Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Sumanene Derivatives Functionalized at the Internal Carbon

Contents

1. Characterization of bromosumanenone 3	S2
2. Experimental	S6
3. X-Ray analysis data of (+)-5 and (-)-5	S12
4. Comparison of the absorption-emission spectra between 1, 5 and 6	S12
5. NMR spectra	S13
6. Computational data	S32
7. Reference	S44

1. Characterization of bromosumanenone (3)

Since the single crystal of 3 suitable for X-ray analysis was not obtained, the structure of **3** was determined by the combination of the mass spectrometry, IR, NMR, and calculation. The observed signal at 197.8 ppm in ¹³C-NMR spectrum and the band at 1656 cm⁻¹ in IR spectrum clearly indicated the existence of a carbonyl group in the structure of **3**. The signal at 57.7 ppm in 13 C-NMR spectrum was assigned to be the carbon of CBr. Two aromatic doublet pairs of the signals in ¹H-NMR spectrum support the existence of two benzene rings, which excludes the possibility of the addition of Br at the two benzene rings. Accordingly, there are 5 possible regioisomers or stereoisomers 3a-e for bromodienone structure 3 (Figure S1). Among them, the structures 3d and 3e were excluded because of the absence of the corresponding α -methine proton in the ¹H-NMR spectrum. The signal at 5.47 ppm in the ¹H-NMR spectrum which associated with the ¹³C signal at 113.5 ppm in HMQC (Figure S14) also indicated the existence of an olefinic proton of dienone. In addition, the olefinic carbon was observed in DEPT-135 (Figure S13), which was assigned to be The signal at 57.7 ppm in ¹³C-NMR spectrum was assigned to be the -CH-. quaternary sp^3 -carbon of CBr that was inactive in DEPT-135.

Figure S1 Structure of *o*-bromohydroxysumanene 2 and five possible structures of 3

To clarify the position of bromide among **3a**, **3b**, and **3c**, we employed the comparison of the experimental ¹³C-NMR chemical shifts and the calculated ones. The ¹³C-NMR chemical shifts of **3a-c** were calculated by GIAO method at ω B97XD/6-311++G(d,p) level (Figure S2, Table S1). The calculated ¹³C-NMR signals of **3b** were well-matched with the observed signals, while those of **3a** and **3c** gave significant differences. Experimental HMQC, HMBC, and NOESY correlations of **4** were also consistent to the structure of **3b** (Figure S3, Table S2). Thus, we concluded the structure of bromosumaneneone **3** to be **3b**.

Figure S2 Comparison between calculated 13 C-NMR (B3LYP/6-311+G(2d,p) with tetramethylsilane as a standard at 0 ppm) and observed NMR of **3**.

Calcu	lated ^a	Experi	mental ^b	Calcu	lated ^a	Experin	mental ^b
C=O	198.1	C=O	197.8	C(17)	141.3	C	141.2
C(3)	159.7	С	158.5	CH(11)	125.7	СН	126.6
C(16)	155.8	С	151.5	CH(7)	125.3	СН	126.4
C(8)	151.0	С	150.8	CH(12)	122.7	CH(12)	123.5
C(10)	150.5	С	150.2	CH(6)	120.9	CH(6)	121.9
C(19)	150.4	С	150.1	CH(2)	112.5	CH(2)	113.5
C(20)	149.6	С	149.2	CBr(15)	61.0	CBr(15)	57.7
C(18)	146.6	С	146.8	CH ₂ (14)	44.1	CH ₂ (13)	46.8
C(21)	146.5	С	146.6	CH ₂ (9)	38.0	CH ₂ (9)	41.4
C(13)	143.5	С	142.4	$CH_2(4)$	36.0	$CH_2(4)$	39.6
C(5)	143.7	С	142.3				

Table S1 Calculated ¹³C NMR chemical shifts of **3b** and experimental values of **3**

^{*a*}The ¹³C-NMR were calculated at GIAO/B3LYP/6-311+G(2d,p) on the optimized structure **3b** by ω B97XD/6-311++G(d,p). Tetramethylsilane as a reference at 0 ppm. ^{*b*}Measured in CD₂Cl₂ solution.

Observed HMBC

 $H_{B} H_{A}$ $H_{B'} H_{A}$ $H_{B'} H_{A}$ $H_{C} = 5$ $H_{C} =$

Observed NOESY

Figure S3 Observed HMBC and NOESY of 3

C (DEPT)	HMQC; ¹ H (ppm) ^{<i>a</i>}	¹³ C (ppm)	HMBC ^b
			$({}^{2}J, {}^{3}J \text{ and } {}^{4}J)$
C=O(1)	-	197.8	$H_A, H_{B'}, H_H, H_{H'}$
CH (2)	5.47 (<i>d</i> , 1.6)	113.5	$H_B, H_{B'}$
CH ₂ (4)	3.41 (<i>d</i> , 19.2), 4.55 (<i>d</i> , 18.4)	39.7	H _A , H _c
CH (6)	6.99 (<i>d</i> , 7.2)	121.9	$H_B, H_{B'}, H_D, H_{E'}$
CH (7)	7.32 (<i>d</i> , 8.8)	126.6	$H_{C}(w)$
CH ₂ (9)	3.58 (<i>d</i> , 19.2), 4.72 (<i>d</i> , 19.6)	41.4	H_D overlaps with H_F
CH (11)	7.30 (<i>d</i> , 8.4)	126.4	$H_{G}(w)$
CH (12)	6.94 (<i>d</i> , 7.2)	123.5	$\mathrm{H_{F},H_{H},H_{H^{\prime}}}$
CH ₂ (14)	3.49 (<i>d</i> , 18.8), 4.17 (<i>d</i> , 18.8)	46.8	H_A , H_G
C-Br (15)	_	57.7	$H_{I}, H_{I'}, H_{A}$

 Table S2 ¹H, ¹³C lists and HMBC correlation of 3

^{*a*} Alphabet and value in parenthesis are multiplicity and *J* coupling constant in Hz. ^{*b*} Relaxation delay = 4 s.

