Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane

James A. Clulow, ${ }^{\mathrm{a}, \ddagger}$ Elisabeth M. Storck, ${ }^{\mathrm{a}, \ddagger}$ Thomas Lanyon-Hogg, ${ }^{\mathrm{a}, \ddagger}$ Karunakaran A. Kalesh, ${ }^{\mathrm{a}}$ Lyn Jones ${ }^{\mathrm{b}}$ and Edward W. Tate ${ }^{\mathrm{a},{ }^{,}}$

${ }^{\text {a }}$ Department of Chemistry, Imperial College London, London, UK, SW7 2AZ
${ }^{\text {b }}$ Worldwide Medicinal Chemistry, Pfizer, 200 Cambridge Park Drive, MA 02140, USA
\ddagger Authors share equal contribution

* corresponding author, email: e.tate@imperial.ac.uk

Table of Contents

1 Supporting Figures 3
2 Supporting Tables 17
2.1 Supporting Table S1. Incorporation validation for the R10K8 label in the 'spike-in' SILAC proteome of the MCF7 cell line 17
2.2 Supporting Table S2. Incorporation validation for the R10K8 label in the 'spike-in' SILAC proteome of the MDA-MB-231 cell line 17
2.3 Supporting Table S3. High- and medium- confidence targets of sulforaphane in the MCF7 cell line 17
2.4 Supporting Table S4. High- and medium- confidence targets of sulforaphane in the MDA- MB-231 cell line 24
3 Chemical synthesis methods 36
3.1 General Information 36
3.2 Synthesis of Probe 1 36
3.2.1 4-Hex-5-ynyloxy-benzaldehyde 37
3.2.2 2-(4-Chloro-butyl)-2-methyl-[1,3]dioxolane 37
3.2.3 2-(4-Phthalimido-butyl)-2-methyl-[1,3]dioxolane 37
3.2.4 2-(4-Amino-butyl)-2-methyl-[1,3]dioxolane 38
3.2.5 (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-amine 38
3.2.6 S-Ethyl (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]- thiocarbamate 38
3.2.7 S-Ethyl (4-hex-5-ynyloxy-benzyl)-(5-oxo-hexyl)-thiocarbamate 39
3.2.8 S-Ethyl(4-hex-5-ynyloxy-benzyl)-(5-oxo-hexyl)-thiocarbamatesulfoxide (1) 39
3.3 Synthesis of Probe 2 40
3.3.1 S-Ethyl (prop-2-ynyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-thiocarbamate 40
3.3.2 S-Ethyl (prop-2-ynyl)-(5-oxo-hexyl)-thiocarbamate 41
3.3.3 S-Ethyl (prop-2-ynyl)-(5-oxo-hexyl)-thiocarbamate sulfoxide (2) 41
$3.4 \quad{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS and LC-MS data 42
4 Biological and biochemical methods 46
4.1 General methods 46
4.2 Cell culture 46
4.3 In-cell competition-based assays for in-gel fluorescence and Western Blot analyses 46
4.3.1 Compound treatment of cells and cell lysis 46
4.3.2 Copper catalysed azide-alkyne cycloaddition (CuAAC) 47
4.3.3 Gel electrophoresis and in-gel fluorescence 47
4.3.4 Affinity enrichment and Western Blot analysis 47
4.4 In-cell quantitative, competition-based assays for target identification by mass spectrometry 48
4.4.1 Compound treatment of cells and cell lysis 48
4.4.2 Preparation of 'spike-in' SILAC cell lysates as quantification standards 49
4.4.3 CuAAC, affinity enrichment and on-bead reduction, alkylation and trypsin digest 49
4.4.4 LC-MS/MS 50
4.4.5 LC-MS/MS data analysis 50
4.4.6 Abundance and bioinformatic analysis 51
5 References 52

1 Supporting Figures

Supporting Figure S1. Target profiles of $\mathbf{2}$ in competition with three concentrations of sulforaphane in MCF7 and MDA-MB-231 cells. Potential targets were identified as giving a statistically significant change (t-test, $\mathrm{SO}=1, \mathrm{FDR}=0.01$, shown in blue) in H / L ratio compared to samples treated with 2 alone.

Supporting Figure S2. Volcano plots for $\mathbf{2}$ in competition with three concentrations of sulforaphane in MCF7. Medium-confidence targets were identified as giving a statistically significant change (ttest, $\mathrm{SO}=1, \mathrm{FDR}=0.01$, shown in green) in H / L ratio compared to samples treated with $\mathbf{2}$ alone. The four high affinity and conserved targets MIF, KEAP1, ALDH9A1 and CPPED1 are highlighted to show distribution at each concentration.

MDA-MB-231

Supporting Figure S3. Volcano plots for 2 in competition with three concentrations of sulforaphane in MDA-MB-231 cells. Medium-confidence targets were identified as giving a statistically significant change (t -test, $\mathrm{SO}=1, \mathrm{FDR}=0.01$, shown in green) in H/L ratio compared to samples treated with $\mathbf{2}$ alone. The four high affinity and conserved targets MIF, KEAP1, ALDH9A1 and CPPED1 are highlighted to show distribution at each concentration.

Supporting Figure S4. Medium- and high-confidence targets of sulforaphane in (a) MCF7 and (b) MDA-MB-231 cells. Medium-confidence targets were identified as giving a statistically significant (ttest, $\mathrm{SO}=1, \mathrm{FDR}=0.01$) change in H / L ratio at one sulforaphane concentration. Medium-confidence targets identified at 5,25 , and $100 \mu \mathrm{M}$, or at 25 and $100 \mu \mathrm{M}$, were defined as high-confidence targets (highlighted green).

Supporting Figure S5. Comparions of difference in relative abundance levels for conserved and cell line-specific high-confidence targets of sulforaphane. Relative abundance was calculated as described in materials and methods using intensity based absolute quantification (iBAQ) values for each cell line from proteomic analysis of the $\mathrm{NCl}-60$ cell line panel. ${ }^{1}$ A relative abundance >0 indicates a protein is present at higher levels in MCF7 cells than in MDA-MB-231 cells; conversely a relative abundance <0 indicates a protein is present at higher levels in MDA-MB- 231 cells than in MCF7 cells. Average relative abundance of targets indicates that cell line-specific targets show higher abundance within that cell line (${ }^{*}=\mathrm{p}<0.05,{ }^{* * *}=\mathrm{p}<0.0001$).

Supporting Figure S6. IPA heatmap analysis of up- and downregulated canonical pathways in (a) MCF7 and (b) MDA-MB-231 cell lines. Heatmaps are ordered by increasing or decreasing z-score trend, and coloured with orange indicating upregulation and blue indicating downregulation.
(a) Sulforaphane targets in apoptosis signalling in MCF7:

(b) Sulforaphane targets in apoptosis signalling in MDA-MB-231:

© 2000-2017 QIAGEN. All rights reserved.
Supporting Figure S7. Targets in upregulated apoptosis signalling in (a) MCF7 and (b) MDA-MB-231 cell lines. Protein targets of sulforpahane are highlighted in green with colour density representing $-\log _{2}(Q S)$ at $25 \mu \mathrm{M}$, with denser colour indicating lower $-\log _{2}(\mathrm{QS})$. NF-kB subunits are common in both cell lines, along with PLCG1, p90RSK (RPS6KA1), and ICAD (DFFA).
(a) Sulforaphane targets in growth hormone signalling in MCF7:

(b) Sulforaphane targets in ERK/MAPK signalling in MDA-MB-231:

Supporting Figure S8. Major downregulated signalling pathways in (a) MCF7 and (b) MDA-MB-231 cell lines. Protein targets of sulforaphane are highlighted in green with colour density representing $-\log _{2}(Q S)$ at $25 \mu \mathrm{M}$, with denser colour indicating lower $-\log _{2}($ QS $)$. STAT transcription factors are common to both predominantly downregulated pathways.
(A)

(B)

MDA-MB-231 CELL LINE							
7	8	9	10	11	12		
50μ M PROBE 2				VEHICLE			
PPD	SN	PD	PPD	SN	PD		

Supporting Figure S9. Western Blot analyses of potential targets (HSP90, STAT3, ACTIN, CDK2, BID, MARCKS, IMPDH2, PSMC1, GSTO1/2 and HCCS) of $2(50 \mu \mathrm{M})$ in MCF7 (a) and MDA-MB-231 (b) cell lines compared to vehicle (DMSO) treatment. PPD = pre-pull down lysate, $\mathrm{SN}=$ supernatant lysate after pulldown and PD = pulldown.

Supporting Figure S10. IPA heatmap analysis of up- and downregulated disease and biofunctions in (a) MCF7 and (b) MDA-MB-231 cell lines. Heatmaps are ordered by increasing or decreasing z-score trend and z-score, and coloured with orange indicating upregulation and blue indicating downregulation.

MCF7

(a) Organismal death

(b) Proliferation of cells

Supporting Figure S11. Heatmap of high confidence sulforaphane targets involved in disease and biofunctions in MCF7 cells. (a) Targets involved in upregulation of organismal death, and (b) targets involved in downregulation of proliferation of cells. Heatmap density represents $-\log _{2}(\mathrm{QS})$ at each concentration.

(a) Organismal death

(b) Cell viability

© 2000-2017 QIAGEN. All rights reserved.
Supporting Figure S12. Heatmap of high confidence sulforaphane targets involved in disease and biofunctions in MDA-MB-231 cells. (a) Targets involved in upregulation of organismal death, and (b) targets involved in downregulation of cell viability. Heatmap density represents $-\log _{2}($ QS $)$ at each concentration. Comparison with MCF7 cells (Figure S11) indicates several targets present in multiple functions, including KEAP1, MIF, STAT3, STK3, STK4, and RELA.

Conserved Targets

(a) Canonical Pathways

Activation z-score
ERK/MAPK Signaling
Growth Hormone Signaling
NGF Signaling
CNTF Signaling
Apoptosis Signaling
HGF Signaling
Melanocyte Development and Pigmentation ...
Tec Kinase Signaling
UVA-Induced MAPK Signaling
JAK/Stat Signaling

(b) Diseases and Biofunctions

Upregulated

Downregulated

© 2000-2017 QIAGEN. All rights reserved

Supporting Figure S13. Analysis of conserved targets of sulforaphane in MCF7 and MD-MBA-231 cells. (a) All canonical pathways modulated by sulforaphane. (b) Upregulated and down regulated diseases and biofunctions. Heatmap is ordered by increasing or decreasing z-score trend, and coloured with orange indicating upregulation and blue indicating downregulation.

© 2000-2017 QIAGEN. All rights reserved.
Supporting Figure S14. Network analysis of conserved targets of sulforaphane in MCF7 and MD-MBA-231 cell lines at $25 \mu \mathrm{M}$, indicating a high-degree of connectivity around Akt kinases and caspases.

2 Supporting Tables

2.1 Supporting Table S1. Incorporation validation for the R10K8 label in the 'spikein' SILAC proteome of the MCF7 cell line

See additional Excel file.

2.2 Supporting Table S2. Incorporation validation for the R10K8 label in the 'spikein' SILAC proteome of the MDA-MB-231 cell line

See additional Excel file.

2.3 Supporting Table S3. High- and medium- confidence targets of sulforaphane in the MCF7 cell line

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
1	ABHD12	Monoacylglycerol lipase ABHD12	High	N	0.23	0.83	1.40
2	ACAD9	Acyl-CoA dehydrogenase family member 9, mitochondrial	High	Y	0.31	0.85	1.31
3	AIP	AH receptor-interacting protein;Peptidyl-prolyl cis-trans isomerase	High	Y	0.29	1.04	1.68
4	AKAP1	A-kinase anchor protein 1, mitochondrial	High	Y	0.08	0.74	1.75
5	ALDH6A1	Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial	High	N	0.16	1.07	1.75
6	ALDH9A1	4-trimethylaminobutyraldehyde dehydrogenase	High	Y	0.63	1.95	3.15
7	ASMTL	N -acetylserotonin O-methyltransferase-like protein	High	N	0.13	0.80	1.61
8	ATG4B	Cysteine protease ATG4B	High	N	0.00	0.50	1.29
9	ATP13A1	Probable cation-transporting ATPase 13A1	High	N	0.04	0.82	6.70
10	ATP6V1A	V-type proton ATPase catalytic subunit A	High	Y	0.15	1.00	1.95
11	BAG5	BAG family molecular chaperone regulator 5	High	N	0.13	0.91	1.89
12	BID	BH3-interacting domain death agonist;BH3-interacting domain death agonist p15;BH3-interacting domain death agonist p13;BH3-interacting domain death agonist p11	High	N	0.28	0.81	1.52
13	$\begin{array}{\|l\|} \hline \text { BOLA2;B } \\ \text { OLA2B;L } \\ \text { OC10106 } \\ 0252 \\ \hline \end{array}$	BolA-like protein 2	High	N	0.22	1.10	2.27
14	BTD	Biotinidase	High	Y	0.40	2.00	3.51
15	CAD	CAD protein;Glutamine-dependent carbamoyl-phosphate synthase;Aspartate carbamoyltransferase;Dihydroorotase	High	Y	0.18	0.80	1.53
16	CAPZB	F-actin-capping protein subunit beta	High	Y	0.01	0.65	1.21
17	CARM1	Histone-arginine methyltransferase CARM1	High	Y	0.09	0.80	1.87
18	CHMP1A	Charged multivesicular body protein 1a	High	N	0.72	1.95	2.27
19	CKAP4	Cytoskeleton-associated protein 4	High	Y	0.06	0.65	1.27
20	CPPED1	Calcineurin-like phosphoesterase domain-containing protein 1	High	Y	0.97	2.04	2.69
21	CRKL	Crk-like protein	High	Y	0.33	0.76	1.60
22	DFFA	DNA fragmentation factor subunit alpha	High	Y	0.26	1.18	2.19
23	DHX15	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15	High	Y	0.09	0.77	1.31
24	DNPEP	Aspartyl aminopeptidase	High	Y	0.06	0.64	1.74
25	DSP	Desmoplakin	High	N	0.09	0.63	1.37
26	DUT	Deoxyuridine 5-triphosphate nucleotidohydrolase, mitochondrial	High	Y	0.14	0.68	1.57
27	DYNLL1; DYNLL2	Dynein light chain 1, cytoplasmic; Dynein light chain 2, cytoplasmic	High	Y	0.11	0.62	1.94
28	EEA1	Early endosome antigen 1	High	Y	0.29	0.95	1.35

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
29	ELAC2	Zinc phosphodiesterase ELAC protein 2	High	Y	0.13	0.71	1.36
30	EPB41L5	Band 4.1-like protein 5	High	N	0.12	0.93	1.45
31	ESYT1	Extended synaptotagmin-1	High	Y	0.09	0.65	1.33
32	EXOSC6	Exosome complex component MTR3	High	Y	0.10	0.87	2.31
33	FAM120A	Constitutive coactivator of PPAR-gamma-like protein 1	High	Y	0.08	0.78	1.68
34	FAM203A	Protein FAM203A	High	Y	0.35	1.53	2.46
35	FAM83H	Protein FAM83H	High	N	0.00	0.83	1.54
36	FXR1	Fragile X mental retardation syndrome-related protein 1	High	Y	0.06	0.91	2.10
37	GAK	Cyclin-G-associated kinase	High	N	0.03	0.56	1.52
38	GEMIN5	Gem-associated protein 5	High	Y	0.01	0.60	1.43
39	GLOD4	Glyoxalase domain-containing protein 4	High	Y	0.07	0.67	1.70
40	GNA13	Guanine nucleotide-binding protein subunit alpha-13	High	N	0.14	0.93	1.20
41	GOLGA2	Golgin subfamily A member 2	High	Y	0.04	0.64	1.76
42	GREB1	Protein GREB1	High	N	0.09	0.75	2.27
43	GSR	Glutathione reductase, mitochondrial	High	N	0.17	0.84	1.56
44	GSTM3	Glutathione S-transferase Mu 3	High	Y	-0.01	0.48	0.94
45	HAT1	Histone acetyltransferase type B catalytic subunit	High	Y	0.12	1.03	2.17
46	HCFC1	Host cell factor 1;HCF N-terminal chain 1;HCF N-terminal chain 2;HCF N-terminal chain 3;HCF N-terminal chain 4;HCF N-terminal chain 5;HCF N-terminal chain 6;HCF C-terminal chain 1 ;HCF C-terminal chain 2;HCF C-terminal chain 3 ;HCF C-terminal chain 4;HCF C-terminal chain 5;HCF C-terminal chain 6	High	Y	0.05	0.68	1.77
47	HDHD3	Haloacid dehalogenase-like hydrolase domain-containing protein 3	High	N	0.37	1.44	1.58
48	HMOX2	Heme oxygenase 2	High	Y	0.21	1.11	2.09
49	HSPB1	Heat shock protein beta-1	High	Y	-0.01	0.50	1.58
50	IDE	Insulin-degrading enzyme	High	N	0.09	0.89	1.21
51	INPP4B	Type II inositol 3,4-bisphosphate 4-phosphatase	High	N	0.05	0.47	1.45
52	IPO5	Importin-5	High	Y	0.13	0.62	1.02
53	IRAK1	Interleukin-1 receptor-associated kinase 1	High	N	0.35	1.38	1.40
54	ITGB4	Integrin beta-4	High	N	0.08	0.60	1.17
55	ITPK1	Inositol-tetrakisphosphate 1-kinase	High	N	-0.02	0.76	2.11
56	KDM3B	Lysine-specific demethylase 3B	High	Y	0.26	1.12	2.11
57	KEAP1	Kelch-like ECH-associated protein 1	High	Y	2.47	3.40	5.28
58	KHSRP	Far upstream element-binding protein 2	High	Y	0.20	0.78	1.35
59	LANCL2	LanC-like protein 2	High	Y	0.24	0.88	1.92
60	LPCAT1	Lysophosphatidylcholine acyltransferase 1	High	N	0.12	0.60	1.44
61	LPP	Lipoma-preferred partner	High	N	NaN	0.57	0.94
62	MCMBP	Mini-chromosome maintenance complex-binding protein	High	Y	0.07	0.73	2.09
63	MIF	Macrophage migration inhibitory factor	High	Y	2.89	3.24	2.93
64	MMS19	MMS19 nucleotide excision repair protein homolog	High	Y	0.09	0.72	1.73
65	MRPL39	39S ribosomal protein L39, mitochondrial	High	Y	0.36	0.89	1.54
66	MTCH2	Mitochondrial carrier homolog 2	High	Y	0.43	1.14	1.66
67	MTHFD1L	Monofunctional C1-tetrahydrofolate synthase, mitochondrial	High	Y	0.03	0.71	1.53

