ELECTRONIC SUPPORTING INFORMATION (ESI)

for

A platinum(II)-palladium(II)-nickel(II) heterotrimetallic coordination polymer showing a cooperative effect on catalytic hydrogen evolution

Naoto Kuwamura, Yoshinari Kurioka, and Takumi Konno*

General methods.

trans-[Pt(NH₃)₂(D-Hpen)₂] was prepared according to a previously reported method.^{S1} The IR spectra were measured with a JASCO FT/IR-4100 infrared spectrophotometer using KBr disks. The ¹H NMR spectra were measured on JEOL RESONANCE ECS-400 and JEOL RESONANCE ECA-500 NMR spectrometers at room temperature in D₂O. Sodium 4,4-dimethyl-4-silapentane-1sulfonate (DSS) was used as the internal reference. Elemental analyses (C, H, N) were performed at Osaka University. Voltammetry and controlled potential electrolysis were carried out at room temperature in a three-electrode cell under N₂ using a CHI720E potentiostat. The working electrode was a sample-modified glassy carbon electrode (ϕ 3.0 mm) prepared by drying 5 μ L of the sample solution or suspension (5 mg in 0.05 mL of lower aliphatic alcohols/water containing 5% of Nafion® (Aldrich)) on the electrode surface. The counter electrode was a platinum wire, and the reference electrode was an Ag/AgCl (3.0 M NaCl aq.) electrode. A 500 µL sample was analyzed after 15 min using a gas chromatograph (Shimadzu GC-2014AT) with a thermal conductivity detector operating at 50°C. Ar was used as the carrier gas, and H₂ was detected on an activated molecular sieve column (ShincarbonST, Restek). Single-crystal X-ray diffraction measurements were performed on a RIGAKU RAXIS 7/FR-E imaging plate with graphite-monochromated Mo K α radiation (λ = 0.71075 Å) at 200 K. The intensity data were collected by the ω -scan technique and empirically corrected for absorption. The structures of the complexes were solved by direct methods using SHELXS-2014.^{S2} Structural refinements were carried out using full matrix least-squares (SHELXL-2014).^{S2} Non-hydrogen atoms were refined anisotropically, except for the N and O atoms of the disordered nitrate anion and water molecules. Hydrogen atoms were placed at calculated positions, except for the water molecules. SIMU and ISOR restraints were used to model a part of the penicillamine backbone in [H₄2]Cl₄. Cl atoms were disordered in some parts. All of the structural parameters are summarized in Table S1.

References.

- S1. Y. Kurioka, N. Kuwamura, N. Yoshinari, A. Igashira-Kamiyama and T. Konno, *Chem. Lett.*, 2015, 44, 1330-1332.
- S2. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.

Preparation of complexes.

Preparation of [Pd₂Pt₂(NH₃)₄(D-pen)₄] ([2]).

To a brown suspension containing 0.43 g (1.9 mmol) of $Pd(OAc)_2$ in 50 mL of water was added 1.0 g (1.9 mmol) of *trans*-[Pt(NH₃)₂(D-Hpen)₂]. The mixture was stirred at room temperature for 4 h, which gave a clouded brown solution. After the filtration of unreacted $Pd(OAc)_2$, the filtrate was evaporated to dryness. The orange residue was washed with EtOH. Yield: 1.29 g (92%). Calcd. for $[Pd_2Pt_2(NH_3)_4(D-pen)_4]$ ·12H₂O: C, 16.27; H, 4.92; N, 7.59%. Anal. Found: C, 16.32; H, 4.76; N, 7.43%.

Preparation of [Pd₂Pt₂(NH₃)₄(D-Hpen)₄]Cl₄ ([H₄2]Cl₄).

To a brown solution containing 0.062 g (0.21 mmol) of Na₂[PdCl₄] in 2 mL of H₂O was added 0.10 g (0.19 mmol) of *trans*-[Pt(NH₃)₂(D-Hpen)₂] in 3 mL of H₂O. The orange mixture was stirred at 0°C for 1 h to give a yellow solution. EtOH was diffused into the solution for 3 days to produce yellow crystals. Yield: 25 mg (16%). Calcd. for [Pd₂Pt₂(NH₃)₄(D-Hpen)₄]Cl₄·12H₂O: C, 14.81; H, 4.72; N, 6.91%. Anal. Found: C, 14.76; H, 4.76; N, 6.96%.

Preparation of [({Ni(H₂O)₄}{Pd₂Pt₂(NH₃)₄(D-pen)₄}]Cl₂ ([3]Cl₂).