2. Experimental

General Information

All chemicals were reagent grade and used as received unless otherwise mentioned. Commercially available *N*-bromosuccinimide was purified by recrystalization from water. ¹H- and ¹³C-NMR spectra were measured on a JEOL JNM-ECZS at 23 °C at 400 and 100 MHz, respectively. A residual solvent peak was used as an internal standard (¹H-NMR: CDCl₃ 7.24 ppm, CD₂Cl₂ 5.32 ppm; ¹³C-NMR: CDCl₃ 77.0 ppm, CD₂Cl₂ 53.8 ppm). High resolution mass spectra (HRMS) were measured on a JEOL JMS-700 using fast atom bombardment (FAB) mode. Gel permeable chromatography (GPC) was conducted on JAIGEL 1H and 2H using a JAI Recycling Preparative HPLC LC-908W with CHCl₃ as eluent. Infrared (IR) spectra were recorded on a JASCO FT IR-4100 spectrometer. UV– visible absorption spectra were recorded on a JASCO V-670 spectrometer. Fluorescence spectra were recorded on a JASCO FP6500 spectrometer. Melting points were determined on Standford Research Systems MPA 100 and were uncorrected. Merck pre-coated TLC plate (silica gel 60 F254 0.25 mm) was used for thin-layer chromatography (TLC) analysis. Preparative thin-layer chromatography (PTLC) was prepared using Wako Wakogel B-5F.

Bromosumanenone (3)

Light was avoided through the experiment by covering the glasswares containing the compound **3** with aluminum foil, because the conversion from **3** to **4** was promoted by light. To a solution of $2^{[2]}$ (6.0 mg, 0.021 mmol) in dry CH₂Cl₂ (5 mL) under N₂ atmosphere was added *N*-bromosuccinimide (4.4 mg, 0.026 mmol) at 0 °C. After addition of NBS, the solution color gradually changed from colorless to orange within 3 min and TLC checking indicated that **2** was consumed within 5 min. Solvent was removed by evaporation in vacuum at 0 °C. The residue was dissolved in cold 40 mL hexane by sonication and the solution was washed with cold water (15 mL x 3) to remove succinimide and remaining NBS. The organic layer was dried over Na₂SO₄, filtered through cotton, and evaporated in vacuum at 0 °C to afford **3** as an orange solid (7.1 mg, 92% yield).

Mp: 46 °C (decomp.); ¹H NMR (CD₂Cl₂): δ 7.32 (*d*, *J* = 7.6 Hz, 1H), 7.30 (*d*, *J* = 7.2 Hz, 1H), 6.99 (*d*, *J* = 7.2 Hz, 1H), 6.94 (*d*, *J* = 7.2 Hz, 1H), 5.47 (*d*, *J* = 1.6 Hz, 1H), 4.72 (*d*, *J* = 19.6 Hz, 1H), 4.54 (*d*, *J* = 18.0 Hz, 1H), 4.17 (*d*, *J* = 19.2 Hz, 1H), 3.57 (*d*, *J* = 19.6 Hz, 1H), 3.48 (*d*, *J* = 18.8 Hz, 1H), 3.41 (*d*, *J* = 18.4 Hz, 1H); ¹³C NMR (CD₂Cl₂): 197.8, 158.5, 151.5, 150.8, 150.2, 150.15, 149.2, 146.8, 146.6, 142.4, 142.36, 141.2, 126.6, 126.4, 123.5, 121.9, 113.5, 57.7, 46.8, 41.4, 39.6 ppm; IR (KBr): v 3038, 2924, 1655, 1548, 1408, 929, 799 cm⁻¹. HRMS (FAB) m/z: Calcd. for C₂₁H₁₃OBr [M]⁺ 357.9993, found 358.0004.

o-Bromohydroxysumanene (4) from hydroxysumanene (2)

0.5 mL of 49 mM Bromine in dry CH_2Cl_2 (0.025 mmol) was added dropwise to a solution of $2^{[2]}$ (6.0 mg, 0.021 mmol) in 5 mL dry CH_2Cl_2 at 0 °C over 30 min under N₂ atmosphere. After completion of reaction, excess bromine was quenched by saturated aqueous Na₂S₂O₃ solution. The reaction mixture was extracted with CH_2Cl_2 (5 mL x 3). The combined organic layers were washed with water (5mL x 3) and brine, dried over Na₂SO₄ filtered through cotton, and evaporated in vacuum. The crude product was purified by PTLC (50% CH_2Cl_2 /hexane) to give 4 as a pale orange solid (6.8 mg, 88% yield).

o-Bromohydroxysumanene (4) from bromosumanenone (3)

0.5 mL of 1.78 mM trifluoroacetic acid (0.891 μ mol) in dry CH₂Cl₂ was added dropwise to a solution of **3** (3.2 mg, 8.91 μ mol) in 5 mL dry CH₂Cl₂ at 0 °C. The reaction was quenched by H₂O (5 mL) after completion of reaction. The reaction mixture was extracted with CH₂Cl₂ (5 mL x 3). The combined organic layers were washed with water (5 mL x 3) and brine, dried

over Na₂SO₄, filtered through cotton, and evaporated in vacuum. The crude product was purified by PTLC (50% CH₂Cl₂/hexane) to give **4** as a pale orange solid (2.9 mg, 91% yield).

Mp: 105 °C (decomp.); ¹H NMR (CDCl₃): δ 7.13-7.03 (*m*, 4H), 5.80 (*brs*, 1H), 4.66 (*d*, *J* = 21.6 Hz, 1H), 4.63 (*d*, *J* = 20.0 Hz, 1H), 4.60 (*d*, *J* = 21.2 Hz, 1H), 3.56 (*d*, *J* = 20.0 Hz, 1H), 3.40 (*d*, *J* = 19.6 Hz, 1H), 3.38 (*d*, *J* = 19.6 Hz, 1H); ¹³C NMR (CDCl₃): 151.2, 149.5, 149.3, 149.0, 148.9, 148.8, 148.4, 147.9, 147.69, 147.68, 147.0, 141.6, 131.7, 123.9, 123.5, 123.4, 122.8, 106.9, 43.3, 41.6, 39.9 ppm; IR (KBr): v 3461 (br), 2920, 1715, 1684, 1635, 1400, 1259, 784 cm⁻¹; HRMS (FAB) m/z: Calcd. for C₂₁H₁₃OBr [M]⁺ 357.9993, found 358.0006.