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
68	MYH14	Myosin-14	High	N	0.22	1.22	2.28
69	NADK2	NAD kinase 2, mitochondrial	High	Y	0.52	1.43	2.39
70	NCAPD2	Condensin complex subunit 1	High	Y	0.11	1.01	1.80
71	NPEPL1	Probable aminopeptidase NPEPL1	High	N	0.27	1.24	2.29
72	NT5DC1	5-nucleotidase domain-containing protein 1	High	N	0.23	0.96	1.67
73	NUDCD1	NudC domain-containing protein 1	High	Y	0.07	0.71	1.59
74	NUP155	Nuclear pore complex protein Nup155	High	Y	0.06	0.86	1.57
75	NUP54	Nucleoporin p54	High	Y	0.03	0.96	2.58
76	OGFR	Opioid growth factor receptor	High	Y	0.04	0.74	1.58
77	PCYT1A; PCYT1B	Choline-phosphate cytidylyltransferase A;Choline-phosphate cytidylyltransferase B	High	Y	0.02	0.79	1.74
78	PES1	Pescadillo homolog	High	N	0.25	0.99	1.95
79	PEX11B	Peroxisomal membrane protein 11B	High	N	0.07	0.78	1.50
80	PFAS	Phosphoribosylformylglycinamidine synthase	High	Y	-0.01	0.63	1.06
81	PGLS	6-phosphogluconolactonase	High	Y	0.07	1.04	1.78
82	PHGDH	D-3-phosphoglycerate dehydrogenase	High	N	0.08	0.48	1.08
83	PLCG1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	High	Y	0.05	0.64	1.63
84	PLIN3	Perilipin-3	High	Y	0.06	0.75	1.72
85	PPM1G	Protein phosphatase 1G	High	Y	0.03	0.57	1.43
86	PREP	Prolyl endopeptidase	High	Y	0.11	0.76	1.94
87	PRKRA	Interferon-inducible double stranded RNA-dependent protein kinase activator A	High	N	0.20	0.78	1.33
88	PRMT3	Protein arginine N-methyltransferase 3	High	Y	0.11	0.84	1.56
89	PSMD9	26S proteasome non-ATPase regulatory subunit 9	High	Y	0.04	0.80	2.21
90	PSME2	Proteasome activator complex subunit 2	High	Y	0.10	0.81	1.75
91	PTGES3	Prostaglandin E synthase 3	High	Y	0.09	0.62	1.36
92	PTPN1	Tyrosine-protein phosphatase non-receptor type 1;Tyrosineprotein phosphatase non-receptor type	High	Y	0.16	0.85	1.36
93	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	High	Y	0.16	0.87	1.72
94	PUS1	tRNA pseudouridine synthase;tRNA pseudouridine synthase A, mitochondrial	High	N	0.11	0.80	1.30
95	PXN	Paxillin	High	Y	-0.04	0.59	1.09
96	RANBP6	Ran-binding protein 6	High	Y	0.39	1.24	2.11
97	RELA	Transcription factor p65	High	Y	0.25	1.01	1.21
98	RNF114	RING finger protein 114	High	N	0.21	0.84	1.50
99	RNPEP	Aminopeptidase B	High	Y	0.14	0.74	1.25
100	RPS6KA1	Ribosomal protein S6 kinase alpha-1;Ribosomal protein S6 kinase	High	Y	-0.01	0.86	1.88
101	RPS6KA3	Ribosomal protein S6 kinase alpha-3	High	Y	0.00	0.57	2.14
102	RTFDC1	Protein RTF2 homolog	High	N	-0.02	0.57	1.57
103	RTN3	Reticulon-3	High	Y	0.17	0.99	1.50
104	RUFY1	RUN and FYVE domain-containing protein 1	High	Y	0.02	0.84	1.37
105	S100A14	Protein S100-A14	High	N	0.20	0.65	1.47
106	SEC63	Translocation protein SEC63 homolog	High	Y	0.20	0.89	1.55
107	SFN	14-3-3 protein sigma	High	Y	0.04	0.54	1.09
108	SH3GL1	Endophilin-A2	High	N	0.18	0.93	1.72

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
109	SPTLC1	Serine palmitoyltransferase 1	High	N	0.21	0.64	1.18
110	SQSTM1	Sequestosome-1	High	Y	0.06	0.80	1.67
111	STAT1	Signal transducer and activator of transcription 1-alpha/beta	High	Y	0.02	0.63	1.58
112	STAT3	Signal transducer and activator of transcription 3	High	Y	0.12	0.74	1.54
113	STK3	Serine/threonine-protein kinase 3;Serine/threonine-protein kinase 3 36kDa subunit;Serine/threonine-protein kinase 3 20kDa subunit	High	Y	0.37	1.91	3.52
114	STK4	Serine/threonine-protein kinase 4;Serine/threonine-protein kinase 437 kDa subunit;Serine/threonine-protein kinase 4 18kDa subunit	High	Y	0.49	2.02	2.96
115	SUGT1	Suppressor of G2 allele of SKP1 homolog	High	Y	0.44	1.07	2.15
116	TBC1D15	TBC1 domain family member 15	High	Y	0.02	0.70	1.41
117	TCF25	Transcription factor 25	High	N	0.19	0.74	1.54
118	THNSL1	Threonine synthase-like 1	High	Y	0.14	0.98	1.92
119	TIGAR	Fructose-2,6-bisphosphatase TIGAR	High	Y	0.10	0.88	2.23
120	TMPO	Lamina-associated polypeptide 2, isoform alpha;Thymopoietin;Thymopentin	High	Y	0.27	0.74	1.40
121	$\begin{array}{\|l} \hline \text { TNKS1BP } \\ 1 \end{array}$	182 kDa tankyrase-1-binding protein	High	Y	-0.01	0.56	1.40
122	TRIM33	E3 ubiquitin-protein ligase TRIM33	High	N	-0.02	0.62	1.32
123	TXLNG	Gamma-taxilin	High	Y	-0.06	0.70	1.56
124	USP10	Ubiquitin carboxyl-terminal hydrolase 10	High	Y	0.25	0.97	1.95
125	USP7	Ubiquitin carboxyl-terminal hydrolase 7;Ubiquitin carboxylterminal hydrolase	High	Y	0.04	0.57	1.45
126	VDAC2	Voltage-dependent anion-selective channel protein 2	High	Y	0.20	0.87	1.63
127	VDAC3	Voltage-dependent anion-selective channel protein 3	High	Y	0.27	1.09	2.24
128	WDR77	Methylosome protein 50	High	Y	0.14	0.75	1.33
129	XPO5	Exportin-5	High	Y	0.10	0.61	1.42
130	ADAR	Double-stranded RNA-specific adenosine deaminase	Medium	Y	0.18	0.53	1.14
131	ADRM1	Proteasomal ubiquitin receptor ADRM1	Medium	Y	0.08	0.71	1.50
132	AGAP3	Arf-GAP with GTPase, ANK repeat and PH domaincontaining protein 3	Medium	N	-0.20	0.58	NaN
133	AHCY	Adenosylhomocysteinase	Medium	Y	-0.01	0.41	1.03
134	AHNAK	Neuroblast differentiation-associated protein AHNAK	Medium	N	-0.08	0.46	0.87
135	AIM1	Absent in melanoma 1 protein	Medium	N	0.30	1.16	2.26
136	AIMP2	Aminoacyl tRNA synthase complex-interacting multifunctional protein 2	Medium	Y	0.04	0.54	1.33
137	ANKHD1; ANKRD1 7	Ankyrin repeat and KH domain-containing protein 1;Ankyrin repeat domain-containing protein 17	Medium	N	-0.21	0.45	1.14
138	AP4E1	AP-4 complex subunit epsilon-1	Medium	N	0.18	1.01	-0.44
139	ARAF	Serine/threonine-protein kinase A-Raf	Medium	N	0.11	0.74	1.30
140	ASNS	Asparagine synthetase [glutamine-hydrolyzing]	Medium	Y	0.03	0.39	1.17
141	$\begin{aligned} & \text { ASPSCR } \\ & 1 \end{aligned}$	Tether containing UBX domain for GLUT4	Medium	N	0.22	1.16	NaN
142	ATXN2L	Ataxin-2-like protein	Medium	Y	0.04	0.50	1.29
143	BAG3	BAG family molecular chaperone regulator 3	Medium	Y	0.00	0.48	1.37
144	BAG6	Large proline-rich protein BAG6	Medium	Y	0.08	0.35	0.97
145	BAX	Apoptosis regulator BAX	Medium	N	-0.01	0.57	1.51
146	BRAT1	BRCA1-associated ATM activator 1	Medium	N	0.02	0.29	1.25

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
147	CARS	Cysteine--tRNA ligase, cytoplasmic	Medium	Y	0.15	0.87	1.88
148	CASP2	Caspase-2;Caspase-2 subunit p18;Caspase-2 subunit p13;Caspase-2 subunit p12	Medium	N	-0.11	0.72	2.10
149	CCDC6	Coiled-coil domain-containing protein 6	Medium	N	0.12	0.74	1.46
150	CDK2	Cyclin-dependent kinase 2	Medium	N	0.22	0.77	1.22
151	CLN3	Battenin	Medium	N	0.29	0.88	1.79
152	CPT1A	Carnitine O-palmitoyltransferase 1, liver isoform	Medium	Y	0.08	0.52	1.43
153	CTSB	Cathepsin B;Cathepsin B light chain;Cathepsin B heavy chain	Medium	Y	0.29	0.74	1.13
154	CTSC	Dipeptidyl peptidase 1;Dipeptidyl peptidase 1 exclusion domain chain;Dipeptidyl peptidase 1 heavy chain;Dipeptidyl peptidase 1 light chain	Medium	Y	0.10	0.88	NaN
155	CTTN	Src substrate cortactin	Medium	Y	0.02	0.28	0.99
156	CYFIP1	Cytoplasmic FMR1-interacting protein 1	Medium	N	0.14	0.60	1.24
157	DCTPP1	dCTP pyrophosphatase 1	Medium	N	0.21	0.13	0.81
158	$\begin{aligned} & \text { DDX3X;D } \\ & \text { DX3Y } \end{aligned}$	ATP-dependent RNA helicase DDX3X;ATP-dependent RNA helicase DDX3Y	Medium	N	-0.02	0.33	0.81
159	DIAPH1	Protein diaphanous homolog 1	Medium	Y	0.08	0.45	0.96
160	DNM1L	Dynamin-1-like protein	Medium	Y	-0.15	0.21	0.83
161	DSTN	Destrin	Medium	Y	0.00	0.31	0.95
162	EDC4	Enhancer of mRNA-decapping protein 4	Medium	Y	0.00	0.42	0.92
163	EIF3G	Eukaryotic translation initiation factor 3 subunit G	Medium	Y	-0.19	0.30	0.74
164	EPRS	Bifunctional glutamate/proline--tRNA ligase;Glutamate--tRNA ligase;Proline--tRNA ligase	Medium	Y	-0.03	0.30	0.91
165	EPS8L2	Epidermal growth factor receptor kinase substrate 8-like protein 2	Medium	Y	-0.05	0.49	1.26
166	FASN	Fatty acid synthase;[Acyl-carrier-protein] S-acetyltransferase;[Acyl-carrier-protein] S-malonyltransferase;3-oxoacyl-[acyl-carrier-protein] synthase;3-oxoacyl-[acyl-carrier-protein] reductase;3-hydroxyacyl-[acyl-carrier-protein] dehydratase;Enoyl-[acyl-carrier-protein] reductase;Oleoyl-[acyl-carrier-protein] hydrolase	Medium	Y	0.06	0.50	0.82
167	FBXO22	F-box only protein 22	Medium	N	0.05	0.95	NaN
168	FLII	Protein flightless-1 homolog	Medium	Y	-0.04	0.30	1.00
169	FMR1	Fragile X mental retardation protein 1	Medium	Y	0.00	1.28	2.04
170	FXR2	Fragile X mental retardation syndrome-related protein 2	Medium	Y	0.35	1.04	2.07
171	GARS	Glycine--tRNA ligase	Medium	Y	0.01	0.45	1.03
172	GART	Trifunctional purine biosynthetic protein adenosine-3;Phosphoribosylamine--glycine ligase;Phosphoribosylformylglycinamidine cycloligase;Phosphoribosylglycinamide formyltransferase	Medium	Y	-0.02	0.27	0.67
173	GCLC	Glutamate--cysteine ligase catalytic subunit	Medium	N	0.67	1.91	2.10
174	GFPT1	Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1	Medium	Y	0.08	0.66	1.34
175	GMPPB	Mannose-1-phosphate guanyltransferase beta	Medium	N	0.14	0.44	1.09
176	GMPS	GMP synthase [glutamine-hydrolyzing]	Medium	Y	-0.07	0.39	0.93
177	GNB2	Guanine nucleotide-binding protein $G(I) / G(S) / G(T)$ subunit beta-2	Medium	N	0.06	0.43	1.12
178	GRPEL1	GrpE protein homolog 1, mitochondrial	Medium	N	-0.03	0.30	0.66
179	GSPT1	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A	Medium	N	0.07	0.46	1.17
180	HCCS	Cytochrome c-type heme lyase	Medium	Y	0.12	1.00	2.07
181	HDGF	Hepatoma-derived growth factor	Medium	Y	0.07	0.36	1.58

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
182	HDLBP	Vigilin	Medium	N	0.01	0.30	0.71
183	HEATR6	HEAT repeat-containing protein 6	Medium	N	-0.02	0.31	0.79
184	HECTD1	E3 ubiquitin-protein ligase HECTD1	Medium	Y	-0.11	0.35	1.22
185	HNRNPF	Heterogeneous nuclear ribonucleoprotein F;Heterogeneous nuclear ribonucleoprotein F , N -terminally processed	Medium	Y	0.04	0.65	1.34
186	HNRNPK	Heterogeneous nuclear ribonucleoprotein K	Medium	N	-0.03	0.37	0.78
187	$\begin{aligned} & \hline \text { HNRNPU } \\ & \text { L2;hCG- } \\ & 2044799 \\ & \hline \end{aligned}$	Heterogeneous nuclear ribonucleoprotein U-like protein 2	Medium	N	0.15	0.48	1.08
188	HPRT1	Hypoxanthine-guanine phosphoribosyltransferase	Medium	Y	-0.05	0.32	1.04
189	$\begin{array}{\|l\|} \hline \text { HSD17B1 } \\ 0 \\ \hline \end{array}$	3-hydroxyacyl-CoA dehydrogenase type-2	Medium	Y	0.05	0.47	1.15
190	HSDL1	Inactive hydroxysteroid dehydrogenase-like protein 1	Medium	N	0.04	0.48	1.02
191	HSPBP1	Hsp70-binding protein 1	Medium	Y	0.01	0.26	2.03
192	HSPH1	Heat shock protein 105 kDa	Medium	Y	-0.02	0.20	0.70
193	HUWE1	E3 ubiquitin-protein ligase HUWE1	Medium	Y	0.01	0.43	1.17
194	IMPDH2	Inosine-5-monophosphate dehydrogenase 2	Medium	Y	0.08	0.36	0.76
195	INF2	Inverted formin-2	Medium	Y	0.07	0.39	0.83
196	INPPL1	Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2	Medium	N	0.17	0.70	1.27
197	ISOC2	Isochorismatase domain-containing protein 2, mitochondrial	Medium	Y	0.07	0.56	1.77
198	KIAA1598	Shootin-1	Medium	N	-0.06	0.45	1.37
199	KLC1	Kinesin light chain 1	Medium	Y	0.03	0.52	1.37
200	KTN1	Kinectin	Medium	N	0.05	0.37	0.93
201	LACTB	Serine beta-lactamase-like protein LACTB, mitochondrial	Medium	Y	0.35	1.04	1.66
202	LARP1	La-related protein 1	Medium	Y	0.05	0.52	1.03
203	LARP4	La-related protein 4	Medium	Y	-0.16	0.14	1.01
204	LARP4B	La-related protein 4B	Medium	Y	0.09	0.41	1.00
205	LCMT1	Leucine carboxyl methyltransferase 1	Medium	Y	0.09	1.09	NaN
206	LGALS1	Galectin-1	Medium	Y	0.02	0.40	1.00
207	LRBA	Lipopolysaccharide-responsive and beige-like anchor protein	Medium	N	-0.09	0.25	0.90
208	$\begin{array}{\|l} \hline \text { MACROD } \\ 1 \end{array}$	O-acetyl-ADP-ribose deacetylase MACROD1	Medium	N	-0.06	0.70	1.29
209	MAVS	Mitochondrial antiviral-signaling protein	Medium	Y	0.06	0.54	1.33
210	MCCC2	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial	Medium	N	-0.01	0.34	0.83
211	MCM3	DNA replication licensing factor MCM3	Medium	Y	0.01	0.39	1.14
212	MEPCE	7SK snRNA methylphosphate capping enzyme	Medium	N	-0.11	0.49	1.68
213	MTA2	Metastasis-associated protein MTA2	Medium	Y	0.21	0.83	1.14
214	MVD	Diphosphomevalonate decarboxylase	Medium	N	0.12	0.74	1.90
215	MYH9	Myosin-9	Medium	Y	-0.05	0.24	0.90
216	MYL6	Myosin light polypeptide 6	Medium	Y	-0.09	0.31	1.18
217	NCAPH	Condensin complex subunit 2	Medium	Y	0.34	0.63	1.81
218	NFKB2	Nuclear factor NF-kappa-B p100 subunit;Nuclear factor NF-kappa-B p52 subunit	Medium	Y	0.44	0.66	1.37
219	NONO	Non-POU domain-containing octamer-binding protein	Medium	Y	0.03	0.22	0.87
220	$\begin{aligned} & \text { NR2F2;N } \\ & \text { R2F1 } \end{aligned}$	COUP transcription factor 2;COUP transcription factor 1	Medium	Y	0.03	0.77	1.34
221	NUDC	Nuclear migration protein nudC	Medium	Y	0.00	0.39	1.16

