.67 (m, 1H), 4.22-4.10 (m, 4H), 3.86-3.76 (m, 1H), 2.51 (s, 2H), 2.32 (s, 3H), 2.10 (s, 3H), 1.33-1.26 (m, 6H) ppm.¹³C NMR (125 MHz, CDCl₃): δ 169.5, 157.9, 156.1, 137.0, 135.2, 133.0, 131.6, 128.8, 125.6, 65.2, 62.7, 60.4, 51.1, 34.4, 23.0, 21.2, 14.4, 14.2 ppm. HRMS (ESI): Calcd for C₂₂H₂₉N₃O₅, (M+Na)⁺: 438.20049; Found: 438.19901

Diisopropyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(p-tolyl)vinyl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate (**4bc**)

Yield: 58 mg, 70%; Colourless viscous liquid; R_{f} : 0.57 (hexane/ethyl acetate = 1:1). IR (neat) ν_{max} : 3286, 2988, 2934, 1704, 1679, 1468, 1370, 1256, 1107, 1044, 952, 806. ¹H NMR (500 MHz, CD₃CN, TMS): δ 9.01-8.74 (m, 1H), 7.35-7.27 (m, 2H), 7.13-7.06 (m, 2H), 6.53 (brs, 1H), 5.78-5.72 (m, 1H), 5.57-5.33 (m, 2H), 5.00-4.69 (m, 3H), 3.76 (s, 1H), 2.52-2.51 (m, 2H), 2.32 (s, 3H), 2.11(s, 3H), 1.32-1.19 (m, 12H). ¹³C NMR (125 MHz, CD₃CN): δ 171.2, 155.8, 155.5, 136.9, 136.3, 129.1, 125.6, 122.5, 70.3, 64.9, 51.4, 34.4, 29.7, 23.0, 21.9, 21.2. HRMS (ESI): Calcd for C₂₄H₃₃N₃O₅, (M+Na) ⁺: 466.23179; Found: 466.23286.

Diethyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(4-bromophenyl)vinyl)cyclopent-3-en-1-

yl)hydrazine-1,2-dicarboxylate (4ad)

Yield: 84 mg, 84%; Pale yellow solid; mp: 120-125 °C; R_f: 0.33 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3283, 2982, 2934, 1710, 1676, 1587, 1327, 1097, 951, 827 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.22-8.90 (m, 1H), 7.41-7.39 (m, 2H), 7.27-7.25 (m, 2H), 6.83 (s, 1H), 5.74 (s, 1H), 5.54-5.29 (m, 2H), 4.70 (s, 1H), 4.29-4.10 (m, 4H), 3.76 (s, 1H), 2.50 (s, 2H), 2.12 (s, 3H), 1.33-1.01 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 158.1, 155.8, 137.4, 135.7, 132.4, 131.2, 128.1, 129.1, 127.3, 124.4, 121.3, 65.1, 63.0, 46.8, 34.3, 22.9, 14.4 ppm. HRMS (ESI): Calcd for C₂₁H₂₆BrN₃O₅, (M+Na) +: 502.09535; Found: 502.09413

Diisopropyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(4-bromophenyl)vinyl)cyclopent-3-en-1yl)hydrazine-1,2-dicarboxylate (**4bd**)

Yield: 69 mg, 73%; Pale yellow solid; mp: 170-175 °C R_f: 0.63 (hexane/ethyl acetate = 1:1 **IR (neat)** ν_{max} : 3286, 2981, 2933, 1708, 1676, 1516, 1489, 1387, 1255, 1107, 1045, 826 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.22-9.00 (m, 1H), 7.41-7.39 (m, 1H), 7.25-7.24 (m, 2H), 7.18-7.14 (m, 1H), 6.56-6.51 (m, 1H), 5.79-5.75 (m, 1H), 5.55-5.36 (m, 2H), 5.09-4.70 (m, 3H), 3.77 (s, 1H), 2.52-2.48 (m, 2H), 2.11 (s, 3H), 1.33-0.88 (m, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.7, 158.0, 155.4, 137.2, 135.7, 132.7, 131.1, 129.0, 128.2,127.3, 124.4, 121.3, 70.6, 64.8, 46.6, 34.3, 22.8, 22.0, 21.8 ppm. HRMS (ESI): Calcd for C₂₃H₃₀BrN₃O₅, (M+Na)⁺: 532.12665; Found: 532.12605.

Diisopropyl-1-((1S,2R)-2-((Z)-2-acetamido-2-(4-(trifluoromethyl)phenyl)vinyl)cyclopent-3en-1-yl)hydrazine-1,2-dicarboxylate (**4be**)

Yield: 83 mg, 76%; Pale yellow solid; mp; 140-150 °C R_f: 0.55 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3285, 2985, 2931, 1719, 1675, 1516, 1332, 1127, 1072, 952 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, TMS): δ 9.29-9.10 (m, 1H), 7.61-7.27 (m, 4H), 6.94-6.75 (m, 1H), 5.83-5.74 (m, 1H), 5.56-5.40 (m, 2H), 5.00-4.71 (m, 3H), 3.78 (s, 1H), 2.56-2.48 (m, 2H), 2.13 (s, 3H), 1.33-1.13 (m, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.8, 158.2, 155.4, 139.1, 135.5, 132.3, 130.6, 129.0, 128.4, 125.2, 124.0, 123.0, 122.4, 70.7, 69.9, 65.0, 47.1, 34.4, 22.9, 22.0, 21.9, 20.4 ppm. HRMS (ESI): Calcd for C₂₄H₃₀F₃N₃O₅, (M+Na) +: 497.21376; Found: 497.21468.

Diethyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(3,4-dichlorophenyl)vinyl)cyclopent-3-en-1yl)hydrazine-1,2-dicarboxylate (**4af**)

Yield: 83 mg, 85%; Pale yellow liquid; R_f: 0.35 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3284, 2984, 2933, 1719, 1585, 1519, 1472, 1271, 1061, 826 cm⁻¹. ¹H NMR (500 MHz, **CDCl₃, TMS):** δ 9.26 (brs,1H), 7.31-7.27 (m, 2H), 7.19-7.17 (m, 2H), 6.89 (s, 1H), 5.73 (s, 1H), 5.54 (s, 1H), 4.96-4.71 (m, 2H), 4.29-4.14 (m, 4H), 3.77 (s, 1H), 2.49 (s, 2H), 2.03 (s, 3H), 1.35-1.18 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 169.0, 158.2, 158.3, 136.8, 134.7, 134.4, 133.4, 132.6, 132.3, 131.6, 129.1, 126.7, 63.2, 62.8, 46.0, 34.3, 22.6, 14.4 ppm. HRMS (ESI): Calcd for C₂₁H₂₅Cl₂N₃O₅, (M+Na)⁺: 492.10690; Found: 492.10760 Di-tert-butyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(3,4-dichlorophenyl)vinyl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate (4cf)

Yield: 69 mg, 78%; Pale yellow solid; mp; 160-170 °C, R_f: 0.75 (hexane/ethyl acetate = 2:3). **IR (neat)** ν_{max} : 3307, 3069, 2976, 2933, 1708, 1652, 1484, 1391, 1328, 1262, 1167, 1071, 802, 760 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃, TMS):** δ 9.32 (s, 1H), 7.31-7.29 (m, 2H), 7.18-7.17 (m, 1H), 6.32 (s, 1H), 5.80-5.56 (m, 2H), 4.97 (d, *J* = 10.5 Hz, 1H), 4.79-4.62 (m, 1H), 3.77 (s, 1H), 2.66-2.49 (m, 2H), 2.08 (s, 3H), 1.53-1.46 (m, 18H) ppm. ¹³**C NMR (125 MHz, CDCl₃):** δ 169.1, 156.9, 154.8, 136.8, 134.0, 133.2, 132.7, 131.5, 129.2, 126.7, 125.2, 82.2, 81.9, 63.2, 46.6, 34.1, 29.2, 22.8 ppm. **HRMS (ESI):** Calcd for C₂₅H₃₃Cl₂N₃O₅, (M+Na) +: 548.16950; Found: 548.17065.

Diethyl 1-((1S,2R)-2-((Z)-2-acetamido-2-(4-methoxyphenyl)vinyl)cyclopent-3-en-1yl)hydrazine-1,2-dicarboxylate (**4ah**)

Yield: 61 mg, 68%; Viscous liquid R_f : 0.35 (hexane/ethyl acetate = 1:1). **IR (neat)** ν_{max} : 3278, 2983, 2936, 1713, 1574, 1443, 1250, 1176, 1060, 1030, 833 cm⁻¹. ¹H NMR (500 MHz, **CDCl₃, TMS):** δ 8.95-8.67 (m, 1H), 7.39-7.11 (m, 3H), 6.83-6.78 (m, 2H), 5.76-5.69 (m, 1H), 5.53-5.28 (m, 2H), 4.66 (s, 1H), 4.20-4.08 (m, 4H), 3.81-3.78 (m, 4H), 2.48 (s, 2H), 2.09 (s, 3H), 1.32-1.03 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 171.2, 159.2, 156.1, 136.0, 133.2, 130.6, 128.2, 126.5, 114.3, 63.0, 60.8, 55.1, 46.0, 34.4, 23.1, 21.2, 14.3 ppm. HRMS (ESI): Calcd for C₂₂H₂₉N₃O₆, (M+Na)⁺: 454.19541; Found: 454.19651.

4. Typical procedure for the synthesis of pyrrolidine fused cyclopentyl amine derivative

These transformations were done following reported procedures (S. Demerzhan, S. R. Gilbertson, *Tetrahedron Lett.* 2015, **56**, 3633). To a suspension of compound **3ca** (1 g, 0.002 mol) and Cs_2CO_3 (1.788 g, 0.005 mol) in CH₃CN (0.2 M) at 23 °C was added methyl bromoacetate (0.706 g, 0.004 mol). The mixture was heated to 50 °C until the starting material was consumed, as indicated by TLC. The reaction was quenched with saturated NH₄Cl (aq.), extracted with EtOAc, and the extracts were combined and washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography to afford alkylated compound (carbamate) as a viscous liquid which was used without further purification. To the solution of carbamate in CH₃CN (0.2 M) was added Cs_2CO_3 (1.955 g, 0.006 mol) and the mixture was heated at 82 °C until all starting material was consumed, as indicated by TLC. The reaction was quenched with saturated NH₄Cl (aq.), extracted with brine and the combined extracts dried over MgSO₄. The solvent was evaporated *in vacuo* and the residue purified by column chromatography (neutral alumina) give the desired –Boc protected amine **5ca** as a pale yellow solid (0.272 g, 40% yield).