Hydroxysumanenone (5) from hydroxysumanene (2)

To a solution of $2^{[2]}$ (6.0 mg, 0.021 mmol) in 5 mL dry CH₂Cl₂ was added *N*bromosuccinimide (4.4 mg, 0.026 mmol) at 0 °C under N₂ atmosphere. After completion of reaction, solvent was removed by evaporation in vacuum at 0 °C. 50% THF/H₂O (10 mL) was added to the residue and the solution was stirred at 0 °C until it became homogeneous. Silver acetate (5.4 mg, 0.032 mmol) was added to the solution and the mixture was stirred for 15 min at 0 °C. The mixture was diluted with water (5 mL) and extracted with CH₂Cl₂ (5 mL x 3). The organic layer was dried over Na₂SO₄, filtered through cotton, and evaporated in vacuum. The crude residue was purified by PTLC (10% EtOAc/CH₂Cl₂) to give **5** (2.5 mg, 40% yield) as a yellow solid.

Mp: 61 °C (decomp.); ¹H NMR (CDCl₃): δ 7.31 (*d*, *J* = 8.0 Hz, 1H), 7.17 (*d*, *J* = 8.0 Hz, 1H), 7.07 (*d*, *J* = 8.4 Hz, 1H), 6.85 (*d*, *J* = 8.0 Hz, 1H), 5.74 (*d*, *J* = 2.4 Hz, 1H), 4.44 (*d*, *J* = 16.8 Hz, 1H), 4.41 (*d*, *J* = 19.6 Hz, 1H), 4.14 (*d*, *J* = 22.0 Hz, 1H), 3.245 (*d*, *J* = 17.2 Hz, 1H), 3.240 (*d*, *J* = 21.2 Hz, 1H), 3.08 (*d*, *J* = 22.0 Hz, 1H), 2.85 (*brs*, 1H); ¹³C NMR (CDCl₃): 186.4, 162.1, 161.6, 148.5, 148.3, 147.8, 145.0, 144.9, 144.1, 143.9, 141.0, 139.7, 129.8, 128.0, 125.5, 125.47, 125.4, 70.4, 40.7, 40.6, 36.8 ppm; IR (KBr): v 3375 (br), 2928, 1651, 1624, 1037, 786 cm⁻¹; HRMS (FAB) m/z: Calcd. for C₂₁H₁₂O₂ [M]⁺ 296.0837, found 296.0847.

Methoxysumanenone (6)

To a solution of **2** (6.0 mg, 0.021 mmol) in dry CH_2Cl_2 (5 mL) was added *N*bromosuccinimide (4.4 mg, 0.026 mmol) at 0 °C under N₂ atmosphere. After completion of reaction, solvent was removed by evaporation in vacuum at 0 °C. Methanol (10 mL) was added to the residue and the solution was stirred at 0 °C for 30 min. Solvent was removed by evaporation in vacuum. The residue was purified by PTLC (CH_2Cl_2) to give **6** (2.7 mg, 40% yield) as a yellow solid.

Mp: 112 °C (decomp.); ¹H NMR (CDCl₃): δ 7.30 (*d*, *J* = 7.6 Hz, 1H), 7.16 (*d*, *J* = 8.0 Hz, 1H), 7.06 (*d*, *J* = 7.6 Hz, 1H), 6.85 (*d*, *J* = 8.0 Hz, 1H), 5.84 (*d*, *J* = 2.4 Hz, 1H), 4.41 (*d*, *J* = 20.0 Hz, 1H), 4.35 (*d*, *J* = 17.6 Hz, 1H), 4.17 (*d*, *J* = 22.0 Hz, 1H), 3.63 (*s*, 3H), 3.23 (*d*, *J* = 20.4 Hz, 1H), 3.21 (*d*, *J* = 17.6 Hz, 1H), 3.08 (*d*, *J* = 22.0 Hz, 1H); ¹³C NMR (CDCl₃): 186.5, 159.8, 159.5, 148.3, 148.1, 147.4, 147.2, 145.7, 144.5, 144.3, 141.4, 138.9, 129.6, 127.9, 127.1, 125.3, 123.3, 75.6, 52.8, 40.7, 40.68, 37.2 ppm; IR (KBr): v 2920, 1651, 1396, 1050, 792 cm⁻¹. ; HRMS (FAB) m/z: Calcd. for C₂₂H₁₄O₂ [M+H]⁺ 311.1072, found 311.1061.

Separation of enantiomers of 5 and 6 by chiral SFC

The enantiomers of **5** (4.6 mg) or **6** (5.2 mg) were separated by using a JASCO supercritical fluid chromatography (SFC) system equipped with CD and UV detectors (254 nm) and a DAICEL chiral column CHIRALPAX IA to afford (+)-**5** (2.1 mg) and (-)-**5** (2.3 mg) (Figure S4) or (+)-**7** (2.5 mg) and (-)-**6** (2.4 mg) (Figure S5). Each enantiomer was obtained with >99% ee as indicated by the chiral SFC analysis of the obtained samples (Figure S6-9) (+)-**5** (t_{R} =13.26 min): [α]²⁰_D= +210.7 (*c*=0.015, CH₂Cl₂). (-)-**5** (t_{R} =14.96 min): [α]²⁰_D= -202.0 (*c*=0.005, CH₂Cl₂). (+)-**6** (t_{R} =7.03 min): [α]²⁰_D= +249.5 (*c*=0.02, CH₂Cl₂). (-)-**6** (t_{R} =8.54 min): [α]²⁰_D= -246.7 (*c*=0.015, CH₂Cl₂).

Figure S4 SFC chart of hydroxysumanenone 5. Column CHIRALPAK IA (eluent=CH₂Cl₂ 0.8 mL/min), CO₂ 0.8 mL/min), UV and CD detector absorbed at 254 nm. For UV detector : peak 1, t_{R} =13.26 min, area% 50.097 peak 2, t_{R} =14.96 min, area% 49.903

Figure S5 SFC chart of methoxysumanenone 6. Column CHIRALPAK IA (eluent= CH_2Cl_2 0.5 mL/min, CO₂ 0.8 mL/min), UV and CD detector absorbed at 254 nm.