	Gene names	Protein names	Confidence	Conserved	$\log _{2} \mathbf{Q S}$		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
222	OTUB1	Ubiquitin thioesterase OTUB1	Medium	N	-0.03	0.39	1.37
223	OTUD6B	OTU domain-containing protein 6B	Medium	Y	-0.11	0.43	1.47
224	$\begin{array}{\|l\|} \hline \text { PAFAH1 } \\ \text { B2 } \\ \hline \end{array}$	Platelet-activating factor acetylhydrolase IB subunit beta	Medium	N	0.02	0.40	0.78
225	PCBP1	Poly(rC)-binding protein 1	Medium	Y	-0.02	0.53	1.57
226	PCBP2	Poly(rC)-binding protein 2	Medium	Y	0.11	0.56	1.11
227	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase;Protein-L-isoaspartate Omethyltransferase	Medium	Y	0.02	0.54	1.54
228	PDCD6IP	Programmed cell death 6-interacting protein	Medium	Y	-0.09	0.23	0.86
229	PDE12	2,5-phosphodiesterase 12	Medium	Y	0.49	0.74	1.48
230	PGAM5	Serine/threonine-protein phosphatase PGAM5, mitochondrial	Medium	N	0.21	0.69	1.10
231	PGP	Phosphoglycolate phosphatase	Medium	N	-0.06	0.17	0.74
232	PGPEP1	Pyroglutamyl-peptidase 1	Medium	Y	-0.09	0.42	1.48
233	PML	Protein PML	Medium	Y	0.24	0.67	0.75
234	PMPCB	Mitochondrial-processing peptidase subunit beta	Medium	N	0.20	0.65	1.07
235	POP1	Ribonucleases P/MRP protein subunit POP1	Medium	N	0.30	-0.03	1.40
236	PPME1	Protein phosphatase methylesterase 1	Medium	Y	-0.07	0.22	0.63
237	PPP1R3D	Protein phosphatase 1 regulatory subunit 3D	Medium	N	0.15	0.79	NaN
238	PPP2R2A	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	Medium	Y	-0.01	0.75	1.63
239	PPP6R3	Serine/threonine-protein phosphatase 6 regulatory subunit 3	Medium	Y	-0.11	0.22	0.76
240	PREX1	Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein	Medium	N	0.04	0.63	1.45
241	PRKDC	DNA-dependent protein kinase catalytic subunit	Medium	Y	-0.13	0.56	1.11
242	PRMT1	Protein arginine N-methyltransferase 1	Medium	Y	0.01	0.47	1.22
243	PROSC	Proline synthase co-transcribed bacterial homolog protein	Medium	N	0.26	1.26	NaN
244	PRRC2C	Protein PRRC2C	Medium	Y	-0.06	0.31	0.91
245	PSME1	Proteasome activator complex subunit 1	Medium	N	0.04	0.36	0.73
246	PSMG1	Proteasome assembly chaperone 1	Medium	N	0.03	0.38	1.02
247	PYGB	Glycogen phosphorylase, brain form	Medium	Y	-0.07	0.36	0.73
248	QARS	Glutamine--tRNA ligase	Medium	Y	-0.10	0.23	0.90
249	RABL6	Rab-like protein 6	Medium	N	-0.07	0.54	1.09
250	RARS	Arginine--tRNA ligase, cytoplasmic	Medium	Y	-0.10	0.33	0.96
251	$\begin{array}{\|l\|} \hline \text { RBBP7;R } \\ \text { BBP4 } \\ \hline \end{array}$	Histone-binding protein RBBP7;Histone-binding protein RBBP4	Medium	N	0.04	0.34	0.81
252	RCC2	Protein RCC2	Medium	Y	0.09	0.47	0.96
253	RNF14	E3 ubiquitin-protein ligase RNF14	Medium	N	0.04	0.67	NaN
254	RPN1	Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1	Medium	N	0.02	0.52	1.02
255	RPS6KB1	Ribosomal protein S6 kinase beta-1	Medium	N	0.00	0.14	0.70
256	RRBP1	Ribosome-binding protein 1	Medium	Y	0.05	0.46	1.00
257	RRM1	Ribonucleoside-diphosphate reductase large subunit	Medium	Y	-0.09	0.36	1.26
258	SCCPDH	Saccharopine dehydrogenase-like oxidoreductase	Medium	Y	0.10	1.28	NaN
259	SEC16A	Protein transport protein Sec16A	Medium	Y	0.00	0.36	1.03
260	SEC24C	Protein transport protein Sec24C	Medium	Y	0.00	0.49	1.33
261	SLC5A6	Sodium-dependent multivitamin transporter	Medium	N	0.05	0.57	0.91

	Gene names	Protein names	Confidence	Conserved	$\log _{2} \mathbf{Q S}$		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
262	SMC2	Structural maintenance of chromosomes protein 2	Medium	Y	-0.14	0.64	1.62
263	SPCS2	Signal peptidase complex subunit 2	Medium	N	0.18	0.91	1.47
264	SPTLC2	Serine palmitoyltransferase 2	Medium	Y	-0.02	0.46	1.21
265	SYNCRIP	Heterogeneous nuclear ribonucleoprotein Q	Medium	N	-0.09	0.38	0.95
266	TACC3	Transforming acidic coiled-coil-containing protein 3	Medium	Y	-0.23	0.19	1.00
267	TAGLN2	Transgelin-2	Medium	Y	0.03	0.40	0.89
268	TBC1D30	TBC1 domain family member 30	Medium	N	0.46	0.79	1.59
269	TBC1D9B	TBC1 domain family member 9B	Medium	N	0.01	0.94	NaN
270	TBCD	Tubulin-specific chaperone D	Medium	Y	0.09	0.38	0.97
271	TBL2	Transducin beta-like protein 2	Medium	N	0.15	0.54	1.24
272	THUMPD 1	THUMP domain-containing protein 1	Medium	N	0.11	0.85	1.38
273	$\begin{array}{\|l\|} \hline \text { TPM3;DK } \\ \text { FZp686J1 } \\ 372 \\ \hline \end{array}$	Tropomyosin alpha-3 chain	Medium	Y	-0.03	0.29	1.11
274	TRIM25	E3 ubiquitin/ISG15 ligase TRIM25	Medium	Y	-0.03	0.46	1.07
275	TRIP6	Thyroid receptor-interacting protein 6	Medium	N	-0.05	0.34	1.46
276	TTLL12	Tubulin--tyrosine ligase-like protein 12	Medium	N	-0.01	0.24	0.82
277	TXN	Thioredoxin	Medium	N	-0.02	0.05	0.74
278	TXNRD1	Thioredoxin reductase 1, cytoplasmic	Medium	Y	-0.93	0.05	0.43
279	UBA6	Ubiquitin-like modifier-activating enzyme 6	Medium	Y	-0.14	0.25	0.85
280	UBE2O	Ubiquitin-conjugating enzyme E2 O	Medium	Y	-0.17	0.28	0.78
281	UBR4	E3 ubiquitin-protein ligase UBR4	Medium	N	0.37	0.66	NaN
282	USP15	Ubiquitin carboxyl-terminal hydrolase 15	Medium	N	-0.30	0.16	0.89
283	USP32	Ubiquitin carboxyl-terminal hydrolase 32;Ubiquitin carboxylterminal hydrolase	Medium	N	0.13	0.63	1.29
284	USP47	Ubiquitin carboxyl-terminal hydrolase 47	Medium	N	0.23	0.73	1.26
285	USP5	Ubiquitin carboxyl-terminal hydrolase 5	Medium	Y	-0.03	0.30	0.87
286	USP9X	Probable ubiquitin carboxyl-terminal hydrolase FAF-X	Medium	N	0.05	0.26	0.93
287	VCPIP1	Deubiquitinating protein VCIP135	Medium	Y	-0.10	0.29	0.85
288	VDAC1	Voltage-dependent anion-selective channel protein 1	Medium	N	0.17	1.06	NaN
289	ZNF217	Zinc finger protein 217	Medium	N	0.00	0.58	1.46

2.4 Supporting Table S4. High- and medium- confidence targets of sulforaphane in the MDA-MB-231 cell line

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
1	ACO1	Cytoplasmic aconitate hydratase	High	N	0.04	0.68	1.73
2	AIMP2	Aminoacyl tRNA synthase complex-interacting multifunctional protein 2	High	Y	0.06	0.91	1.40
3	AIP	AH receptor-interacting protein;Peptidyl-prolyl cis-trans isomerase	High	Y	0.18	1.10	1.67
4	AKAP1	A-kinase anchor protein 1, mitochondrial	High	Y	-0.03	0.71	1.64
5	AKAP8L	A-kinase anchor protein 8-like	High	N	0.17	1.24	1.75
6	ALDH2	Aldehyde dehydrogenase, mitochondrial	High	N	1.43	2.72	3.62
7	ALDH9A1	4-trimethylaminobutyraldehyde dehydrogenase	High	Y	0.62	1.83	2.84

	Gene names	Protein names	Confidence	Conserved	$\log _{2} \mathbf{Q S}$		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
8	ANLN	Actin-binding protein anillin	High	N	-0.02	0.90	2.22
9	$\begin{array}{\|c\|} \hline \text { APOBEC } \\ \text { 3C } \\ \hline \end{array}$	DNA dC->dU-editing enzyme APOBEC-3C	High	N	1.51	4.30	5.13
10	$\begin{gathered} \hline \text { ARHGAP } \\ 29 \\ \hline \end{gathered}$	Rho GTPase-activating protein 29	High	N	0.05	0.81	2.13
11	ARL1	ADP-ribosylation factor-like protein 1	High	N	0.11	0.74	1.44
12	ATP6V1A	V-type proton ATPase catalytic subunit A	High	Y	0.23	1.22	2.21
13	BOD1L1	Biorientation of chromosomes in cell division protein 1-like 1	High	N	-0.13	0.88	2.00
14	CAPZB	F-actin-capping protein subunit beta	High	Y	0.00	0.83	1.50
15	CARM1	Histone-arginine methyltransferase CARM1	High	Y	0.14	0.79	2.52
16	CARS	Cysteine--tRNA ligase, cytoplasmic	High	Y	0.14	1.01	1.72
17	CAST	Calpastatin	High	N	-0.31	0.73	1.74
18	$\begin{array}{\|c\|} \hline \text { CDK3;CD } \\ \text { K2 } \\ \hline \end{array}$	Cyclin-dependent kinase 3	High	N	0.22	1.21	1.95
19	$\begin{array}{\|c} \hline \text { CDKN2AI } \\ \mathrm{P} \end{array}$	CDKN2A-interacting protein	High	N	-0.07	0.88	1.50
20	CPPED1	Calcineurin-like phosphoesterase domain-containing protein 1	High	Y	0.88	2.65	3.08
21	CPSF3	Cleavage and polyadenylation specificity factor subunit 3	High	N	-0.04	0.96	1.38
22	CPT1A	Carnitine O-palmitoyltransferase 1, liver isoform	High	Y	-0.02	0.65	1.30
23	CTSZ	Cathepsin Z	High	N	-0.32	0.78	2.18
24	DEGS1	Sphingolipid delta(4)-desaturase DES1	High	N	0.43	1.72	2.61
25	DFFA	DNA fragmentation factor subunit alpha	High	Y	0.14	1.09	2.25
26	DFNA5	Non-syndromic hearing impairment protein 5	High	N	0.23	1.59	3.05
27	DLAT	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	High	N	0.21	0.93	1.73
28	DLGAP5	Disks large-associated protein 5	High	N	0.04	0.99	2.08
29	DNMBP	Dynamin-binding protein	High	N	-0.07	0.84	1.87
30	$\begin{array}{\|c} \hline \text { DYNC1LI } \\ 1 \end{array}$	Cytoplasmic dynein 1 light intermediate chain 1	High	N	-0.13	0.98	1.26
31	DYNLL1; DYNLL2	Dynein light chain 1, cytoplasmic;Dynein light chain 2, cytoplasmic	High	Y	-0.01	0.67	1.66
32	EEA1	Early endosome antigen 1	High	Y	0.45	1.51	1.95
33	EGFR	Epidermal growth factor receptor	High	N	-0.01	0.68	1.56
34	EIF6	Eukaryotic translation initiation factor 6	High	N	-0.10	0.81	1.87
35	ESYT1	Extended synaptotagmin-1	High	Y	-0.01	0.67	1.36
36	EXOSC6	Exosome complex component MTR3	High	Y	0.11	0.92	2.36
37	FAM120A	Constitutive coactivator of PPAR-gamma-like protein 1	High	Y	-0.01	0.91	1.82
38	FAM203A	Protein FAM203A	High	Y	0.31	1.55	2.74
39	FNDC3B	Fibronectin type III domain-containing protein 3B	High	N	-0.04	0.80	1.60
40	FXR1	Fragile X mental retardation syndrome-related protein 1	High	Y	0.05	1.00	2.45
41	FXR2	Fragile X mental retardation syndrome-related protein 2	High	Y	0.07	0.94	2.74
42	GOLGA2	Golgin subfamily A member 2	High	Y	0.09	0.82	1.96
43	GSDMD	Gasdermin-D	High	N	0.26	1.37	2.90
44	$\begin{gathered} \text { GSPT1;G } \\ \text { SPT2 } \end{gathered}$	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A;Eukaryotic peptide chain release factor GTP-binding subunit ERF3B	High	N	0.06	0.75	1.47
45	HAT1	Histone acetyltransferase type B catalytic subunit	High	Y	-0.02	0.96	1.99
46	HCCS	Cytochrome c-type heme lyase	High	Y	0.15	1.05	2.00
47	HCFC1	Host cell factor 1; HCF N-terminal chain 1;HCF N-terminal	High	Y	-0.15	0.87	1.98