To an orange solution containing 0.10 g (0.068 mmol) of $[Pd_2Pt_2(NH_3)_4(D-pen)_4]$ in 15 mL of water was added 0.16 g (0.68 mmol) of NiCl₂·6H₂O in 3 mL of water. After the solution was evaporated to dryness, to the black-green residue was added 5 mL of water. The mixture was stood at room temperature for 7 days. The resulting green platelet crystals were collected by filtration and washed with 5 mL of water. Yield: 0.07 g (60%). Calcd. for $[{Ni(H_2O)_4} {Pd_2Pt_2(NH_3)_4(D-pen)_4}]Cl_2·15H_2O: C, 13.87; H, 5.01; N, 6.47\%$. Anal. Found: C, 13.88; H, 4.80; N, 6.49%.

Fig. S1. ¹H NMR spectra of (a) the reaction solution of $[H_21]$ with Na₂[PdCl₄], and (b) [2] in D₂O.

Fig. S2. IR spectra of (a) [2] and (b) [3]Cl₂.

Fig. S3. Model structures of (a) the trans isomer and cis isomers with (b) the chair form, (c) boat form, and (d) twisted form of $[Pd_2Pt_2(NH_3)_4(D-pen)_4]$. The red curve indicates the steric repulsions between methyl and ammine groups.

Fig. S4. Packing structure of $[3]Cl_2$ viewed from the (a) *b* axis and (b) *c* axis. The green ball represents a chloride ion. H atoms are omitted for clarity. Blue dashed lines represent hydrogen bonds.

Fig. S5. (a) Gas chromatogram of the head space (500 μ L) after the electrolysis of [**3**]Cl₂ (black line) and [**2**] (red line) attached to the glassy carbon electrode in H₂O/CH₃CN (v/v = 1/9) containing 0.1 M LiClO₄ at an applied voltage of -1.2 V for 15 min. (*) indicates O₂ gas contamination. (b) Charge vs. time plot of the electrolysis.

Fig. S6. Linear sweep voltammograms of [3]Cl₂ attached to a glassy carbon electrode in (a) H_2O/CH_3CN (v/v = 1/9) and (b) acetonitrile, both containing 0.1 M LiClO₄.

Fig. S7. Linear sweep voltammograms of (e) Ni(CH₃COO)₂·4H₂O attached to a glassy carbon electrode (0.07 cm²), compared with (a) [**3**]Cl₂, (b) [**2**], and (c) [H₂**1**], and (d) a bare glassy carbon electrode, in H₂O-CH₃CN (v/v = 1/9) containing 0.1 M LiClO₄. The scan rate is 0.01 V/sec. Inset: Charge build-up versus time in extended potential-controlled electrolysis experiments at the applied potential of -1.20 V.

	[H ₄ 2]Cl ₄	[3]Cl ₂
Formula	$C_{20}H_{52}Cl_4N_8O_{14.5}Pd_2Pt_2S_4$	$C_{20}H_{48}Cl_2N_8NiO_{26}Pd_2Pt_2S_4$
Colour, shape	yellow, block	yellow, platelet
M	1509.71	1677.49
Crystal system	monoclinic	monoclinic
Space group	C2	C2
a /Å	16.407(4)	22.503(3)
b /Å	23.902(9)	9.0650(10)
c /Å	14.901(3)	18.450(2)
$\beta/^{\circ}$	103.206(17)	119.332(8)
$V/\text{\AA}^3$	5689(3)	3281.0(7)
Ζ	4	2
T/K	200	200
<i>F</i> (000)	2896	1612
$ ho_{ m calcd}$ /g cm ⁻³	1.763	1.698
μ (Mo K α) /mm ⁻¹	5.910	5.342
Crystal size /mm ³	$0.20\times0.20\times0.15$	$0.10\times0.08\times0.03$
Limiting indices	$-21 \le h \le 21$	$-28 \le h \le 29$
	$-30 \le k \le 31$	$-11 \le k \le 11$
	$-19 \le l \le 19$	$-23 \le l \le 19$
$R_1^{a} (I > 2\sigma(I))$	0.0324	0.0569
wR_2^{b} (all data)	0.0998	0.1658
GOF	1.047	1.058
Flack parameter	0.014(3)	0.079(8)
CCDC number	1514220	1514221

 Table S1. Crystallographic data for [H₄2]Cl₄ and [3]Cl₂.

 $\overline{{}^{a} R_{1} = \Sigma |(|Fo| - |Fc|)| / \Sigma (|Fo|)}.$

^b w $R_2 = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2]^{1/2}.$