For UV detector : peak 1, t_R=7.03 min, area% 50.967 peak 2, t_R=8.54 min, area% 49.033

Figure S6 SFC chart of the separated (+)-**5**. Column CHIRALPAK IA (eluent= $CH_2Cl_2 0.8$ mL/min, $CO_2 0.8$ mL/min), UV and CD detector absorbed at 254 nm. For UV detector : t_R =16.93 min

Figure S7 SFC chart of the separated (-)-5. Column CHIRALPAK IA (eluent= $CH_2Cl_2 0.8$ mL/min, $CO_2 0.8$ mL/min), UV and CD detector absorbed at 254 nm. For UV detector : t_R =18.97 min

Figure S8 SFC chart of the separated (+)-6. Column CHIRALPAK IA (eluent= $CH_2Cl_2 0.5$ mL/min, $CO_2 0.8$ mL/min), UV and CD detector absorbed at 254 nm. For UV detector : t_R =6.89 min

Figure S9 SFC chart of the separated (-)-6. Column CHIRALPAK IA (eluent= $CH_2Cl_2 0.5$ mL/min, $CO_2 0.8$ mL/min), UV and CD detector absorbed at 254 nm. For UV detector : t_R =8.96 min

3. X-Ray analysis data

The single crystals of (+)-5 and (-)-5 were obtained by the crystalization of separated pure enantiomers from 20%MeOH/CH₂Cl₂. The diffraction data for (+)-5 and (-)-5 were recorded on a RIGAKU/MSC XtaLAB P200 X-ray diffractometer with a Cu-target ($\lambda = 1.54187$ Å) equipped with a two-dimensional X-ray detector (PILATUS 200K/R) at 150 K in house. The diffraction images were processed by using CrysAlisPro.^[3] The structures were solved by direct methods (SHELXS)^[4] and refined by full-matrix least squares calculations on F^2 (SHELXL)^[5] using the Olex2 program package.^[6] Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC-1512434 for (-)-5 and CCDC-1512435 for (+)-5. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html

(+)-5: C₂₁H₁₂O₂, *M*r = 296.31, crystal dimensions $0.08 \times 0.05 \times 0.02 \text{ mm}^3$, trigonal, *P*3₁, *a* = 9.982914(7) Å, *b* = 9.98291(7) Å, *c* = 11.95223(9) Å, *V* = 1031.56(2) Å³, *T* = -123 °C, *Z* = 3, ρ_{calcd} = 1.431 g cm⁻³, μ = 7.28 cm⁻¹, 2859 unique reflections out of 2886 with *I*>2*o*(*I*), 217 parameters, 5.116°< θ <76.313°, *R*₁= 0.0332, w*R*₂= 0.1092, GOF = 1.063, Flack parameter = 0.08(6).

(-)-5: C₂₁H₁₂O₂, *M*r = 296.31, crystal dimensions $0.10 \times 0.05 \times 0.02 \text{ mm}^3$, Trigonal, *P*3₂, *a* = 9.98192(9) Å, *b* = 9.98192(9) Å, *c* = 11.95006(8) Å, *V* = 1031.17(2) Å³, *T* = -123 °C, *Z* = 3, ρ_{calcd} = 1.431 g cm⁻³, μ = 7.28 cm⁻¹, 2804 unique reflections out of 2913 with *I*>2 σ (*I*), 217 parameters, 5.116°< θ <77.063°, *R*₁= 0.0420, w*R*₂= 0.1253, GOF = 1.114, Flack parameter = 0.14(8).

4. Comparison of the absorption-emission spectra between 1, 5 and 6

Figure 4 Absorption (left) and emission (right) spectra of 1, 5 and 6 in CH_3CN . The emission spectra were excited at the absorption maxima.

5. NMR spectra

Figure S11. ¹H-NMR spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S12. ¹³C-NMR spectrum of bromosumanenone 3 (CD₂Cl₂)

O "Br

Figure S13. DEPT-135 spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S14. HMQC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S15. Enlarged HMQC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S16. HMBC spectrum of bromosumanenone 3 (CD₂Cl₂), relaxation delay 4 s

Figure S17. Enlarged area A of HMBC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S18. Enlarged area B of HMBC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S19. Enlarged area C of HMBC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S20. Enlarged area D of HMBC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S21. Enlarged area E of HMBC spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S22. NOESY spectrum of bromosumanenone 3 (CD₂Cl₂)

Figure S23. ¹H-NMR spectrum of *o*-bromohydroxysumanene 4 (CDCl₃)

Figure S24. ¹³C-NMR spectrum of *o*-bromohydroxysumanene 4 (CDCl₃)

Figure S25. ¹H-NMR spectrum of hydroxysumanenone 5 (CDCl₃)

Figure S26. ¹³C-NMR spectrum of hydroxysumanenone 5 (CDCl₃)

Figure S27. ¹H-NMR spectrum of methoxysumanenone 6 (CDCl₃)

Figure S28. ¹³C-NMR spectrum of methoxysumanenone 6 (CDCl₃)

Figure S29. DEPT-135 spectrum of methoxysumanenone 6 (CDCl₃)

4.0

5.0

3.0

80.0

90.0

100.0

110.0

120.0

130.0

7.0

6.0

Figure S32. HMBC spectrum of methoxysumanenone 6 (CDCl₃), relaxation delay 4 s

Figure S33. Enlarged area A of HMBC spectrum of methoxysumanenone 6 (CDCl₃)

Figure S34. Enlarged area B of HMBC spectrum of methoxysumanenone 6 (CDCl₃)

Figure S35. Enlarged area C of HMBC spectrum of methoxysumanenone 6 (CDCl₃)

Figure S36. Enlarged area D of HMBC spectrum of methoxysumanenone 6 (CDCl₃)

Figure S37. NOESY spectrum of methoxysumanenone 6 (CDCl₃)

6. Computational data

All the computational results were obtained by Gaussian09.^[2]

3a [wb97xd/6-311++g(d,p)]Symbolic Z-matrix: Charge = 0 Multiplicity = 1С -1.23751 1.39961 -0.88031 С -2.08624 0.31152 -0.78182 С -1.5844 -1.00794 -0.94677 С -0.23572 -1.2039 -1.15947 С 0.61871 -0.08242 -1.12962 С -2.35774 -1.93256 -0.24512 С 0.44122 -2.35698 -0.75706 С 0.92055 2.26868 -0.52671 С -1.44533 2.57247 -0.14887 С -3.20728 0.3096 0.04814 С -0.10468 3.3461 -0.10934 Н -0.10345 4.18551 -0.81228 0.11347 3.74282 0.88347 Н -1.73156 -3.12766 0.0847 С Н -2.2512 -3.88134 0.66736 С -2.61157 2.62713 0.60039 Η -2.81964 3.48085 1.237 С -3.4905 1.50423 0.69554 Н -4.31434 1.5723 1.39857 С -3.59765 -1.1702 0.27746 Н -4.50732 -1.44069 -0.26897 Η -3.77491 -1.37618 1.33504 С -0.34152 -3.34394 -0.17735 Н 0.10635 -4.25178 0.21237 С 0.14952 1.17746 -1.07568 С 1.9531 -2.00502 -0.77878 Н 2.37229 -2.16092 -1.77882 2.55457 -2.55228 -0.05717 Η С 1.88401 -0.4729 -0.49114 С 2.881 0.69814 -0.61422 0 4.05126 0.57104 -0.85191 1.57095 -0.40237 1.5586 Br