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
		chain 2;HCF N-terminal chain 3;HCF N-terminal chain 4;HCF N-terminal chain 5;HCF N-terminal chain 6;HCF C-terminal chain 1 ;HCF C-terminal chain 2 ;HCF C-terminal chain 3 ;HCF C-terminal chain 4;HCF C-terminal chain 5;HCF C-terminal chain 6					
48	HMOX2	Heme oxygenase 2	High	Y	0.36	1.02	2.04
49	KEAP1	Kelch-like ECH-associated protein 1	High	Y	2.41	3.85	5.88
50	KIAA1524	Protein CIP2A	High	N	0.13	0.89	1.85
51	KIF2C	Kinesin-like protein KIF2C	High	N	0.08	1.09	2.01
52	KLC1	Kinesin light chain 1	High	Y	0.14	0.77	1.63
53	LUZP1	Leucine zipper protein 1	High	N	0.12	1.10	2.40
54	MAP7D3	MAP7 domain-containing protein 3	High	N	0.14	0.63	1.61
55	MCMBP	Mini-chromosome maintenance complex-binding protein	High	Y	-0.01	0.87	2.33
56	MIF	Macrophage migration inhibitory factor	High	Y	2.57	2.82	2.64
57	MKI67	Antigen KI-67	High	N	0.02	0.79	2.47
58	MMS19	MMS19 nucleotide excision repair protein homolog	High	Y	0.07	0.79	1.85
59	MRPL39	395 ribosomal protein L39, mitochondrial	High	Y	0.17	1.05	2.22
60	MTCH2	Mitochondrial carrier homolog 2	High	Y	0.17	1.04	1.63
61	MTHFD1L	Monofunctional C1-tetrahydrofolate synthase, mitochondrial	High	Y	0.13	1.00	1.62
62	NADK2	NAD kinase 2, mitochondrial	High	Y	0.49	1.16	1.57
63	NCAPD2	Condensin complex subunit 1	High	Y	0.18	1.14	2.20
64	NCAPH	Condensin complex subunit 2	High	Y	0.12	0.81	2.02
65	NDUFS3	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial	High	N	0.23	0.92	2.03
66	NFKB2	Nuclear factor NF-kappa-B p100 subunit;Nuclear factor NF-kappa-B p52 subunit	High	Y	0.47	1.49	2.17
67	$\begin{gathered} \hline \text { NR2F2;N } \\ \text { R2F1 } \\ \hline \end{gathered}$	COUP transcription factor 2;COUP transcription factor 1	High	Y	-0.14	0.84	1.66
68	NR3C1	Glucocorticoid receptor	High	N	-0.05	0.94	1.97
69	NUP54	Nucleoporin p54	High	Y	0.20	0.99	2.20
70	OGFR	Opioid growth factor receptor	High	Y	0.01	1.01	2.19
71	OGT	UDP-N-acetylglucosamine--peptide Nacetylglucosaminyltransferase 110 kDa subunit	High	N	0.42	0.99	1.39
72	OSBPL3	Oxysterol-binding protein-related protein 3	High	N	-0.33	0.64	1.05
73	PALLD	Palladin	High	N	0.44	1.39	1.14
74	PGLS	6-phosphogluconolactonase	High	Y	0.11	0.98	1.90
75	PHF3	PHD finger protein 3	High	N	-0.12	0.82	2.11
76	PLCG1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	High	Y	0.00	0.96	1.92
77	PLIN3	Perilipin-3	High	Y	-0.04	0.78	2.05
78	PML	Protein PML	High	Y	0.07	1.26	2.48
79	PNPLA6	Neuropathy target esterase	High	N	0.01	0.68	0.94
80	POLRMT	DNA-directed RNA polymerase, mitochondrial	High	N	0.44	1.55	2.60
81	PPP2R2A	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	High	Y	0.29	1.21	2.32
82	PREP	Prolyl endopeptidase	High	Y	0.04	0.75	1.93
83	PSMD9	26S proteasome non-ATPase regulatory subunit 9	High	Y	0.11	0.97	2.08
84	PSME2	Proteasome activator complex subunit 2	High	Y	0.13	0.96	1.80
85	PTPN1	Tyrosine-protein phosphatase non-receptor type 1;Tyrosineprotein phosphatase non-receptor type	High	Y	0.14	0.90	1.51

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
86	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	High	Y	0.15	0.87	1.83
87	PXN	Paxillin	High	Y	0.08	0.75	1.83
88	RELA	Transcription factor p65	High	Y	0.15	1.29	1.82
89	RFTN1	Raftlin	High	N	0.08	0.70	2.01
90	RNPEP	Aminopeptidase B	High	Y	0.33	1.15	1.69
91	ROCK1	Rho-associated protein kinase 1	High	N	0.37	0.90	1.88
92	RPS6KA1	Ribosomal protein S6 kinase alpha-1;Ribosomal protein S6 kinase	High	Y	0.13	0.72	1.78
93	RPS6KA3	Ribosomal protein S6 kinase alpha-3	High	Y	0.03	0.80	2.33
94	RRM1	Ribonucleoside-diphosphate reductase large subunit	High	Y	0.17	0.65	1.69
95	RTN1	Reticulon-1	High	N	0.19	0.96	1.58
96	RTN3	Reticulon-3	High	Y	-0.07	1.13	1.86
97	RUFY1	RUN and FYVE domain-containing protein 1	High	Y	-0.01	0.93	1.95
98	SCCPDH	Saccharopine dehydrogenase-like oxidoreductase	High	Y	0.08	1.38	2.26
99	SEC16A	Protein transport protein Sec16A	High	Y	-0.23	0.74	1.94
100	SEC63	Translocation protein SEC63 homolog	High	Y	0.23	0.93	2.04
101	$\begin{array}{\|c\|} \hline \text { SERPINB } \\ 1 \end{array}$	Leukocyte elastase inhibitor	High	N	-0.13	0.72	1.71
102	SOGA2	Protein SOGA2	High	N	-0.12	0.72	1.97
103	SPATS2L	SPATS2-like protein	High	N	0.02	0.90	1.98
104	SPG20	Spartin	High	N	-0.18	0.70	1.89
105	STAT3	Signal transducer and activator of transcription 3	High	Y	0.05	0.90	1.86
106	STK3	Serine/threonine-protein kinase 3;Serine/threonine-protein kinase 3 36kDa subunit;Serine/threonine-protein kinase 3 20kDa subunit	High	Y	0.35	2.01	2.97
107	STK4	Serine/threonine-protein kinase 4;Serine/threonine-protein kinase 437 kDa subunit;Serine/threonine-protein kinase 4 18kDa subunit	High	Y	0.38	2.15	3.71
108	SUGT1	Suppressor of G2 allele of SKP1 homolog	High	Y	0.29	1.16	2.50
109	TACC1	Transforming acidic coiled-coil-containing protein 1	High	N	-0.11	0.66	1.75
110	TBC1D13	TBC1 domain family member 13	High	N	0.10	0.95	1.77
111	TBC1D4	TBC1 domain family member 4	High	N	0.00	0.61	1.84
112	THNSL1	Threonine synthase-like 1	High	Y	0.19	1.01	1.75
113	TMPO	Lamina-associated polypeptide 2, isoform alpha;Thymopoietin;Thymopentin	High	Y	0.00	0.96	1.87
114	$\begin{array}{\|c\|} \hline \text { TNKS1BP } \\ 1 \\ \hline \end{array}$	182 kDa tankyrase-1-binding protein	High	Y	-0.11	0.75	1.81
115	TNS3	Tensin-3	High	N	0.18	1.50	2.35
116	TPX2	Targeting protein for Xklp2	High	N	-0.08	0.70	2.17
117	USP10	Ubiquitin carboxyl-terminal hydrolase 10	High	Y	0.33	1.21	2.14
118	VDAC2	Voltage-dependent anion-selective channel protein 2	High	Y	-0.14	0.85	1.76
119	VDAC3	Voltage-dependent anion-selective channel protein 3	High	Y	0.00	1.17	2.34
120	YAP1	Yorkie homolog	High	N	0.19	0.84	1.64
121	ZNF185	Zinc finger protein 185	High	N	-0.18	0.75	2.27
122	AARS	Alanine--tRNA ligase, cytoplasmic	Medium	N	0.08	0.46	1.14
123	ABCB7	ATP-binding cassette sub-family B member 7, mitochondrial	Medium	N	-0.17	0.43	0.86
124	ABCF1	ATP-binding cassette sub-family F member 1	Medium	N	NaN	1.14	NaN
125	ACAD9	Acyl-CoA dehydrogenase family member 9 , mitochondrial	Medium	Y	0.19	0.56	1.45

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
126	ACIN1	Apoptotic chromatin condensation inducer in the nucleus	Medium	N	0.21	1.36	1.37
127	ACLY	ATP-citrate synthase	Medium	N	-0.20	0.40	1.26
128	ACOT9	Acyl-coenzyme A thioesterase 9, mitochondrial	Medium	N	0.00	0.28	0.71
129	ACSL3	Long-chain-fatty-acid--CoA ligase 3	Medium	N	-0.03	0.63	1.43
130	ADAR	Double-stranded RNA-specific adenosine deaminase	Medium	Y	0.11	0.43	1.10
131	ADRM1	Proteasomal ubiquitin receptor ADRM1	Medium	Y	-0.17	0.73	1.27
132	ADSS	Adenylosuccinate synthetase isozyme 2	Medium	N	0.15	0.59	1.32
133	AFAP1	Actin filament-associated protein 1	Medium	N	0.21	0.73	1.60
134	AGPAT9	Glycerol-3-phosphate acyltransferase 3	Medium	N	0.05	1.11	NaN
135	AHCY	Adenosylhomocysteinase	Medium	Y	0.44	0.90	1.58
136	AJUBA	LIM domain-containing protein ajuba	Medium	N	0.02	0.38	1.11
137	AKAP11	A-kinase anchor protein 11	Medium	N	0.05	1.15	NaN
138	AKAP13	A-kinase anchor protein 13	Medium	N	0.01	0.87	NaN
139	AKAP2	A-kinase anchor protein 2	Medium	N	-0.16	0.85	1.07
140	AKAP8	A-kinase anchor protein 8	Medium	N	-0.22	0.61	1.82
141	AMPD2	AMP deaminase 2	Medium	N	-0.32	0.69	1.37
142	ANAPC7	Anaphase-promoting complex subunit 7	Medium	N	0.18	1.11	2.38
143	AP2A1	AP-2 complex subunit alpha-1	Medium	N	0.03	1.11	0.70
144	ARAP1	Arf-GAP with Rho-GAP domain, ANK repeat and PH domaincontaining protein 1	Medium	N	-0.55	0.30	1.19
145	$\begin{array}{\|c\|} \hline \text { ARHGEF } \\ 28 \\ \hline \end{array}$	Rho guanine nucleotide exchange factor 28	Medium	N	0.16	0.66	0.78
146	ARMCX2	Armadillo repeat-containing X-linked protein 2	Medium	N	0.32	1.88	2.54
147	ASNS	Asparagine synthetase [glutamine-hydrolyzing]	Medium	Y	0.24	0.44	1.40
148	$\begin{aligned} & \text { ATAD3B; } \\ & \text { ATAD3A } \\ & \hline \end{aligned}$	ATPase family AAA domain-containing protein 3B;ATPase family AAA domain-containing protein 3A	Medium	N	0.12	1.26	NaN
149	ATP2A2	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	Medium	N	0.03	0.43	0.83
150	ATXN2	Ataxin-2	Medium	N	0.04	0.71	1.71
151	ATXN2L	Ataxin-2-like protein	Medium	Y	0.02	0.63	1.59
152	AXL	Tyrosine-protein kinase receptor UFO	Medium	N	0.36	0.52	1.57
153	BABAM1	BRISC and BRCA1-A complex member 1	Medium	N	0.01	0.52	1.28
154	BAG3	BAG family molecular chaperone regulator 3	Medium	Y	-0.08	0.59	1.72
155	BAG6	Large proline-rich protein BAG6	Medium	Y	-0.44	0.03	0.62
156	BCAR3	Breast cancer anti-estrogen resistance protein 3	Medium	N	-0.20	0.65	1.85
157	BLMH	Bleomycin hydrolase	Medium	N	0.02	0.54	1.28
158	BOLA2	BolA-like protein 2	Medium	N	0.31	1.53	NaN
159	BTD	Biotinidase	Medium	Y	0.08	2.25	NaN
160	BUB1B	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta	Medium	N	-0.15	0.72	NaN
161	CACYBP	Calcyclin-binding protein	Medium	N	0.27	0.14	0.74
162	CAD	CAD protein;Glutamine-dependent carbamoyl-phosphate synthase;Aspartate carbamoyltransferase;Dihydroorotase	Medium	Y	0.22	0.71	1.47
163	CAPRIN1	Caprin-1	Medium	N	-0.11	0.29	0.74
164	CBL	E3 ubiquitin-protein ligase CBL	Medium	N	-0.14	0.55	1.26
165	CDC27	Cell division cycle protein 27 homolog	Medium	N	-0.01	0.59	1.06
166	CEP170	Centrosomal protein of 170 kDa	Medium	N	-0.14	0.32	1.63

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
167	$\begin{array}{\|c\|} \hline \text { CHORDC } \\ 1 \\ \hline \end{array}$	Cysteine and histidine-rich domain-containing protein 1	Medium	N	-0.48	0.37	1.35
168	CIAPIN1	Anamorsin	Medium	N	-0.03	0.28	1.17
169	CKAP4	Cytoskeleton-associated protein 4	Medium	Y	-0.03	0.54	1.15
170	CKAP5	Cytoskeleton-associated protein 5	Medium	N	-0.17	0.64	1.19
171	CNN2	Calponin-2	Medium	N	-0.18	0.06	1.05
172	COPB1	Coatomer subunit beta	Medium	N	0.07	0.43	0.85
173	C0R01C	Coronin-1C;Coronin	Medium	N	-0.10	0.47	0.92
174	CPNE1	Copine-1	Medium	N	-0.01	0.28	0.82
175	CPOX	Coproporphyrinogen-III oxidase, mitochondrial	Medium	N	-0.04	0.60	1.00
176	$\begin{gathered} \hline \text { CREM;AT } \\ \text { F1;CREB } \\ 1 \\ \hline \end{gathered}$	Cyclic AMP-dependent transcription factor ATF-1;Cyclic AMP-responsive element-binding protein 1	Medium	N	0.01	0.95	1.92
177	CRKL	Crk-like protein	Medium	Y	0.37	1.14	1.83
178	CSTB	Cystatin-B	Medium	N	0.18	1.45	2.80
179	CTH	Cystathionine gamma-lyase	Medium	N	0.70	0.23	1.01
180	CTPS1	CTP synthase 1	Medium	N	0.15	0.57	0.89
181	CTSB	Cathepsin B;Cathepsin B light chain;Cathepsin B heavy chain	Medium	Y	-0.27	0.36	0.84
182	CTSC	Dipeptidyl peptidase 1;Dipeptidyl peptidase 1 exclusion domain chain;Dipeptidyl peptidase 1 heavy chain;Dipeptidyl peptidase 1 light chain	Medium	Y	0.09	0.70	2.71
183	CTTN	Src substrate cortactin	Medium	Y	-0.29	0.36	1.20
184	$\begin{gathered} \text { CYFIP1;C } \\ \text { YFIP2 } \end{gathered}$	Cytoplasmic FMR1-interacting protein 1;Cytoplasmic FMR1interacting protein 2	Medium	N	-0.06	0.50	0.97
185	DBN1	Drebrin	Medium	N	-0.11	0.41	1.26
186	DBNL	Drebrin-like protein	Medium	N	-0.19	0.61	1.31
187	DDX24	ATP-dependent RNA helicase DDX24	Medium	N	0.07	0.55	1.61
188	DDX47	Probable ATP-dependent RNA helicase DDX47	Medium	N	-0.15	0.36	1.43
189	DECR1	2,4-dienoyl-CoA reductase, mitochondrial	Medium	N	0.03	0.34	0.59
190	DEK	Protein DEK	Medium	N	-0.22	0.35	1.13
191	DENR	Density-regulated protein	Medium	N	-0.19	0.19	1.03
192	DHX15	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15	Medium	Y	0.09	0.67	0.96
193	DHX30	Putative ATP-dependent RNA helicase DHX30	Medium	N	0.01	0.44	1.26
194	DIAPH1	Protein diaphanous homolog 1	Medium	Y	-0.28	0.32	1.08
195	DIAPH3	Protein diaphanous homolog 3	Medium	N	-0.07	0.84	1.26
196	DID01	Death-inducer obliterator 1	Medium	N	-0.18	0.66	1.85
197	DLGAP4	Disks large-associated protein 4	Medium	N	-0.05	1.13	NaN
198	DNM1L	Dynamin-1-like protein	Medium	Y	-0.13	0.27	1.12
199	DNPEP	Aspartyl aminopeptidase	Medium	Y	-0.13	0.66	1.79
200	DPYSL2	Dihydropyrimidinase-related protein 2	Medium	N	-0.09	0.56	1.09
201	DSTN	Destrin	Medium	Y	-0.10	0.41	1.16
202	DUT	Deoxyuridine 5-triphosphate nucleotidohydrolase, mitochondrial	Medium	Y	0.29	0.76	1.42
203	EDC4	Enhancer of mRNA-decapping protein 4	Medium	Y	0.00	0.68	1.44
204	EFHD2	EF-hand domain-containing protein D2	Medium	N	-0.12	0.43	1.65
205	EIF3G	Eukaryotic translation initiation factor 3 subunit G	Medium	Y	-0.20	0.31	1.06