To a solution of Boc-protected amine **5ca** (200 mg, 0.587 mmol) in anhydrous CH_2Cl_2 was added trifluoroacetic acid (1.726 mmol) at 0° C. The mixture was slowly warmed to room temperature and stirred until starting material was consumed, as indicated by TLC. The solvent was removed in *vacuo*, and the residue was dried under high vacuum. The crude product obtained was dissolved in 3 mL methanol and Pd/C (6 mg, 0.059) was added and stirred under hydrogen atmosphere (1 atm) for 4 hours. Reaction mixture was passed through celite and evaporated in *vacuo* to obtain the desired cyclopentyl amine **6ca** as a pale yellow liquid (122 mg, 85%).

Characterisation of the products

Tert-butyl (1-acetyl-2-phenyl-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-4-yl)carbamate (5ca)

Yield: 272 mg, 40%; Pale yellow solid; mp: 110-120 °C; R_f ; 0.35 (hexane/ethyl acetate = 1:1). **IR (neat)** v_{max} : 3324, 3061, 2977, 1702, 1580, 1449, 1391, 1319, 1168, 1022 862 cm⁻¹. ¹H **NMR (500 MHz, CD₃CN, TMS):** δ 7.37-7.25 (m, 5H), 6.01 (s, 1H), 5.93-5.91 (m, 1H), 5.48-5.47 (m, 2H), 5.32 (s, 1H), 4.50-4.49 (m, 1H), 3.33 (s, 1H), 2.20 (s, 3H), 1.44 (s, 9H) ppm. ¹³C **NMR (125 MHz, CD₃CN):** δ 169.4, 156.4, 142.6, 135.1, 133.8, 129.2, 128.7, 127.6, 118.9, 79.6, 71.2, 62.2, 52.8, 20.5, 24.3 ppm.

HRMS (ESI): Calcd for C₂₀H₂₄N₂O₃, (M+Na)⁺: 363.16846 ; Found: 363.16859.

<u>1-(4-amino-2-phenylhexahydrocyclopenta[b]pyrrol-1(2H)-yl)ethanone</u> (6ca)

Yield: 122 mg, 85%; Pale yellow viscous liquid; **IR (neat)** ν_{max} : 3290, 2954, 2924, 2853, 1715, 1672, 1448, 1292, 1181, 1133 cm⁻¹. ¹H NMR (500 MHz, MeOD, TMS): δ 8.01 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 4.52-4.51 (m, 1H), 3.51-3.50 (m, 1H), 3.43 (dd, $J_1 =$ 6.5 Hz, $J_2 =$ 23.5 Hz, 1H), 3.13 (dd, $J_1 =$ 8 Hz, $J_2 =$ 18.5 Hz, 1H), 2.76-2.74 (m, 1H), 2.36-2.14 (m, 3H), 1.88 (s, 3H), 1.72-1.71 (m, 2H) ppm. ¹³C NMR (125 MHz, MeOD): δ 171.8, 136.6, 133.3, 128.4, 127.8, 55.4, 51.7, 42.6, 37.1, 29.3, 28.1, 21.1 ppm. HRMS (ESI): Calcd for C₁₅H₂₀N₂O, (M+H)⁺: 245.16539; Found: 245.16576.

5. 1H NMR & 13C NMR Spectra

¹³C NMR of **3aa**

¹³C NMR of **3ba**

¹³C NMR of **3ca**

¹³C NMR of **3da**

¹³C NMR of **3bb**

¹³C NMR of **3cb**

¹³C NMR of **3ac**

¹³C NMR of **3ad**

¹³C NMR of **3bd**

¹³C NMR of **3cd**

¹³C NMR of **3ae**

¹³C NMR of **3ce**

¹³C NMR of **3af**

¹³C NMR of **3bf**

¹³C NMR of **3ah**

¹³C NMR of **4aa**

¹³C NMR of **4ba**

¹³C NMR of **4ca**

¹³C NMR of **4ab**

¹³C NMR of **4ac**

¹³C NMR of **4bc**

¹³C NMR of **4ad**

¹³C NMR of **4bd**

¹³C NMR of **4be**

¹³C NMR of **4af**

¹³C NMR of **4cf**

¹³C NMR of **4ah**

¹³C NMR of **5ca**

100 90 f1 (ppm)

¹³C NMR of 6ca

6. Single Crystal X-ray of 5ca & 4ca

Single Crystal X-ray of **5ca** (CCDC 1511893)

Single Crystal X-ray of **4ca** (CCDC 1511896)