С	2.23651	2.05544	-0.32402
Н	2.91339	2.79523	0.08779
E(RwB97XD)	-345	6.100278	15 a.u.
Imaginary frequency 0			

3b [wb97xd/6-311++g(d,p)]

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	0.90322 1.38103 0.9031
С	2.20558 1.02266 0.64913
С	2.55704 -0.36911 0.54483
С	1.60077 -1.34726 0.70899
С	0.22819 -1.00471 0.98707
С	3.64784 -0.53366 -0.29215
С	1.66683 -2.56364 0.04443
С	-1.32443 0.86601 0.77062
С	0.34861 2.54612 0.40221
С	3.05023 1.79623 -0.12946
С	0.2486 -3.15209 0.03693
С	-1.17568 2.34772 0.40351
Н	0.15378 -4.05547 0.64852
Н	-0.06397 -3.42159 -0.97543
Н	-1.7052 3.00234 1.10476
Н	-1.6022 2.53633 -0.5857
С	-1.99884 -1.65474 0.31826
С	3.81107 -1.80347 -0.85727
Н	4.63137 -2.00468 -1.53909
С	1.21947 3.41649 -0.26365
Н	0.85227 4.33844 -0.70278
С	2.5596 3.04547 -0.52677
Н	3.15523 3.70261 -1.15206
С	4.18306 0.87481 -0.63295
Н	5.13661 1.08364 -0.13631
Н	4.34288 0.99166 -1.70734
С	2.83204 -2.81138 -0.68915
Н	2.95019 -3.73452 -1.24681
0	-2.82813 -2.42132 -0.10479
С	-0.12027 0.38044 1.10862

С	-2.43034	-0.13431	0.62786
Н	-3.41582	0.26259	0.75514
С	-0.59965	-1.99239	0.5785
Br	-1.63941	-2.61431	2.05506
E(RwB97XD)) -345	6.1241939	9 a.u.
Imaginary frequency 0			

3c [wb97xd/6-311++g(d,p)]

Symbolic Z-matrix:

Charge = 0 M	Aultiplicity = 1
С	-0.40507 -1.40795 0.54436
С	-1.53295 -0.62319 0.55968
С	-1.44813 0.81198 0.70383
С	-0.20504 1.40539 0.73065
С	0.98981 0.59399 0.67025
С	-2.54021 1.41978 0.10725
С	0.02273 2.63933 0.13694
С	1.96536 1.2638 0.0425
С	1.80703 -1.62499 -0.10834
С	-0.35137 -2.56563 -0.20847
С	-2.6865 -0.95959 -0.13524
С	1.50993 2.70055 -0.22185
С	1.12054 -2.96445 -0.38245
Н	2.07853 3.42116 0.37547
Н	1.65535 2.97295 -1.27047
Н	1.41838 -3.71867 0.35336
Н	1.34796 -3.34826 -1.3781
С	3.06644 0.4878 -0.5823
С	-2.37152 2.73926 -0.32846
Н	-3.18441 3.26908 -0.81477
С	-1.53125 -2.99027 -0.82803
Н	-1.54202 -3.88886 -1.43591
С	-2.69608 -2.19639 -0.78256
Н	-3.55882 -2.51494 -1.35904
С	-3.54133 0.31364 -0.27273
Н	-4.41077 0.29492 0.39351
Н	-3.91321 0.44349 -1.29169
С	-1.09727 3.34493 -0.31619
Н	-0.98488 4.3116 -0.79609

0	4.04135	1.0007	-1.0913
С	0.95067	-0.88097	0.89882
С	2.81311	-0.99839	-0.7242
Н	3.44833	-1.48832	-1.45576
Br	1.37619	-1.36408	2.69705
E(RwB97XD)	-345	6.121260	l 1 a.u.

Imaginary frequency 0

3b [wb97xd/6-311g(d,p) nosymm freq scrf(pcm,solvent=Dichloromethane)]

Symbolic Z-matrix:

Charge = 0 M	Iultiplicity	v = 1	
С	4.65369	0.83332	-0.59262
С	4.17261	1.3056	0.57309
С	4.99146	1.17889	1.76826
С	4.69124	2.28104	2.6186
С	5.66494	2.80557	3.44309
С	5.69622	4.15775	3.79809
С	6.03345	0.26364	-0.69913
С	9.19586	3.07076	3.19735
С	6.97836	2.26821	3.39398
С	7.25563	1.20918	2.54619
С	6.22146	0.62107	1.77095
С	6.79514	-0.10123	0.61098
С	8.3322	0.21409	0.67562
С	9.47788	2.00407	2.29512
С	8.49778	1.09967	1.91612
С	3.07138	2.331	0.89058
С	3.66764	3.07862	2.09836
С	3.60955	4.39016	2.53795
С	4.62251	4.93044	3.3881
С	7.14169	4.47618	4.23237
С	7.91921	3.25148	3.70589
Н	9.96859	3.81542	3.35831
Н	8.62398	0.74861	-0.23179
Н	8.9197	-0.70291	0.7139
Н	10.44776	5 1.9974	8 1.80892
Н	2.1363	1.82397	1.15317
Н	2.87035	2.98767	0.0431

Н	2.86584	5.07421	2.14268
Н	4.59718	5.99698	3.5865
Н	7.22973	4.57752	5.3194
Н	7.50141	5.40495	3.78509
0	6.57765	0.14584	-1.76879
Н	4.18122	1.03143	-1.54784
Br	6.45067	-2.05126	0.81126
E(RwB97XD)	-345	6.1228985	51 a.u.

Imaginary frequency 0

HBr [wb97xd/6-311g(d,p) scrf(pcm,solvent=Dichloromethane)]

Symbolic Z-matrix:			
Charge = 0 M	lultiplicity	y = 1	
Br	2.88991	-1.92039	1.68036
Н	4.27098	-1.99096	1.32091
E(RwB97XD)	-257	4.7810475	3 a.u.