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
206	EIF5B	Eukaryotic translation initiation factor 5B	Medium	N	0.10	0.01	0.94
207	ELAC2	Zinc phosphodiesterase ELAC protein 2	Medium	Y	0.07	0.78	1.59
208	EPRS	Bifunctional glutamate/proline--tRNA ligase;Glutamate--tRNA ligase;Proline--tRNA ligase	Medium	Y	0.02	0.42	1.07
209	EPS8L2	Epidermal growth factor receptor kinase substrate 8-like protein 2	Medium	Y	0.09	0.68	1.59
210	ERCC6L	DNA excision repair protein ERCC-6-like	Medium	N	-0.07	0.54	1.81
211	EXOSC10	Exosome component 10	Medium	N	0.15	0.63	1.61
212	FAM129A	Protein Niban	Medium	N	-0.01	0.59	1.66
213	FASN	Fatty acid synthase;[Acyl-carrier-protein] S-acetyltransferase;[Acyl-carrier-protein] S-malonyltransferase;3-oxoacyl-[acyl-carrier-protein] synthase;3-oxoacyl-[acyl-carrier-protein] reductase;3-hydroxyacyl-[acyl-carrier-protein] dehydratase;Enoyl-[acyl-carrier-protein] reductase;Oleoyl-[acyl-carrier-protein] hydrolase	Medium	Y	0.14	0.63	0.98
214	FKBP8	Peptidyl-prolyl cis-trans isomerase FKBP8;Peptidyl-prolyl cistrans isomerase	Medium	N	-0.02	0.73	1.50
215	FLII	Protein flightless-1 homolog	Medium	Y	-0.01	0.41	1.35
216	FLNB	Filamin-B	Medium	N	-0.05	0.26	0.68
217	FMR1	Fragile X mental retardation protein 1	Medium	Y	0.09	1.07	NaN
218	FNBP1	Formin-binding protein 1	Medium	N	0.26	0.81	NaN
219	FRMD6	FERM domain-containing protein 6	Medium	N	-0.04	0.28	1.11
220	FTO	Alpha-ketoglutarate-dependent dioxygenase FTO	Medium	N	-0.10	0.41	1.64
221	GARS	Glycine--tRNA ligase	Medium	Y	0.13	0.48	1.12
222	GART	Trifunctional purine biosynthetic protein adenosine-3;Phosphoribosylamine--glycine ligase;Phosphoribosylformylglycinamidine cycloligase;Phosphoribosylglycinamide formyltransferase	Medium	Y	0.05	0.28	0.80
223	GBE1	1,4-alpha-glucan-branching enzyme	Medium	N	0.01	0.54	1.40
224	GEMIN5	Gem-associated protein 5	Medium	Y	0.06	0.54	1.32
225	GFPT1	Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1	Medium	Y	0.10	0.67	1.61
226	GLOD4	Glyoxalase domain-containing protein 4	Medium	Y	-0.02	0.70	1.78
227	GMPS	GMP synthase [glutamine-hydrolyzing]	Medium	Y	0.12	0.37	0.97
228	GNE	Bifunctional UDP-N-acetylglucosamine 2-epimerase/Nacetylmannosamine kinase;UDP-N-acetylglucosamine 2epimerase (hydrolyzing);N-acetylmannosamine kinase	Medium	N	-0.15	0.37	1.09
229	GPD2	Glycerol-3-phosphate dehydrogenase, mitochondrial	Medium	N	-0.13	0.24	0.79
230	GSTM3	Glutathione S-transferase Mu 3	Medium	Y	0.00	0.55	1.02
231	GTF2I	General transcription factor II-I	Medium	N	-0.32	0.35	0.96
232	HDAC1	Histone deacetylase 1	Medium	N	-0.13	0.43	0.87
233	HDGF	Hepatoma-derived growth factor	Medium	Y	-0.01	0.48	1.28
234	HEATR3	HEAT repeat-containing protein 3	Medium	N	0.21	1.33	2.85
235	HECTD1	E3 ubiquitin-protein ligase HECTD1	Medium	Y	0.14	0.50	0.96
236	HEXIM1	Protein HEXIM1	Medium	N	-0.30	0.51	1.48
237	HLA-A	HLA class I histocompatibility antigen, A-2 alpha chain;HLA class I histocompatibility antigen, A-69 alpha chain;HLA class I histocompatibility antigen, A-74 alpha chain;HLA class I histocompatibility antigen, A-68 alpha chain;HLA class I histocompatibility antigen, A-31 alpha chain;HLA class I histocompatibility antigen, A-32 alpha chain;HLA class I histocompatibility antigen, A-33 alpha chain;HLA class I histocompatibility antigen, A-29 alpha chain	Medium	N	-0.31	0.48	1.12

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
238	HLA-C	HLA class I histocompatibility antigen, Cw-12 alpha chain;HLA class I histocompatibility antigen, Cw-15 alpha chain;HLA class I histocompatibility antigen, Cw-16 alpha chain;HLA class I histocompatibility antigen, Cw-14 alpha chain;HLA class I histocompatibility antigen, Cw-8 alpha chain;HLA class I histocompatibility antigen, Cw-6 alpha chain;HLA class I histocompatibility antigen, Cw-4 alpha chain;HLA class I histocompatibility antigen, Cw-5 alpha chain;HLA class I histocompatibility antigen, $\mathrm{Cw}-18$ alpha chain	Medium	N	-0.22	0.75	1.37
239	HNRNPF	Heterogeneous nuclear ribonucleoprotein F;Heterogeneous nuclear ribonucleoprotein F , N -terminally processed	Medium	Y	0.00	0.56	1.13
240	$\begin{gathered} \text { HPCAL1; } \\ \text { HPCA } \end{gathered}$	Hippocalcin-like protein 1;Neuron-specific calcium-binding protein hippocalcin	Medium	N	0.01	0.47	1.32
241	HPRT1	Hypoxanthine-guanine phosphoribosyltransferase	Medium	Y	0.21	0.47	1.08
242	$\begin{array}{\|c\|} \hline \text { HSD17B1 } \\ 0 \end{array}$	3-hydroxyacyl-CoA dehydrogenase type-2	Medium	Y	0.08	0.71	1.49
243	HSPA4L	Heat shock 70 kDa protein 4L	Medium	N	0.10	0.34	0.85
244	HSPB1	Heat shock protein beta-1	Medium	Y	0.06	0.64	2.03
245	HSPBP1	Hsp70-binding protein 1	Medium	Y	0.16	0.57	1.62
246	HSPH1	Heat shock protein 105 kDa	Medium	Y	-0.01	0.26	0.81
247	HUWE1	E3 ubiquitin-protein ligase HUWE1	Medium	Y	0.10	0.54	1.20
248	IFI16	Gamma-interferon-inducible protein 16	Medium	N	-0.29	0.65	1.26
249	IFIT3	Interferon-induced protein with tetratricopeptide repeats 3	Medium	N	-0.01	0.59	1.31
250	IMPDH2	Inosine-5-monophosphate dehydrogenase 2	Medium	Y	0.09	0.40	1.01
251	INF2	Inverted formin-2	Medium	Y	-0.26	0.46	1.39
252	IPO4	Importin-4	Medium	N	0.31	0.34	0.82
253	IPO5	Importin-5	Medium	Y	0.16	0.63	1.21
254	ISOC2	Isochorismatase domain-containing protein 2, mitochondrial	Medium	Y	0.05	0.55	1.68
255	KDM3B	Lysine-specific demethylase 3B	Medium	Y	0.09	1.09	NaN
256	KHSRP	Far upstream element-binding protein 2	Medium	Y	-0.11	0.57	1.18
257	KIF20A	Kinesin-like protein KIF20A	Medium	N	-0.24	0.56	0.33
258	KIF4A	Chromosome-associated kinesin KIF4A	Medium	N	-0.25	0.66	1.42
259	KIFC1	Kinesin-like protein KIFC1	Medium	N	-0.28	-0.15	1.09
260	LACTB	Serine beta-lactamase-like protein LACTB, mitochondrial	Medium	Y	0.09	1.00	NaN
261	LANCL2	LanC-like protein 2	Medium	Y	0.18	1.09	NaN
262	LARP1	La-related protein 1	Medium	Y	0.02	0.71	1.78
263	LARP4	La-related protein 4	Medium	Y	0.08	0.45	1.71
264	LARP4B	La-related protein 4B	Medium	Y	-0.10	0.50	1.44
265	LCMT1	Leucine carboxyl methyltransferase 1	Medium	Y	0.16	1.26	3.20
266	LGALS1	Galectin-1	Medium	Y	-0.06	0.39	1.02
267	LIG1	DNA ligase 1;DNA ligase	Medium	N	-0.22	0.26	0.96
268	LPCAT2	Lysophosphatidylcholine acyltransferase 2	Medium	N	-0.02	0.60	1.07
269	LRRFIP1	Leucine-rich repeat flightless-interacting protein 1	Medium	N	-0.14	0.41	1.57
270	MAGED2	Melanoma-associated antigen D2	Medium	N	0.05	0.70	1.48
271	MALT1	Mucosa-associated lymphoid tissue lymphoma translocation protein 1	Medium	N	0.10	0.98	2.08
272	MAP1B	Microtubule-associated protein 1B;MAP1B heavy chain;MAP1 light chain LC1	Medium	N	-0.11	0.33	1.13
273	MAP1S	Microtubule-associated protein 1S;MAP1S heavy chain;MAP1S light chain	Medium	N	-0.13	0.80	1.09

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
274	MAP4	Microtubule-associated protein;Microtubule-associated protein 4	Medium	N	-0.18	0.47	1.50
275	MARCKS	Myristoylated alanine-rich C-kinase substrate	Medium	N	-0.01	0.29	1.05
276	MASTL	Serine/threonine-protein kinase greatwall	Medium	N	-0.01	0.70	NaN
277	MAVS	Mitochondrial antiviral-signaling protein	Medium	Y	-0.35	0.59	1.46
278	MCM3	DNA replication licensing factor MCM3	Medium	Y	-0.37	0.18	0.88
279	MICAL2	Protein-methionine sulfoxide oxidase MICAL2	Medium	N	-0.22	0.54	1.28
280	MPRIP	Myosin phosphatase Rho-interacting protein	Medium	N	-0.17	0.68	1.34
281	MSH2	DNA mismatch repair protein Msh2	Medium	N	-0.05	0.74	1.00
282	MTA2	Metastasis-associated protein MTA2	Medium	Y	-0.16	0.63	1.52
283	MYH9	Myosin-9	Medium	Y	-0.09	0.29	0.82
284	MYL6	Myosin light polypeptide 6	Medium	Y	-0.04	0.37	1.31
285	NASP	Nuclear autoantigenic sperm protein	Medium	N	-0.05	0.21	0.81
286	NBN	Nibrin	Medium	N	-0.20	0.71	1.87
287	NCAPG	Condensin complex subunit 3	Medium	N	-0.20	0.64	1.13
288	NCEH1	Neutral cholesterol ester hydrolase 1	Medium	N	0.09	0.46	1.06
289	NEDD4L	E3 ubiquitin-protein ligase NEDD4-like	Medium	N	0.24	0.68	1.53
290	NHLRC2	NHL repeat-containing protein 2	Medium	N	0.13	0.55	0.99
291	NKRF	NF-kappa-B-repressing factor	Medium	N	-0.21	0.11	1.02
292	NONO	Non-POU domain-containing octamer-binding protein	Medium	Y	-0.29	0.40	1.29
293	NOP58	Nucleolar protein 58	Medium	N	0.01	0.49	1.38
294	NPEPPS	Puromycin-sensitive aminopeptidase	Medium	N	-0.05	0.27	0.94
295	NRD1	Nardilysin	Medium	N	-0.04	0.51	1.15
296	NSUN2	tRNA (cytosine(34)-C(5))-methyltransferase	Medium	N	0.05	0.42	0.94
297	NUDC	Nuclear migration protein nudC	Medium	Y	0.03	0.40	1.26
298	NUDCD1	NudC domain-containing protein 1	Medium	Y	0.18	0.68	1.64
299	NUP153	Nuclear pore complex protein Nup153	Medium	N	-0.05	0.28	1.32
300	NUP155	Nuclear pore complex protein Nup155	Medium	Y	0.22	0.81	1.67
301	NUP93	Nuclear pore complex protein Nup93	Medium	N	0.45	0.71	0.44
302	OSBP	Oxysterol-binding protein 1	Medium	N	0.02	0.33	1.09
303	OTUD6B	OTU domain-containing protein 6B	Medium	Y	0.08	0.66	1.35
304	PABPC4	Polyadenylate-binding protein 4	Medium	N	0.00	0.66	0.93
305	PBK	Lymphokine-activated killer T-cell-originated protein kinase	Medium	N	-0.07	0.69	2.10
306	PCBP1	Poly(rC)-binding protein 1	Medium	Y	-0.05	0.69	1.81
307	PCBP2	Poly(rC)-binding protein 2	Medium	Y	-0.25	0.38	0.98
308	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase;Protein-L-isoaspartate Omethyltransferase	Medium	Y	0.07	0.67	1.90
309	$\begin{aligned} & \hline \text { PCYT1A; } \\ & \text { PCYT1B } \\ & \hline \end{aligned}$	Choline-phosphate cytidylyltransferase A;Choline-phosphate cytidylyltransferase B	Medium	Y	-0.09	0.94	2.15
310	PDCD6IP	Programmed cell death 6-interacting protein	Medium	Y	-0.04	0.35	1.01
311	PDE12	2,5-phosphodiesterase 12	Medium	Y	-0.03	0.54	1.07
312	PDS5A	Sister chromatid cohesion protein PDS5 homolog A	Medium	N	-0.26	0.55	0.91
313	PEPD	Xaa-Pro dipeptidase	Medium	N	-0.16	0.67	0.97
314	PFAS	Phosphoribosylformylglycinamidine synthase	Medium	Y	0.11	0.78	1.65

	Gene names	Protein names	Confidence	Conserved	$\mathrm{Log}_{2} \mathbf{Q S}$		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
315	PGPEP1	Pyroglutamyl-peptidase 1	Medium	Y	-0.11	0.40	1.62
316	PLEC	Plectin	Medium	N	-0.02	0.35	0.99
317	PLS3	Plastin-3	Medium	N	0.05	0.57	1.12
318	POLR2B	DNA-directed RNA polymerase;DNA-directed RNA polymerase II subunit RPB2	Medium	N	0.05	0.38	1.37
319	PPM1G	Protein phosphatase 1G	Medium	Y	0.11	0.65	1.70
320	PPME1	Protein phosphatase methylesterase 1	Medium	Y	-0.02	0.18	0.73
321	$\begin{gathered} \text { PPP1R12 } \\ \text { A } \\ \hline \end{gathered}$	Protein phosphatase 1 regulatory subunit 12A	Medium	N	-0.19	0.57	0.86
322	PPP1R18	Phostensin	Medium	N	-0.30	0.64	1.17
323	PPP2R5D	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform	Medium	N	0.12	0.63	1.28
324	PPP4R1	Serine/threonine-protein phosphatase 4 regulatory subunit 1	Medium	N	0.04	0.79	1.77
325	PPP6R3	Serine/threonine-protein phosphatase 6 regulatory subunit 3	Medium	Y	-0.09	0.36	1.27
326	PRKDC	DNA-dependent protein kinase catalytic subunit	Medium	Y	-0.16	0.72	1.17
327	PRMT1	Protein arginine N -methyltransferase 1	Medium	Y	-0.06	0.43	1.34
328	PRMT3	Protein arginine N-methyltransferase 3	Medium	Y	NaN	1.00	NaN
329	PRPF40A	Pre-mRNA-processing factor 40 homolog A	Medium	N	-0.29	0.29	0.76
330	PRRC2C	Protein PRRC2C	Medium	Y	-0.07	0.69	1.54
331	PTGES3	Prostaglandin E synthase 3	Medium	Y	0.11	0.72	1.97
332	PTPN12	Tyrosine-protein phosphatase non-receptor type 12	Medium	N	-0.31	0.64	1.61
333	PUM1	Pumilio homolog 1	Medium	N	-0.01	0.75	1.08
334	PYCR2	Pyrroline-5-carboxylate reductase 2	Medium	N	0.00	0.93	NaN
335	PYGB	Glycogen phosphorylase, brain form	Medium	Y	-0.16	0.50	0.86
336	QARS	Glutamine--tRNA ligase	Medium	Y	-0.06	0.48	1.06
337	RANBP3	Ran-binding protein 3	Medium	N	-0.19	0.38	1.38
338	RANBP6	Ran-binding protein 6	Medium	Y	NaN	1.09	NaN
339	RARS	Arginine--tRNA ligase, cytoplasmic	Medium	Y	0.01	0.51	1.04
340	RASA3	Ras GTPase-activating protein 3	Medium	N	0.04	0.96	NaN
341	RB1	Retinoblastoma-associated protein	Medium	N	-0.17	0.39	0.92
342	RBM25	RNA-binding protein 25	Medium	N	-0.15	0.43	1.11
343	RBPJ	Recombining binding protein suppressor of hairless	Medium	N	-0.05	0.79	1.37
344	RCC2	Protein RCC2	Medium	Y	-0.01	0.71	1.15
345	REEP5	Receptor expression-enhancing protein 5	Medium	N	0.00	0.30	0.74
346	RIN1	Ras and Rab interactor 1	Medium	N	0.12	1.14	0.74
347	RNMT	mRNA cap guanine-N7 methyltransferase	Medium	N	0.06	0.63	1.58
348	RPS6KA4	Ribosomal protein S6 kinase;Ribosomal protein S6 kinase alpha-4	Medium	N	0.53	1.40	NaN
349	RRBP1	Ribosome-binding protein 1	Medium	Y	-0.01	0.63	1.14
350	S100A4	Protein S100-A4	Medium	N	-0.66	0.75	0.17
351	SAFB	Scaffold attachment factor B1	Medium	N	-0.20	0.56	1.26
352	SAFB2	Scaffold attachment factor B2	Medium	N	-0.27	0.45	1.26
353	SCAF11	Protein SCAF11	Medium	N	-0.15	0.70	1.65
354	SEC24C	Protein transport protein Sec24C	Medium	Y	-0.05	0.69	1.20
355	SEC61B	Protein transport protein Sec61 subunit beta	Medium	N	0.04	0.11	1.77

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
356	SEPT9	Septin-9	Medium	N	-0.31	0.37	1.14
357	$\begin{array}{\|c\|} \hline \text { SERPINB } \\ 6 \\ \hline \end{array}$	Serpin B6	Medium	N	0.00	0.52	1.37
358	$\begin{gathered} \text { SERPINB } \\ 9 \end{gathered}$	Serpin B9	Medium	N	-0.29	0.66	0.94
359	SF1	Splicing factor 1	Medium	N	0.09	0.55	1.63
360	SFN	14-3-3 protein sigma	Medium	Y	-0.13	0.67	1.32
361	$\begin{array}{\|c\|} \hline \text { SLC9A3R } \\ 2 \\ \hline \end{array}$	$\mathrm{Na}(+) / \mathrm{H}(+)$ exchange regulatory cofactor NHE-RF2	Medium	N	-0.29	0.23	0.72
362	SLK	STE20-like serine/threonine-protein kinase	Medium	N	0.10	0.53	1.45
363	SMC2	Structural maintenance of chromosomes protein 2	Medium	Y	-0.38	0.26	0.98
364	SMCHD1	Structural maintenance of chromosomes flexible hinge domain-containing protein 1	Medium	N	-0.06	0.79	1.77
365	SMURF2	E3 ubiquitin-protein ligase SMURF2	Medium	N	-0.02	0.52	1.28
366	SOAT1	Sterol O-acyltransferase 1	Medium	N	-0.12	0.83	NaN
367	SP100	Nuclear autoantigen Sp-100	Medium	N	-0.14	0.52	1.65
368	SPTLC2	Serine palmitoyltransferase 2	Medium	Y	0.05	0.82	1.97
369	SQSTM1	Sequestosome-1	Medium	Y	-0.05	0.41	1.43
370	SRPK1	SRSF protein kinase 1	Medium	N	0.21	0.79	0.91
371	SRPR	Signal recognition particle receptor subunit alpha	Medium	N	0.07	0.74	1.63
372	STAT1	Signal transducer and activator of transcription 1-alpha/beta	Medium	Y	0.13	0.75	0.98
373	STAU1	Double-stranded RNA-binding protein Staufen homolog 1	Medium	N	-0.10	0.28	0.87
374	STK10	Serine/threonine-protein kinase 10	Medium	N	-0.02	0.38	1.39
375	TACC3	Transforming acidic coiled-coil-containing protein 3	Medium	Y	-0.17	0.43	1.07
376	TAGLN2	Transgelin-2	Medium	Y	0.44	0.91	1.79
377	TBC1D15	TBC1 domain family member 15	Medium	Y	-0.09	0.39	0.97
378	TBCD	Tubulin-specific chaperone D	Medium	Y	0.06	0.23	1.06
379	TCOF1	Treacle protein	Medium	N	-0.12	0.50	1.02
380	THYN1	Thymocyte nuclear protein 1	Medium	N	0.21	1.28	NaN
381	TIGAR	Fructose-2,6-bisphosphatase TIGAR	Medium	Y	0.04	1.32	NaN
382	TK1	Thymidine kinase, cytosolic;Thymidine kinase	Medium	N	-0.42	0.16	1.16
383	TP53BP1	Tumor suppressor p53-binding protein 1	Medium	N	0.07	0.48	1.53
384	$\begin{gathered} \text { TPM3;DK } \\ \text { FZp686J1 } \\ 372 \\ \hline \end{gathered}$	Tropomyosin alpha-3 chain	Medium	Y	-0.09	0.78	1.06
385	TRIM25	E3 ubiquitin/ISG15 ligase TRIM25	Medium	Y	0.02	0.79	2.75
386	TSC22D2	TSC22 domain family protein 2	Medium	N	-0.19	0.41	1.31
387	TTC1	Tetratricopeptide repeat protein 1	Medium	N	-0.05	0.55	1.15
388	TXLNA	Alpha-taxilin	Medium	N	-0.19	0.78	1.27
389	TXLNG	Gamma-taxilin	Medium	Y	-0.04	0.21	1.02
390	TXNRD1	Thioredoxin reductase 1, cytoplasmic	Medium	Y	-0.18	0.41	0.97
391	U2AF1	Splicing factor U2AF 35 kDa subunit	Medium	N	-0.04	0.29	0.87
392	UBA6	Ubiquitin-like modifier-activating enzyme 6	Medium	Y	-0.13	0.42	1.65
393	UBAP2	Ubiquitin-associated protein 2	Medium	N	0.00	0.57	1.38
394	UBE2O	Ubiquitin-conjugating enzyme E2 O	Medium	Y	0.53	1.28	1.68
395	USP24	Ubiquitin carboxyl-terminal hydrolase 24	Medium	N	0.04	1.14	NaN

	Gene names	Protein names	Confidence	Conserved	$\log _{2}$ QS		
					Sulforaphane ($\mu \mathrm{M}$)		
					5	25	100
396	USP28	Ubiquitin carboxyl-terminal hydrolase 28;Ubiquitin carboxylterminal hydrolase	Medium	N	-0.20	0.35	0.93
397	USP5	Ubiquitin carboxyl-terminal hydrolase 5	Medium	Y	-0.07	0.56	1.38
398	USP7	Ubiquitin carboxyl-terminal hydrolase 7;Ubiquitin carboxylterminal hydrolase	Medium	Y	0.00	0.32	1.01
399	$\begin{gathered} \text { USP9X;U } \\ \text { SP9Y } \end{gathered}$	Probable ubiquitin carboxyl-terminal hydrolase FAFX;Probable ubiquitin carboxyl-terminal hydrolase FAF-Y	Medium	N	0.04	0.56	1.07
400	VASP	Vasodilator-stimulated phosphoprotein	Medium	N	-0.11	0.24	0.98
401	VCPIP1	Deubiquitinating protein VCIP135	Medium	Y	0.21	0.87	NaN
402	VEZT	Vezatin	Medium	N	-0.15	0.75	1.40
403	WAPAL	Wings apart-like protein homolog	Medium	N	-0.12	0.24	1.04
404	WDHD1	WD repeat and HMG-box DNA-binding protein 1	Medium	N	0.14	0.74	NaN
405	WDR62	WD repeat-containing protein 62	Medium	N	0.29	0.88	NaN
406	WDR77	Methylosome protein 50	Medium	Y	-0.05	0.52	1.38
407	XPO5	Exportin-5	Medium	Y	0.43	1.43	NaN
408	YRDC	YrdC domain-containing protein, mitochondrial	Medium	N	-0.05	0.92	1.68
409	ZC3H11A	Zinc finger CCCH domain-containing protein 11A	Medium	N	-0.21	0.63	1.45
410	ZNF638	Zinc finger protein 638	Medium	N	0.42	1.18	1.76
411	ZW10	Centromere/kinetochore protein zw10 homolog	Medium	N	1.40	-0.06	0.62

3 Chemical synthesis methods

3.1 General Information

The reagents used during all synthesis processes were obtained from commercial sources (Sigma-Aldrich, VWR and Fisher Scientific) and used without further purification. Reactions were followed by TLC using aluminium-backed silica plate (Merck, TLC Silica Gel 60, F254) and visualised under UV irradiation at 254 nm or using a variety of stains. Flash column chromatography was carried out either by hand-made columns with Merck Silica 60Á or using a Biotage Isolera ${ }^{\text {TM }}$ One flash purification system using a wet-loading Biotage SNAP cartridge, collecting fractions using by UV detection at 254 nm when appropriate. Lab distilled water was used unless otherwise stated.

The purity of the compound was determined using NMR spectroscopy, accurate mass spectrometry and LC-MS analysis. All NMR chemical shifts are quoted using tetramethylsilane (TMS) as a reference of ($\delta_{\mathrm{C} / \mathrm{H}}=0$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were both performed on a Bruker AV-400 spectrometer. For ${ }^{1} \mathrm{H}$ NMR, the residual solvent peak used as an internal reference was $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}}=7.26 \mathrm{ppm}\right), \mathrm{CD}_{3} \mathrm{OD}\left(\delta_{\mathrm{H}}=3.31 \mathrm{ppm}\right)$ or DMSO- d_{6} ($\delta_{\mathrm{H}}=2.50 \mathrm{ppm}$) and chemical shifts are reported as: (multiplicity, coupling constant $J(\mathrm{~Hz})$, number of protons). For ${ }^{13} \mathrm{C}$ NMR, the residual solvent peak used as an internal reference was $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}}=77.2 \mathrm{ppm}\right), \mathrm{CD}_{3} \mathrm{OD}\left(\delta_{\mathrm{C}}=49.0 \mathrm{ppm}\right)$ or DMSO- $\mathrm{d}_{6}\left(\delta_{\mathrm{C}}=39.5 \mathrm{ppm}\right)$.

Mass spectrometry was performed using chemical ionisation (CI), electron ionisation (EI) or electrospray ionisation (ESI) on an AUTOSPEC P673 spectrometer by the Chemistry Department Mass Spectrometry Service at Imperial College London. LC-MS analysis and purification were carried out on a Waters HPLC system equipped with a 2767 autosampler, a 515 pump, a 3100 mass spectrometer with ESI, and a 2998 Photodiode Array Detector (detection at 200-600 nm). The system was fitted with Waters XBridge C18 columns ($4.6 \mathrm{~mm} \times 100 \mathrm{~mm}$ for analytical and $19 \mathrm{~mm} \times 100 \mathrm{~mm}$ for preparative LC/MS). The flow rate was $1.2 \mathrm{~mL} / \mathrm{min}$ for analytical and $20 \mathrm{~mL} / \mathrm{min}$ for preparative LC-MS, with an 18 min runtime. A gradient of methanol and water, both containing 0.1% of formic acid, was used as the mobile phase.

Syntheses of the AzTB, AzT and AzRB capture reagents were as previously reported. ${ }^{2-4}$

3.2 Synthesis of Probe 1

Scheme S1. Synthesis of Probe 1. Reagents and conditions: i) p-toluenesulfonic acid, ethylene glycol, toluene, $135{ }^{\circ} \mathrm{C}$; ii) phthalimide, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, DMF; iii) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, EtOH ; iv) 4-hex-5-ynyloxy-benzaldehyde, MeOH; v) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; vi) S-ethyl chlorothiolformate, DIPEA, DCM, $0^{\circ} \mathrm{C}$; vii) 2 M HCl , THF; viii) m-CPBA, DCM, $-78{ }^{\circ} \mathrm{C}$.

3.2.1 4-Hex-5-ynyloxy-benzaldehyde

4-hydroxybenzaldehyde ($2.0 \mathrm{~g}, 16.5 \mathrm{mmol}$) was dissolved in DMF (30 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(4.5 \mathrm{~g}$, 32.8 mmol) and potassium iodide ($1.4 \mathrm{~g}, 8.2 \mathrm{mmol}$) were added to form a white suspension. 6 -chloro-hex-1-yne ($2.7 \mathrm{~mL}, 22.3 \mathrm{mmol}$) was added and the resultant light brown suspension stirred at $80^{\circ} \mathrm{C}$ for 5 h , and then at room temperature for 2 h . The suspension was diluted with EtOAc and the organic layer washed with water and with brine, dried over sodium sulphate, filtered and concentrated under vacuum to yield a brown oil. The crude product was recrystallized from hexane, filtered under vacuum and washed with ice cold hexane to yield a pale yellow solid ($2.7 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.86$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{td}, J=2.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 3 \mathrm{H})$, $1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 190.9, 164.1, 132.02, 129.9, 114.7, 83.9, 68.8, 67.7, 28.1, 24.9, 18.1. ES+ HRMS: found $203.1068\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 203.1072).

3.2.2 2-(4-Chloro-butyl)-2-methyl-[1,3]dioxolane

To 6 -chloro-2-hexanone ($1.0 \mathrm{~mL}, 7.6 \mathrm{mmol}$) in toluene (50 mL) was added p-toluenesulfonic acid ($77 \mathrm{mg}, 0.40 \mathrm{mmol}$) and ethylene glycol ($0.85 \mathrm{~mL}, 15.2 \mathrm{mmol}$). The suspension was fitted with Dean Stark apparatus and stirred at $160^{\circ} \mathrm{C}$ for 4 h . The clear solution was diluted with EtOAc and washed with saturated sodium bicarbonate and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under vacuum to yield a yellow/brown liquid. The crude product was purified by automated silica chromatography eluting in a gradient of hexane/EtOAc to yield a colourless liquid ($1.0 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H} / \mathrm{ppm}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.93(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}$, 2 H), 1.31 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 110.0, 64.8, 45.1, 38.5, 32.8, 23.9, 21.6. ES+ HRMS: found $179.0843\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 179.0839).

3.2.3 2-(4-Phthalimido-butyl)-2-methyl-[1,3]dioxolane

To a suspension of 2-(4-chloro-butyl)-2-methyl-[1,3]dioxolane (320 mg, 1.8 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($620 \mathrm{mg}, 4.5 \mathrm{mmol}$) and potassium iodide ($16 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (4 mL) was added a solution of phthalimide ($310 \mathrm{mg}, 2.2 \mathrm{mmol}$) in DMF (4 mL). The pale yellow suspension was stirred at $80^{\circ} \mathrm{C}$ for 17 h , during which time the colour of the suspension deepened to a strong yellow and a pale yellow residue formed. The suspension was cooled to room temperature and diluted with water. The organic layer was extracted with diethyl ether. The organic layers were combined, dried over sodium sulphate, filtered and concentrated under vacuum to yield a pale yellow oil which solidified upon standing. The crude product was purified by flash chromatography, eluting with a hexane/EtOAc gradient to yield a white solid $(472 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86(\mathrm{dd}, J=3.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J$ $=3.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{C} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5,134.3,133.9,132.2,123.6,123.2,110.0,109.9$,
64.7, 38.6, 37.9, 28.7, 23.8, 21.4. ES+ HRMS: found $290.1376\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 290.1392).

3.2.4 2-(4-Amino-butyl)-2-methyl-[1,3]dioxolane

To a solution of 2-(4-phthalimido-butyl)-2-methyl-[1,3]dioxolane ($471 \mathrm{mg}, 1.4 \mathrm{mmol}$) in ethanol (20 mL) was added hydrazine monohydrate ($250 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$). The solution was refluxed at $80^{\circ} \mathrm{C}$ for 3 h , during which time a white precipitate was formed. The suspension was cooled to room temperature and the precipitate isolated by filtration. The filtrate was concentrated under vacuum to yield a white residue which was re-dissolved in ethanol, filtered and concentrated under vacuum. The residue was dissolved in DCM, filtered and concentrated to yield a yellow solid (252 mg) which was used without further purification. ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.83(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.34$ ($\mathrm{m}, 4 \mathrm{H}$), 1.21 ($\mathrm{s}, 3 \mathrm{H})$. ES+ HRMS: found $160.1332\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 160.1338).

3.2.5 (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-amine

To a suspension of 4-hex-5-ynyloxy-benzaldehyde ($204 \mathrm{mg}, 1.0 \mathrm{mmol}$) and sodium sulphate $(2.5 \mathrm{~g})$ in dry methanol (4 mL) was added a solution of 2-(4-amino-butyl)-2-methyl[1,3]dioxolane ($108 \mathrm{mg}, 0.68 \mathrm{mmol}$) in dry methanol (2 mL). The suspension was stirred under nitrogen at room temperature for 20 h . The suspension was subsequently cooled to $0^{\circ} \mathrm{C}$ and sodium borohydride ($51 \mathrm{mg}, 1.3 \mathrm{mmol}$) added. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Water (40 mL) was added, the methanol removed under vacuum, and the remaining aqueous suspension was extracted with DCM. The organic layers were combined, dried over sodium sulphate and concentrated under vacuum to yield a yellow oil. The crude product was purified by automated silica chromatography with a gradient of $0-20 \%$ methanol/ 1% triethylamine in DCM/1\% triethylamine to yield a yellow solid ($107 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{td}, \mathrm{J}=2.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{t}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.3,130.7,129.7,114.4,110.0,84.1,68.7,67.3$, 64.6, 52.9, 48.6, 39.0, 29.5, 28.3, 25.0, 23.8, 21.8, 18.2. ES+ HRMS: found 346.2369 $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 346.2382).

3.2.6 S-Ethyl (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]thiocarbamate

A solution of (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-amine (103 mg, $0.30 \mathrm{mmol})$ in dry DCM $(10 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. DIPEA ($160 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$) was added dropwise, followed by S-ethyl chlorothiolformate ($80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$). The solution was stirred
at $0^{\circ} \mathrm{C}$ under nitrogen for 45 min . The reaction mixture was diluted with EtOAc and the organic layer washed with 1 M HCl , saturated sodium bicarbonate, and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under vacuum. The crude residue was purified by automated silica chromatograph with a hexane/EtOAc gradient to yield a colourless oil ($87 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.18(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86$ (d, J = 8.1 Hz, 2H), 4.52 (br d, $J=23.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (t, J = $6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (m, 4 H), 3.27 (br d, $J=32.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 ($\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (td, $J=2.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 (t, J = 2.6 Hz, 1H), $1.92(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}) 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (t, J = $7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.31 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5,158.5,129.3$, 128.6, 114.5, 110.0, 84.1, 68.7, 67.3, 64.7, 50.7, 50.6, 49.3, 49.2, 47.0, 46.8, 46.7, 38.8, $28.3,27.89,27.5,25.0,24.9,23.8,21.4,18.2,15.4$. ES+ HRMS: found 434.2357 $\left(\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 434.2365).