Imaginary frequency 0

INT1a [wb97xd/6-311g(d,p) scrf(pcm,solvent=Dichloromethane)]

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	4.66036	0.89052	-0.62428
С	4.18625	1.35995	0.55225
С	4.98858	1.2029	1.74972
С	4.68594	2.28789	2.62165
С	5.65896	2.79141	3.46126
С	5.69369	4.13653	3.84386
С	6.00395	0.28666	-0.72539
С	9.19089	3.0613	3.22431
С	6.97266	2.25415	3.40159
С	7.25321	1.21407	2.53001
С	6.21961	0.6466	1.7416
С	6.79143	-0.05251	0.56806
С	8.32562	0.28305	0.62247
С	9.47438	2.01837	2.29435
С	8.49399	1.12335	1.89392
С	3.09189	2.3867	0.87159
С	3.67181	3.10033	2.10694

С	3.61559	4.40333	2.57293
С	4.62415	4.92121	3.44271
С	7.13758	4.44402	4.28872
С	7.91323	3.23064	3.7365
Н	9.96204	3.80333	3.40197
Н	8.59703	0.86626	-0.2606
Н	8.93061	-0.6228	0.60979
Н	10.44208	3 2.02816	5 1.80465
Н	2.14895	1.87849	1.10037
Н	2.91231	3.0626	0.0353
Н	2.88051	5.09909	2.18295
Н	4.60292	5.98374	3.66065
Н	7.22427	4.52205	5.37737
Н	7.49975	5.38146	3.86328
0	6.54156	0.07898	-1.80244
Н	4.17337	1.10815	-1.56757
Н	5.7353	0.2942 -	3.32258
Br	5.06912	0.47676	-4.61268
Br	6.47684	-2.01266	0.76503
E(RwB97XD)	-603	0.914341	66 a.u.
Imaginary frequency 0			

TS1a [wb97xd/6-311g(d,p) scrf(pcm,solvent=Dichloromethane)]					
Symbolic Z-m	Symbolic Z-matrix:				
Charge = 0 M	Iultiplicit	y = 1			
С	4.51498	0.56643	-0.45563		
С	4.11801	1.16294	0.68656		
С	5.02179	1.1368	1.80411		
С	4.72851	2.18832	2.6835		
С	5.7443	2.72171	3.4651		
С	5.77258	4.07025	3.81148		
С	5.89894	0.00081	-0.57957		
С	9.27364	2.98693	3.18238		
С	7.05992	2.18177	3.41721		
С	7.3336	1.12999	2.56571		
С	6.27799	0.57289	1.77205		
С	6.8057	0.07646	0.58941		
С	8.32552	0.17498	0.64617		

С	9.54912 1.91527 2.2863	С	7.51391 1.39052 2.33895
С	8.55748 1.0138 1.91659	С	6.54113 0.66563 1.5663
С	3.02617 2.19311 1.02448	С	7.13615 0.00153 0.56683
С	3.66978 2.96602 2.18937	С	8.65136 0.20452 0.65757
С	3.62237 4.27933 2.62244	С	9.71669 2.2179 2.13878
С	4.66995 4.82437 3.42883	С	8.77621 1.24262 1.78943
С	7.22334 4.40777 4.21041	С	3.29466 2.1034 0.5689
С	7.99787 3.17565 3.70104	С	3.77349 2.96067 1.75182
Н	10.04643 3.7337 3.32661	С	3.61613 4.30515 2.09884
Н	8.6999 0.66931 -0.2532	С	4.58943 4.9708 2.88075
Н	8.78309 -0.8177 0.6805	С	7.16029 4.75719 3.70919
Н	10.51319 1.90731 1.79029	С	8.01986 3.53166 3.32802
Н	2.10171 1.69525 1.3312	Н	10.07828 4.13551 3.03506
Н	2.79599 2.83383 0.17353	Н	9.0398 0.59701 -0.28637
Н	2.86265 4.95986 2.25611	Н	9.1867 -0.72806 0.86466
Н	4.64176 5.89117 3.62361	Н	10.72299 2.18904 1.73409
Н	7.32974 4.54146 5.29138	Н	2.31085 1.65152 0.73887
Н	7.56893 5.32483 3.73073	Н	3.22748 2.69686 -0.3457
0	6.48367 0.04617 -1.73934	Н	2.81919 4.89952 1.66428
Н	5.83428 0.03648 -2.51777	Н	4.48624 6.04282 3.01344
Br	4.50967 0.01057 -4.09832	Н	7.24126 5.00022 4.77407
Н	3.94964 0.60069 -1.38042	Н	7.45969 5.64508 3.1474
Br	5.79346 -2.16019 0.10691	Н	4.23954 -0.23993 -1.31539
E(RwB97XD)	-6030.88804111 a.u.	0	6.9473 -0.85308 -1.60674
Imaginary free	juency 1	Br	5.48735 1.80146 -2.027
		Н	6.35357 -1.13994 -2.30533
INT2a [wb972	xd/6-311g(d,p)	Br	5.38915 -2.29863 0.22721
Symbolic Z-m	atriv.	E(RwB97XD)	-6030.89461633 a.u.
Symbolic Z-matrix: Charge = 0 Multiplicity = 1		Imaginary free	luency 0
C	4 95437 0 34474 -0 74052		
C	4.3957 1.03578 0.46147	TS2a [wb97xc scrf=(solvent=	l/6-311g(d,p) dichloromethane.pcm)]
С	5.18317 1.12167 1.5463	Symbolic Z-m	atrix:
С	4.83109 2.28256 2.33753	Charge = 0 N	fultiplicity = 1
С	5.78299 2.93716 3.0874	C	1.64151 -0.02996 -0.23722
С	5.73415 4.30211 3.32382	С	0.4794 -0.94866 -0.06671
С	6.24362 -0.54138 -0.48608	С	-0.67544 -0.45053 0.43068
С	9.33986 3.35217 2.89785	С	-1.7869 -1.33621 0.1207
С	7.15009 2.48283 3.08713	С	-3.05129 -0.8246 -0.07152