3.2.7 S-Ethyl (4-hex-5-ynyloxy-benzyl)-(5-oxo-hexyl)-thiocarbamate

To a solution of S-Ethyl (4-hex-5-ynyloxy-benzyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]thiocarbamate ($86 \mathrm{mg}, 0.20 \mathrm{mmol}$) in THF (5.0 mL) was added $2 \mathrm{M} \mathrm{HCl}(1.0 \mathrm{~mL})$ dropwise. The solution was stirred at room temperature for 3 h , then diluted with EtOAc and washed with distilled water, saturated sodium bicarbonate and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under vacuum. The crude residue was purified by automated silica chromatography, eluting in a gradient of hexane/EtOAc to yield a colourless oil ($67 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.17$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (br d, $J=18.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.99$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27$ (br d, $J=$ $30.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{td}, J=2.6,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{c}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.4,158.5,129.3,129.0,128.6,114.6$, 84.1, 68.7, 67.3, 50.7, 49.3, 49.2, 46.6, 46.5, 46.4, 46.2, 46.2, 43.0, 30.0, 28.3, 27.2, 26.9, 26.8, 26.7, 25.0, 24.9, 20.8, 18.2, 15.4. ES+ HRMS: found $390.2094\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 390.2103).

3.2.8 S-Ethyl(4-hex-5-ynyloxy-benzyl)-(5-oxo-hexyl)-thiocarbamatesulfoxide (1)

A solution of S-ethyl(4-hex-5-ynyloxy-benzyl)-(5-oxo-hexyl)-thiocarbamate (66 mg , 0.17 mmol) in DCM (2.0 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 3 -chloroperbenzoic acid (37 mg , 0.16 mmol) in DCM $(1.0 \mathrm{~mL})$ was added dropwise. The reaction stirred at $-78^{\circ} \mathrm{C}$ for 50 min . The solvent was removed under vacuum and the solid residue taken up in EtOAc, and washed with saturated sodium bicarbonate and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under vacuum. The crude residue was purified by automated column chromatography, eluting in a gradient of hexane/EtOAc to yield 1 as a colourless oil ($48 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.5-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.83-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{td}, \mathrm{J}=6.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.90-$
3.14 (m, 2H), 2.2 - 2.52 (m, 2H), 2.30 (td, J = 7.0, $2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15 (d, J = $3.7 \mathrm{~Hz}, 3 \mathrm{H}$), 2.00 $(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{td}, \mathrm{J}$ $=7.5,3.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 208.3,208.1,168.5,168.4,159.1$, 158.9, 129.9, 128.9, 127.5, 126.8, 114.9, 114.8, 84.0, 77.4, 77.0, 76.7, 68.7, 67.4, 67.4, $50.3,48.7,47.2,45.5,45.4,44.7,42.7,42.6,30.0,28.2,28.1,26.1,25.0,20.6,20.4,18.2$, 7.0, 7.0. ES+ HRMS: found $428.1856\left(\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{SNa},[\mathrm{M}+\mathrm{Na}]^{+}\right.$, requires 428.1872).

3.3 Synthesis of Probe 2

Scheme S2. Synthesis of Probe 2. Reagents and conditions: i) p-toluenesulfonic acid, ethylene glycol, toluene, $135^{\circ} \mathrm{C}$; ii) propargyl amine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, DMF; iii) DIPEA, S-ethyl chlorothiolformate, DCM, $0^{\circ} \mathrm{C}$; iv) 2 M HCl , THF; v) m-CPBA, DCM, $-78^{\circ} \mathrm{C}$.

3.3.1 S-Ethyl (prop-2-ynyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-thiocarbamate

To a suspension of propargyl amine ($170 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(304 \mathrm{mg}, 2.2 \mathrm{mmol})$ and potassium iodide ($308 \mathrm{mg}, 1.9 \mathrm{mmol}$) in DMF (6 mL) was added a solution of 2-(4-chloro-butyl)-2-methyl-[1,3]dioxolane ($303 \mathrm{mg}, 1.7 \mathrm{mmol}$) in DMF (1 mL). The orange suspension was stirred at $70^{\circ} \mathrm{C}$ overnight and at room temperature for a further 48 h then diluted with EtOAc and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under vacuum to yield a brown oil which was dissolved in DCM (10 mL) and cooled to $0^{\circ} \mathrm{C}$. DIPEA ($890 \mu \mathrm{~L}, 5.1 \mathrm{mmol}$) was added dropwise, followed by S-ethyl chlorothiolformate ($420 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) and the solution stirred at $0^{\circ} \mathrm{C}$ for 2 h . The solution was diluted with DCM and washed with 1 M HCl , saturated sodium bicarbonate, and brine. The organic layer was dried over magnesium sulphate, filtered and concentrated under vacuum to yield an orange liquid which was purified by automated silica chromatography eluting in a gradient of hexane/EtOAc to yield a yellow oil ($184 \mathrm{mg}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{c}} / \mathrm{ppm}(101 \mathrm{MHz}$, CDCl_{3}) 110.0, 64.8, 47.4, 38.9, 28.0, 25.0, 23.9, 21.4, 15.4. ES+ HRMS: found 286.1478 $\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 286.1477).

3.3.2 S-Ethyl (prop-2-ynyl)-(5-oxo-hexyl)-thiocarbamate

To a solution of S-ethyl-(prop-2-ynyl)-[4-(2-methyl-[1,3]dioxolan-2-yl)-butyl]-thiocarbamate ($180 \mathrm{mg}, 0.63 \mathrm{mmol}$) in $\mathrm{THF}(10.4 \mathrm{~mL}$) was added $2 \mathrm{M} \mathrm{HCl}(2.6 \mathrm{~mL})$ dropwise. The colourless solution was stirred at room temperature for 3 h , then diluted with EtOAc and washed with distilled water, saturated sodium bicarbonate and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under vacuum. The crude residue was purified by automated silica chromatography eluting in a gradient of hexane/EtOAc to yield a colourless oil ($87 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.18$ (s, 2H), 3.44 (s, 2H), $2.92(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.28(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 208.4,208.4,168.4,78.5,72.2$, 47.0, 43.0, 30.0, 27.2, 25.0, 20.7, 15.2. ES+ HRMS: found $242.1203\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 242.1215$)$.

3.3.3 S-Ethyl (prop-2-ynyl)-(5-oxo-hexyl)-thiocarbamate sulfoxide (2)

A solution of S-ethyl-(prop-2-ynyl)-(5-oxo-hexyl)-thiocarbamate ($74 \mathrm{mg}, 0.31 \mathrm{mmol}$) in DCM $(2.5 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and 3 -chloroperbenzoic acid ($68 \mathrm{mg}, 0.30 \mathrm{mmol}$) in DCM $(1.5 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 50 min . The solvent was removed under vacuum and the solid residue taken up in EtOAc, washed with saturated sodium bicarbonate and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under vacuum. The crude residue was purified by automated silica chromatography eluting in a gradient of hexane/EtOAc, to yield $\mathbf{2}$ as a colourless oil (12 mg , $15 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.53(\mathrm{qd}, \mathrm{J}=2.5,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.82$ ($\mathrm{m}, 0.5 \mathrm{H}$), 3.67 (dd, $J=7.2,14.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.54(\mathrm{td}, J=3.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 2.50$ ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{dt}, J=2.5,24.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 5 \mathrm{H})$, 1.39 (dt, $J=2.5,8.9 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{c}} / \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 208.3, 168.2, 73.9, 73.5, 48.2, 45.8, 45.7, 45.4, 42.7, 42.6, 36.7, 35.2, 30.0, 27.9, 26.1, 20.5, 20.3, 7.0, 6.9.. ES+ HRMS: found $280.0977\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}\right.$, requires 280.0983).

$3.4{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS and LC-MS data

Data for $\mathbf{1}$ are shown below:

Data for $\mathbf{2}$ are shown below

4 Biological and biochemical methods

4.1 General methods

Ultrapure water was obtained using a MilliQ® Millipore purification system. In-gel fluorescence was recorded using an ETTAN DIGE Imager (GE Healthcare) and chemiluminescence was recorded using a LAS-4000 Imaging System (GE Healthcare). Absorbance in 96 -well plates was measured using a SpectraMax M2e Microplate Reader (Molecular Devices). Protein concentration was determined using the BioRad DC Protein Assay following the manufacturer's instructions, measuring absorbance at 750 nm , using BSA as a protein standard.

All biological and chemical reagents were purchased from Sigma-Aldrich unless otherwise specified. N -ethylmaleimide (NEM), iodoacetamide (IA), and D,L-sulforaphane (Toronto Research Chemicals, Canada) were purchased and used without further purification. All compounds were prepared as DMSO stocks for biological experiments unless otherwise stated, stored at $-20^{\circ} \mathrm{C}$ and thawed on the day of use, except for IA that was prepared fresh on the day of use.

4.2 Cell culture

MDA-MB-231 and MCF7 cell lines were obtained from CRUK cell services core facility and were cultured in DMEM supplemented with 10% (v/v) FBS, incubated at $37^{\circ} \mathrm{C}$ in a $10 \% \mathrm{CO}_{2}$ humidified incubator. Cells were grown in 10 cm or 6 cm cell culture plates (Falcon or Corning). Cells were detached with trypsin (0.2%) during passaging. Quantitative proteomics 'spike-in' samples were grown in R10K8 DMEM media (Dundee Cell Products) supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ dialysed FBS for >7 passages to ensure incorporation of the R10K8 label before proceeding to further experiments. Incorporation of R10K8 labelling was determined to be $>97 \%$ by mass spectrometry in accordance with guidelines for SILACbased applications. ${ }^{5}$ For R10K8 labelled cells, enzyme-free, PBS-based cell dissociation buffer (Gibco Life technologies) was used instead of trypsin for cell detachment during passaging. All described experiments were carried out with cells at low passage number (<25) and which were generally plated 24 or 48 h prior to treatment. All cells were grown to 70-90\% confluence prior to commencing an experiment.

4.3 In-cell competition-based assays for in-gel fluorescence and Western Blot analyses

4.3.1 Compound treatment of cells and cell lysis

Cells were incubated with D,L-sulforaphane or competition compounds at a fixed concentration in the cell media for $30 \mathrm{~min}(0.2 \%$ DMSO final). Media was then aspirated and replaced with fresh media containing fixed concentrations of D,L-sulforaphane or competition compounds and 1 or $\mathbf{2}$ (0.2% DMSO final). Cells were incubated for a further 30 min , after which the media was aspirated, cells washed three times with PBS, and lysed on the plate with whole cell lysis buffer (1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl , PBS pH 7.6, $1 \times$ Complete EDTA-free protease inhibitor (Roche Diagnostics)). The lysates were transferred to microcentrifuge tubes and incubated on ice for 15 min , followed by centrifugation ($17,000 \times \mathrm{g}, 20 \mathrm{~min}, 4^{\circ} \mathrm{C}$) to remove insoluble cellular debris. Lysates were stored at $-20^{\circ} \mathrm{C}$ until further use.

4.3.2 Copper catalysed azide-alkyne cycloaddition (CuAAC)

Protein lysates were thawed on ice and made up to $100 \mu \mathrm{~L}$ at a concentration of $1 \mathrm{mg} / \mathrm{mL}$ with lysis buffer. A click reaction master mix was prepared freshly as follows: capture reagent (either AzT or AzTB, $1 \mu \mathrm{~L}, 10 \mathrm{mM}$ DMSO stock concentration; 0.1 mM final concentration), $\mathrm{CuSO}_{4}(2 \mu \mathrm{~L}, 50 \mathrm{mM}$ stock concentration; 1 mM final concentration), TCEP ($2 \mu \mathrm{~L}, 50 \mathrm{mM}$ stock concentration; 1 mM final concentration) and TBTA ($1 \mu \mathrm{~L}, 10 \mathrm{mM}$ DMSO stock concentration; 0.1 mM final concentration). $6 \mu \mathrm{~L}$ of this master mix was added to each sample and the sample vortexed for 1 h at room temperature. The reaction was quenched by addition of EDTA (final concentration 10 mM) and proteins precipitated by addition of methanol (4 vol.), chloroform (1 vol .) and water (3 vol .), followed by centrifugation $(17,000 \times \mathrm{g}, 2 \mathrm{~min})$. The upper liquid phase was discarded before addition of methanol (4 vol .) and centrifugation ($17,000 \times \mathrm{g}, 2 \mathrm{~min}$). The resulting protein pellet was washed twice with methanol (8 vol .) and air dried for 10 min .

4.3.3 Gel electrophoresis and in-gel fluorescence

For in-gel fluorescence analysis, the protein pellet was re-suspended in 2% SDS in PBS $(10 \mu \mathrm{~L}), 100 \mathrm{mM}$ EDTA $(10 \mu \mathrm{~L})$, PBS $(40 \mu \mathrm{~L})$ and $4 \times$ NuPAGE® LDS sample loading buffer containing $5 \%(\mathrm{v} / \mathrm{v})$ 2-mercaptoethanol ($20 \mu \mathrm{~L}$) to give a final concentration of protein of $1.25 \mathrm{mg} / \mathrm{mL}$. Samples were then heated at $90^{\circ} \mathrm{C}$ for 5 min . SDS-PAGE analysis was performed with 12% acrylamide Bis-Tris gels, using a BioRad Mini-PROTEAN® Tetra Cell system with MOPS running buffer (50 mM MOPS pH 7.7, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA), with Precision Plus Protein All Blue Standard (BioRad) used as molecular weight marker. Gels were fixed in gel soaking solution (50% water, $40 \% \mathrm{MeOH}, 10 \%$ acetic acid) for 30 min and washed twice with MilliQ water before in-gel fluorescence visualisation (excitation wavelength 552 nm , emission wavelength 570 nm). Further data analysis was performed with ImageQuant ${ }^{\text {TM }}$ TL software. In-gel protein levels were determined by Coomassie staining (9.2\% phosphoric acid, 10% ammonium sulfate, 0.12% Coomassie brilliant blue G-250 dye, 20\% methanol in water).

4.3.4 Affinity enrichment and Western Blot analysis

Protein lysates (0.6 mg) were prepared at a concentration of $2 \mathrm{mg} / \mathrm{mL}$ and functionalised with AzRB click reaction master mix ($18 \mu \mathrm{~L}$) for 1 h before being quenched and protein precipitated as described previously. The protein pellet was re-suspended in 2% SDS in PBS $(60 \mu \mathrm{~L}), 100 \mathrm{mM}$ EDTA $(60 \mu \mathrm{~L}), 100 \mathrm{mM}$ DTT $(6 \mu \mathrm{~L}), 1 \times$ Complete EDTA-free protease inhibitor, and PBS $(324 \mu \mathrm{~L})$ to give a final volume $450 \mu \mathrm{~L} .75 \mu \mathrm{~L}$ of the re-suspended protein pellet was then added to $4 \times$ NuPAGE® LDS sample loading buffer containing $5 \%(\mathrm{v} / \mathrm{v}) 2$ mercaptoethanol $(25 \mu \mathrm{~L})$. Samples were heated at $90^{\circ} \mathrm{C}$ for 5 min . These samples were designated as the pre-pull down lysate (L). To the remaining $375 \mu \mathrm{~L}$ of lysate, PBS was added $(75 \mu \mathrm{~L}$). Neutravidin sepharose resin (Thermo Scientific) was washed $3 \times$ with 0.2% SDS in PBS before resin slurry ($75 \mu \mathrm{~L}$) was added to each sample to give a final volume of $525 \mu \mathrm{~L}$ at $1 \mathrm{mg} / \mathrm{mL}$ protein concentration (0.2% SDS final). Samples were then shaken at room temperature for 2 h . The supernatant was removed and a $75 \mu \mathrm{~L}$ aliquot taken and added to $4 \times$ NuPAGE® LDS sample loading buffer containing $5 \%(\mathrm{v} / \mathrm{v})$ 2-mercaptoethanol $(25 \mu \mathrm{~L})$. Samples were heated at $90^{\circ} \mathrm{C}$ for 5 min . These samples were designated as the supernatant samples (SN). The Neutravidin sepharose resin from each sample was then washed with $4 \times 400 \mu \mathrm{~L} 0.2 \%$ SDS in PBS. 2% SDS in PBS $(75 \mu \mathrm{~L})$ was then added to each sample which were heated at $90^{\circ} \mathrm{C}$ for $15 \mathrm{~min} .4 \times$ NuPAGE® LDS sample loading buffer containing $5 \%(\mathrm{v} / \mathrm{v}) 2$-mercaptoethanol ($25 \mu \mathrm{~L}$) was added and the samples heated at $90^{\circ} \mathrm{C}$
for a further 5 min . These samples were designated as the pull-down samples (PD). Samples were then loaded onto SDS-PAGE gels for analysis; L $12 \mu \mathrm{~L}$ ($10 \mu \mathrm{~g}$ protein), SN $15 \mu \mathrm{~L}(10 \mu \mathrm{~g}$ protein) and PD $15 \mu \mathrm{~L}$.