C -3.05129 -0.8246 -0.07152

С	-3.9462 -1.39283 -0.97871	С	0.62827 -0.97492 0.02953
С	1.33145 1.47826 -0.04342	С	-0.39964 -0.39749 0.69875
С	-4.34796 2.32828 -1.21624	С	-1.4775 -1.33875 0.8644
С	-3.26901 0.60088 0.01203	С	-2.77679 -0.89238 0.9383
С	-2.22646 1.45931 0.30497	С	-3.84507 -1.63633 0.45512
С	-0.90753 0.94523 0.48045	С	1.2438 1.38139 -0.72376
С	0.03533 1.91122 0.19782	С	-4.52844 1.95768 -0.32385
С	-0.69526 3.24273 -0.09755	С	-3.05014 0.50845 0.81576
С	-3.27914 3.21704 -0.90952	С	-2.02553 1.42492 0.65444
С	-2.16772 2.76645 -0.19843	С	-0.68695 0.96987 0.55108
С	0.21918 -2.37228 -0.60375	С	0.08381 1.87848 -0.16816
С	-1.33084 -2.44446 -0.58786	С	-0.79003 3.10823 -0.4671
С	-2.25776 -3.11915 -1.38751	С	-3.47889 2.89992 -0.49503
С	-3.56398 -2.59532 -1.58004	С	-2.18681 2.61014 -0.06539
С	-4.9947 -0.30498 -1.35484	С	0.32739 -2.46085 -0.14446
С	-4.3214 0.98959 -0.81204	С	-1.14371 -2.55782 0.2981
Н	-5.12569 2.68282 -1.88273	С	-2.20932 -3.38754 -0.06082
Н	-0.35209 3.68052 -1.03782	С	-3.54936 -2.93128 0.02102
Н	-0.55362 3.96642 0.71177	С	-5.00937 -0.65746 0.19662
Н	-3.29153 4.20572 -1.35142	С	-4.31157 0.71672 0.27863
Н	0.68497 -3.12178 0.04749	Н	-5.48091 2.18036 -0.79301
Н	0.61234 -2.48839 -1.61642	Н	-0.74875 3.3841 -1.52228
Н	-1.95497 -3.97285 -1.982	Н	-0.47445 3.9792 0.11442
Н	-4.20413 -3.07422 -2.31141	Н	-3.6834 3.78814 -1.08161
Н	-5.96222 -0.48911 -0.8757	Н	1.01132 -3.07156 0.45564
Н	-5.13408 -0.25109 -2.43702	Н	0.46002 -2.76468 -1.18592
Н	2.43852 -0.26934 0.47657	Н	-2.02885 -4.34541 -0.53618
0	2.26168 2.37843 -0.33224	Н	-4.32432 -3.56664 -0.39353
Br	2.42826 -0.24242 -2.05398	Н	-5.80784 -0.75809 0.93829
Н	3.14757 1.997 -0.55215	Н	-5.45488 -0.82006 -0.78655
Br	2.42377 0.85297 2.72001	Н	2.43698 0.05018 0.37794
E(RwB97XD	o) -6030.89218042 a.u.	0	2.02253 2.16441 -1.43138
Imaginary fre	equency 1	Br	2.71786 -0.77499 -1.94995
		Н	2.70533 1.65421 -1.89336
INT3a [wb9]	7xd/6-311g(d,p)	Br	3.8626 0.26159 1.96423
Sumbolio 7	-demotomentane,peni)j	E(RwB97XD)	-6030.90286566 a.u.
Symbolic Z-matrix:			

Imaginary frequency 0

S36

Charge = 0 Multiplicity = 1

1.66805 -0.06366 -0.47692

С

TS3a [wb97xd/6-311g(d,p) scrf=(solvent=dichloromethane,pcm)]

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	-0.03343 -0.38151 1.06595	o-Bro
С	-1.12149 -1.32186 0.98204	[wb97
С	-2.40521 -0.87325 0.77285	scrf(po
С	-2.64475 0.52929 0.60646	Symb
С	-1.60954 1.44483 0.68278	Charg
С	-0.28101 0.98773 0.87174	С
С	-3.75731 0.74523 -0.19264	С
С	-1.60858 2.63693 -0.04366	С
С	0.62904 1.90114 0.34793	С
С	1.11626 -0.9551 0.63347	С
С	-0.67172 -2.53646 0.49143	С
С	-3.3414 -1.61038 0.05993	С
С	-0.1575 3.13553 -0.12415	С
С	0.86064 -2.4387 0.38374	С
С	1.88269 1.40656 0.05602	С
С	-3.83628 1.99221 -0.81628	С
С	-1.63263 -3.36043 -0.1006	С
С	-2.95786 -2.90196 -0.31078	С
С	-4.42032 -0.62657 -0.43878	С
С	-2.77461 2.93358 -0.74392	С
0	2.79793 2.19426 -0.45593	С
С	2.24205 -0.04162 0.37637	С
Br	3.58967 -0.74184 -0.83669	С
Н	0.02276 4.00044 0.52068	С
Н	0.11455 3.42095 -1.14178	С
Н	1.39601 -3.0564 1.11364	С
Н	1.21881 -2.73331 -0.606	Н
Н	-4.66242 2.2213 -1.48114	Н
Н	-1.35236 -4.31431 -0.53372	Н
Н	-3.62293 -3.53171 -0.89146	Н
Н	-5.36224 -0.73219 0.10839	Н
Н	-4.63901 -0.77909 -1.49733	Н
Н	-2.84513 3.82758 -1.3527	Н
Н	2.85667 0.24313 1.49976	Н
Н	3.56542 1.68679 -0.76141	Н

 Br
 3.18232
 1.96198
 2.39512

 E(RwB97XD)
 -6030.90186843
 a.u.

 Imaginary frequency 1

o-Bromohydroxysumanene (4)

[wb97xd/6-311g(d,p), scrf(pcm,solvent=Dichloromethane)]

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

С	4.76152 0.01599 -0.3372
С	4.23947 0.83009 0.66418
С	5.03738 0.96125 1.80433
С	4.71274 2.17126 2.50113
С	5.67832 2.81483 3.25946
С	5.69047 4.2024 3.43305
С	6.0945 -0.53274 -0.29088
С	9.2571 3.02087 3.16276
С	7.0068 2.28055 3.32677
С	7.32687 1.11942 2.6394
С	6.32641 0.45156 1.85941
С	6.91546 -0.25613 0.81182
С	8.45163 -0.19405 1.00882
С	9.58643 1.82445 2.45053
С	8.60332 0.88484 2.11805
С	3.15918 1.93969 0.72078
С	3.68513 2.86482 1.85487
С	3.59911 4.23501 2.1266
С	4.59411 4.8995 2.91189
С	7.13549 4.5911 3.85693
С	7.94108 3.29598 3.55294
Н	10.04013 3.76732 3.27736
Н	8.95733 0.09885 0.08211
Н	8.8747 -1.16435 1.30325
Н	10.59958 1.73191 2.06571
Н	2.16125 1.53232 0.93386
Н	3.0867 2.46339 -0.23888
Н	2.84589 4.8533 1.64324
Н	4.53771 5.98362 2.98019
Н	7.19345 4.87542 4.91712