After electrophoresis, proteins were transferred from non-fixed gels to PVDF membranes using an iBlot® Gel Transfer Device (Invitrogen, Life Technologies) according to the manufacturer's guidelines. After transfer, membranes were blocked in 5% (w/v) dried skimmed milk in TBS plus 0.1% (v/v) Tween-20 (TBST) for 2 h at room temperature and incubated with the appropriate primary antibody in blocking solution with gentle agitation overnight at $4^{\circ} \mathrm{C}$ (anti-STAT3 (Santa Cruz Biotechnology, sc-482, rabbit polyclonal, dilution 1:100), anti-STAT1 p84/p91 (Santa Cruz Biotechnology, sc-346, rabbit polyclonal, dilution 1:100), anti- α-tubulin (Santa Cruz Biotechnology, sc-53646, mouse monoclonal, dilution 1:500) anti- β-actin (Santa Cruz Biotechnology, sc-130656, rabbit polyclonal, dilution 1:500), HSP90 (Santa Cruz Biotechnology, sc-69703, mouse monoclonal, dilution 1:200), anti-CDK2 (Santa Cruz Biotechnology, sc-163, rabbit polyclonal, dilution 1:1,000), anti-BID (Cell Signaling Technology, 2002S, rabbit polyclonal, dilution 1:250), anti-MARCKS (Cell Signaling Technology, D88D11, rabbit monoclonal, dilution 1:500), anti-IMPDH2 (Abcam, Ab131158, rabbit monoclonal, dilution 1:1,000), anti-PSMC1 (Atlas, HPA000872, rabbit polyclonal, dilution 1:750), anti-GSTO1/2 (Santa Cruz Biotechnology, sc-166040, mouse monoclonal, dilution 1:100), and anti-HCCS (Atlas, HPA002946, rabbit polyclonal, dilution $1: 500)$). Membranes were then washed $3 \times$ TBST before being incubated with the appropriate secondary antibody in blocking solution with gentle agitation for 2 h at room temperature (Goat anti-Rabbit IgG-HRP secondary antibody (Invitrogen, dilution 1:5,000) and Goat anti-Mouse IgG-HRP (BD Pharminigen, dilution 1:10,000)). Membranes were then washed with $3 \times$ TBST before being developed with Luminata Crescendo Western HRP substrate (Millipore) according to the supplier's protocol.

4.4 In-cell quantitative, competition-based assays for target identification by mass spectrometry

The following method was used for MS-based proteomic identification of targets of 2 competed against a concentration gradient of sulforaphane in live, intact MCF7 and MDA-MB-231 cells. All experimental samples were generated in duplicate. The amount of peptide injected onto the LC-MS/MS for affinity purified peptide digests was equivalent to $20-40 \mu \mathrm{~g}$ of the starting protein lysate.

4.4.1 Compound treatment of cells and cell lysis

MDA-MB-231 and MCF7 cells were grown in 10 cm plates under standard cell culture conditions. Cells were incubated with D,L-sulforaphane ($0 \mu \mathrm{M}, 5 \mu \mathrm{M}, 25 \mu \mathrm{M}$ or $100 \mu \mathrm{M}$) in cell media (0.2% DMSO final) for 30 min . The media was aspirated and replaced with fresh media (0.2% DMSO final) containing D,L-sulforaphane and $2(5 \mu \mathrm{M})$ for 30 min . The media was aspirated and the cells washed three times with PBS. Cells were then lysed using a fractionation protocol as described. Cells were lifted from the plate into PBS using a cell scraper and transferred to low protein binding tubes (ProteinLoBind tubes, Eppendorf). Cells were pelleted by centrifugation ($2000 \times \mathrm{g}, 5 \mathrm{~min}$). The supernatant was discarded and the cell pellet re-suspended in Buffer A ($400 \mu \mathrm{~L}, 5 \mathrm{mM} \mathrm{KCl}, 0.5 \mathrm{mM} \mathrm{MgCl} 2,0.5 \% \mathrm{NP}-40,25 \mathrm{mM}$ HEPES pH 7.9, $1 \times$ Complete EDTA-free protease inhibitor) and shaken at $4^{\circ} \mathrm{C}$ for 15 min . Samples were then centrifuged ($600 \times \mathrm{g}, 2 \mathrm{~min}$) and the supernatant (cytosolic fraction) transferred to a new tube. The pellet was then washed with Buffer A ($100 \mu \mathrm{~L}$) then incubated with Buffer B ($200 \mu \mathrm{~L}, 350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ sucrose, 25 mM HEPES pH 7.9, $1 \times$ Complete

EDTA-free protease inhibitor) for 1 h at $4^{\circ} \mathrm{C}$. The sample was then centrifuged ($17,000 \times \mathrm{g}$, $10 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and the supernatant (nuclear fraction) transferred to a new tube. Protein concentration was determined for the cytosolic and nuclear fraction for each sample.

4.4.2 Preparation of 'spike-in' SILAC cell lysates as quantification standards

To generate 'spike-in' SILAC 'heavy' lysates, $8 \times 10 \mathrm{~cm}$ plates of MDA-MB-231 cells and $9 \times 10 \mathrm{~cm}$ plates of MCF7 cells previously established with R10K8 labelled proteomes were grown in 'heavy' media to 90% confluence. These cells were then treated with $2(20 \mu \mathrm{M})$ for 30 min in 'heavy' media (0.2% DMSO final). Media was aspirated and cells washed three times with PBS prior to lysis as described previously to generate cytosolic and nuclear fractions. Lysates from the two fractions were pooled into a single master 'spike-in' SILAC 'heavy' lysate for each of the cytosolic and nuclear fractions for which the protein concentration was determined. A total protein amount for the master 'spike-in' SILAC lysate of 1.8 mg (nuclear) and 8.2 mg (cytosolic) for the MCF7 cell line and 1.6 mg (nuclear) and 6.4 mg (cytosolic) for the MDA-MB-231 cell line were generated.

4.4.3 CuAAC, affinity enrichment and on-bead reduction, alkylation and trypsin digest

Cytosolic fraction lysates ($300 \mu \mathrm{~L}, 2 \mathrm{mg} / \mathrm{mL}$) had added to them cytosolic master 'spike-in' SILAC lysate ($100 \mu \mathrm{~L}, 2 \mathrm{mg} / \mathrm{mL}$). Nuclear fraction lysates ($90 \mu \mathrm{~L}, 1 \mathrm{mg} / \mathrm{mL}$) had added to them nuclear master 'spike-in' SILAC lysate ($30 \mu \mathrm{~L}, 1 \mathrm{mg} / \mathrm{mL}$). Lysates were then subjected to CuAAC functionalisation with click reaction master mix containing azide capture reagent ($24 \mu \mathrm{~L}$ for cytosolic lysates, $7.2 \mu \mathrm{~L}$ for nuclear lysates). Lysates were left to shake at room temperature for 1 h before being quenched and the protein precipitated.

The protein pellet was then re-suspended in 2% SDS in PBS ($80 \mu \mathrm{~L}$), 100 mM EDTA $(80 \mu \mathrm{~L}), 100 \mathrm{mM}$ DTT $(8 \mu \mathrm{~L}), 1 \times$ Complete EDTA-free protease inhibitor, and PBS $(507 \mu \mathrm{~L})$ (final volume $675 \mu \mathrm{~L}$) for the cytosolic samples, and in 2% SDS in PBS ($12 \mu \mathrm{~L}$), 100 mM EDTA $(12 \mu \mathrm{~L}), 100 \mathrm{mM}$ DTT $(1.2 \mu \mathrm{~L}), 1 \times$ Complete EDTA-free protease inhibitor, and PBS $(74.8 \mu \mathrm{~L})$ (final volume $100 \mu \mathrm{~L}$) for the nuclear samples. Samples were centrifuged ($17,000 \times \mathrm{g}, 3 \mathrm{~min}$) after re-suspension and transferred to new tubes. Neutravidin sepharose resin was washed with $3 \times 0.2 \%$ SDS in PBS and to cytosolic samples resin slurry ($125 \mu \mathrm{~L}$) was added ($800 \mu \mathrm{~L}$ volume, protein concentration $1 \mathrm{mg} / \mathrm{mL}, 0.2 \%$ SDS final), and to nuclear samples resin slurry ($20 \mu \mathrm{~L}$) was added ($120 \mu \mathrm{~L}$ volume, protein concentration $1 \mathrm{mg} / \mathrm{mL}$, 0.2% SDS final). Samples were shaken at room temperature for 2 h , the supernatant discarded and the Neutravidin sepharose resin washed $3 \times 1 \%$ SDS in PBS, $2 \times 4 \mathrm{M}$ urea in 50 mM ammonium bicarbonate (AMBIC) and $4 \times 50 \mathrm{mM}$ AMBIC (5 vol. for each wash consisting of 2 min vortexing followed by brief centrifugation to pellet the resin and discard washings).

After washing, proteins on the Neutravidin sepharose resin were reduced with 100 mM DTT in 50 mM AMBIC ($4 \mu \mathrm{~L}$ for cytosolic samples, $1.2 \mu \mathrm{~L}$ for nuclear samples) at $55^{\circ} \mathrm{C}$ for 30 min with gentle agitation. The resin was washed $2 \times 50 \mathrm{mM}$ AMBIC. Cysteines were then alkylated with 100 mM iodoacetamide in 50 mM AMBIC ($4 \mu \mathrm{~L}$ for cytosolic samples, $1.2 \mu \mathrm{~L}$ for nuclear samples) in the dark at room temperature. The resin was then washed $2 \times 50 \mathrm{mM}$ AMBIC. Samples were then digested with Trypsin (Sequencing Grade Modified Trypsin (Promega), $0.5 \mu \mathrm{~g}$ for cytosolic samples, $0.25 \mu \mathrm{~g}$ for nuclear samples) at $37^{\circ} \mathrm{C}$ overnight with gentle agitation. Samples were then centrifuged and the supernatant transferred to a new tube. The resin was washed with 0.1% formic acid in water and centrifuged and this
supernatant added to the same tube. The peptide solutions were then stage-tipped according to a published protocol. ${ }^{6}$ Briefly, stage tips were prepared by fitting C18 Empore disks (SDC-XC, 3M) into $200 \mu \mathrm{~L}$ pipette tips. The stage tip was initially washed by centrifuging ($2000 \times \mathrm{g}, 2 \mathrm{~min}$) with $\mathrm{MeOH}(150 \mu \mathrm{~L})$ followed by water $(150 \mu \mathrm{~L})$. Peptide solutions were then added to the top of the stage tip and centrifuged ($2000 \times \mathrm{g}, 2 \mathrm{~min}$) to load the peptides onto the C18 sorbent followed by desalting by washing with water $(150 \mu \mathrm{~L})$. Peptides were eluted with 79% acetonitrile in water and dried with speed-vacassisted solvent removal. Peptides were then re-dissolved in 0.5% TFA, 2% acetonitrile in water and transferred to LC-MS sample vials for LC-MS/MS analysis.

4.4.4 LC-MS/MS

LC-MS/MS analysis was performed on an Easy nLC-1000 system coupled to a Q Exactive mass spectrometer via an easy-spray source (Thermo Fisher Scientific). Tryptic peptide samples were separated with a reverse phase Acclaim PepMap RSLC column $50 \mathrm{~cm} \times 75 \mu \mathrm{~m}$ inner diameter (Thermo Fisher Scientific) using a 2 h acetonitrile gradient in 0.1% formic acid at a flow rate of $250 \mathrm{~nL} / \mathrm{min}$. The Q Exactive mass spectrometer was operated in data-dependent mode with survey scans acquired at a resolution of 75,000 at $\mathrm{m} / \mathrm{z} 200$ (transient time 256 ms). Up to the top 10 most abundant isotope patterns with charge +2 from the survey scan were selected with an isolation window of $3.0 \mathrm{~m} / \mathrm{z}$ and fragmented by HCD with normalized collision energies of 25 W . The maximum ion injection times for the survey scan and the MS/MS scans (acquired with a resolution of 17,500 at m / z 200) were 250 and 80 ms , respectively. The ion target value for MS was set to 10^{6} and for MS/MS to 10^{5}.

4.4.5 LC-MS/MS data analysis

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 7 partner repository with the dataset identifier PXD006279. The .raw data file obtained from each LC-MS/MS acquisition was directly processed with the software MaxQuant version 1.3.0.5, ${ }^{8}$ with the peptides being identified from the MS/MS spectra searched against the human UniProt+isoforms database (January 2014) using the Andromeda search engine. Cysteine carbamidomethylation (+57.021 Da) was set as a fixed modification and methionine oxidation (+15.995 Da) and N -terminal acetylation (+42.011 Da) set as variable modifications for the search. The multiplicity was set to 2 corresponding to the number of labels to quantify against one another (Lys0, Lys8, Arg0 and Arg10). The minimum length of a peptide was set to 7 residues, the maximum amount of missed trypsin cleavages was set to 2 , the maximum number of modifications per peptide was set to 5 and the maximum charge of a peptide as +7 . Peptide and protein FDRs were set to 0.01 . Quantification of peptides was allowed off 'razor+unique' peptides carrying no modifications as well as methionine oxidation, N-terminal acetylation or carbamidomethylation. All other parameters were used as pre-set by the software.

Data outputted from MaxQuant was analysed using a combination of Perseus version 1.4.0.20, Microsoft Office Excel 2010 and GraphPad Prism 5.0. The corresponding data files from the two fractions (cytosolic and nuclear) of the same sample were combined to form a single file. Protein identifications by MaxQuant based on 'contaminants', 'only identified by site' and 'reverse' were filtered out. Further filtering only allowed identification of a protein target if it contained at least two 'razor+unique peptides' in both biological duplicates for each differing experimental condition. A two sample t-test ($\mathrm{S} 0=1$, $\mathrm{FDR}=0.01$) was carried out across the replicates on the original H / L ratios between the $\mathbf{2}$ only sample and the $\mathbf{2}$ plus
sulforaphane competition samples to identify statistically significant differences. Mediumconfidence targets were defined as those giving a statistically significant difference at any concentration of sulforaphane competition. High-confidence targets were defined as medium-confidence targets present at 5,25 and $100 \mu \mathrm{M}$, or 25 and $100 \mu \mathrm{M}$ sulforaphane competition.

The averaged H / L ratios for each concentration of competition against sulforaphane ($5 \mu \mathrm{M}$, $25 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$) were normalised to the H / L ratio of the 2 only sample to generate a QS for each concentration of competition against sulforaphane. To visualise competition across the sulforaphane concentration gradient against 2, heat maps were generated in Perseus. The colour coding for the $\log _{2}$ (quantification score) was defined as: Blue - 0 , Green - 1.0, Yellow - 2.0, Red - 3.0, Grey - no value calculated. The quantification score for the three sulforaphane competition concentrations ($5 \mu \mathrm{M}, 25 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$) from the MCF7 and MDA-MB-231 cell line for a select number of targets were then plotted against one another as depicted in Fig. 3. Where a protein was only present in one cell line, an arbitrary value of 0 was assigned as the quantification score for that protein ID for the purpose of the plot.

4.4.6 Abundance and bioinformatic analysis

High-confidence target abundances were taken from iBAQ values for each cell line from proteomic analysis of the $\mathrm{NCl}-60$ cell line panel. ${ }^{1}$ To allow analysis of proteins that were not detected in a given cell line ($\mathrm{iBAQ}=0$), relative abundances were calculated using the following formula:

Relative Abundance $=\frac{\text { Abundance }_{\text {MCF7 }}-\text { Abundance }_{\text {average }}}{\text { Abundance }}$ average
Targets that were not detected in MCF7 or MDA-MB-231 cell lines would give values of -1 or 1 , respectively. Targets that were not detected in iBAQ measurements in either cell line were excluded from analysis.

High confidence targets of sulforaphane were analysed using Ingenuity® Pathway Analysis (Qiagen), inputting $-\log _{2}(\mathrm{QS})$ at each concentration to represent downregulation of protein function upon sulforaphane binding.

5 References

1A. M. Gholami, H. Hahne, Z. Wu, F. J. Auer, C. Meng, M. Wilhelm and B. Kuster, Cell Rep., 2013, 4, 609-620.
2W. P. Heal, M. H. Wright, E. Thinon and E. W. Tate, Nat. Protoc., 2012, 7, 105-117.
3E. Thinon, R. A. Serwa, M. Broncel, J. A. Brannigan, U. Brassat, M. H. Wright, W. P. Heal, A. J. Wilkinson, D. J. Mann and E. W. Tate, Nat. Commun., 2014, 5, 4919.

4M. Broncel, R. A. Serwa, P. Ciepla, E. Krause, M. J. Dallman, A. I. Magee and E. W. Tate, Angew. Chem. Int. Ed Engl., 2015, 54, 5948-5951.
5S.-E. Ong and M. Mann, Nat. Protoc., 2007, 1, 2650-2660.
6J. Rappsilber, Y. Ishihama and M. Mann, Anal. Chem., 2003, 75, 663-670.
7J. A. Vizcaíno, A. Csordas, N. del-Toro, J. A. Dianes, J. Griss, I. Lavidas, G. Mayer, Y. Perez-Riverol, F. Reisinger, T. Ternent, Q.-W. Xu, R. Wang and H. Hermjakob, Nucleic Acids Res., 2016, 44, D447-D456.
8J. Cox and M. Mann, Nat. Biotechnol., 2008, 26, 1367-1372.