Н	7.50975 5.44476 3.28097	Excited State 8: energy = $4.8117 \text{ eV}=257.6$	7 nm,	
0	6.62441 -1.21343 -1.34016	oscillator strength=0.0722		
Н	5.97543 -1.22063 -2.06833	67 -> 71 0.65427		
Br	3.78081 -0.21514 -1.98036	69 -> 70 -0.17991		
E(RwB97X	D) -3456.13461435 a.u.	Excited State 9: energy = 4.8126 eV=257.6	3 nm,	
Imaginary f	requency 0	oscillator strength=0.0721		
		67 -> 72 0.65408		
TD-DFT C	alculations	68 -> 70 -0.18220		
TD-DFT Ca	alculation of 1	Excited State 10: energy = $5.1101 \text{ eV}=242.6$	53 nm,	
b3lyp/6-311	+g(d,p)	oscillator strength=0.0319		
(68.69: deg	enerated HOMO, 70.71: degenerated LUMO)	67 -> 71 -0.13422		
E: 4-1 04		68 -> 73 0.45578		
Exciled Sta	1: energy = 3.8272 eV = 323.93 nm,	68 -> 74 0.11574		
68 > 71	0 40528	69 -> 73 -0.11704		
69 -> 72	0.49574	69 -> 74 0.46056		
Excited Sta	te 2: energy = $3,0027$ eV= $310,53$ nm	Excited State 11: energy = 5.1103 eV=242.6	52 nm,	
oscillator st	renoth=0.0000	oscillator strength=0.0319		
$68 \rightarrow 72$	0 49670	67 -> 72 -0.13439		
60 -> 71	0.49915	68 -> 73 0.11534		
0) -> /1	0.47713	68 -> 74 -0.45395		
Excited Star	te 3: energy = $4.0203 \text{ eV} = 308.39 \text{ nm}$,	69 -> 73 0.46223		
oscillator st	rength=0.0011	69 -> 74 0.11740		
67 -> 71	0.17558			
69 -> 70	0.67713	Excited State 12: energy = $5.1994 \text{ eV} = 238.46 \text{ nm}$,		
		oscillator strength=0.0000		
Excited Star	te 4: energy = $4.0217 \text{ eV} = 308.29 \text{ nm}$,	65 -> 71 -0.10345		
oscillator st	rength=0.0012	66 -> 72 -0.10506		
67 -> 72	0.17562	68 -> 73 -0.13412		
68 -> 70	0.67712	68 -> 74 0.46838		
Evoited Sta	$t_{a} = 5$: anarov = 4.4537 aV=278.38 nm	69 -> 73 0.46018		
oscillator et	rength=0.3308	69 -> 74 0.13197		
68 > 71	0.47732	Excited State 13: energy = $52409 \text{ eV}=236^{\circ}$	57 nm	
00 - 71	0.47752	oscillator strength=0.0103	<i>//</i> IIII,	
09 -> 12	0.47045	$65 \rightarrow 72 = -0.18982$		
Excited Star	te 6: energy = $4.4538 \text{ eV} = 278.38 \text{ nm}$,	66 -> 71 0 18907		
oscillator st	rength=0.3309	68 -> 73 0 43314		
68 -> 72	0.47828	68 -> 74 0 12422		
69 -> 71	-0.47589	69 -> 74 -0.42821		
Excited Sta	te 7: energy = $4.7771 \text{ eV} = 259.54 \text{ nm}$,	Excited State 14: energy = $5.2884 \text{ eV} = 234.4$	14 nm.	
oscillator st	rength=0.0000	oscillator strength=0.0000	,	
67 -> 70	0.69985	69 -> 75 0.69584		

88 -> 91 Excited State 15: energy = 5.2900 eV=234.37 nm, 0.67278 oscillator strength=0.0000 90 -> 91 0.11202 68 -> 75 0.69578 Excited State 4: energy = 3.7947 eV=326.73 nm, Excited State 16: energy = 5.5243 eV=224.43 nm, oscillator strength=0.0251 oscillator strength=0.0041 87 -> 91 -0.20222 68 -> 77 -0.40624 90 -> 92 0.63003 69 -> 76 0.56506 Excited State 5: energy = 3.9266 eV=315.75 nm, Excited State 17: energy = 5.5309 eV=224.17 nm, oscillator strength=0.0432 oscillator strength=0.0006 86 -> 91 0.25737 68 -> 76 -0.43985 87 -> 91 0.53142 69 -> 77 90 -> 93 0.53548 -0.20656 Excited State 18: energy = 5.5312 eV=224.15 nm, Excited State 6: energy = 4.0582 eV=305.51 nm, oscillator strength=0.0007 oscillator strength=0.0054 68 -> 77 0.56308 86 -> 91 0.58069 69 -> 76 90 -> 94 0.40413 0.23053 Excited State 19: energy = 5.5352 eV=223.99 nm, Excited State 7: energy = 4.1314 eV=300.10 nm, oscillator strength=0.0000 oscillator strength=0.0144 67 -> 75 85 -> 91 0.17679 0.53495 68 -> 760.52642 90 -> 93-0.36525 69 -> 770.42955 Excited State 8: energy = 4.1844 eV=296.30 nm, oscillator strength=0.0103 Excited State 20: energy = 5.7400 eV=216.00 nm, 85 -> 91 oscillator strength=0.0330 0.33664 65 -> 710.11468 90 -> 93 0.42587 66 -> 70 0.49174 Excited State 9: energy = 4.3330 eV=286.14 nm, 66 -> 72 -0.10283 oscillator strength=0.1625 67 -> 73 -0.21950 87 -> 91 0.30591 67 -> 74 0.34230 90 -> 94 0.51860 TD-DFT Calculation of 3b Excited State 10: energy = 4.4575 eV=278.15 nm, b3lyp/6-311+g(d,p) oscillator strength=0.1188 (90: HOMO, 91: LUMO) 89 -> 92 0.51089 Excited State 1: energy = 2.5417 eV=487.79 nm, oscillator strength=0.0390 Excited State 11: energy = 4.5290 eV=273.76 nm, 88 -> 91 -0.10468 oscillator strength=0.0271 90 -> 91 0.69133 84 -> 91 0.57147 89 -> 93 -0.22894 Excited State 2: energy = 3.0044 eV=412.67 nm, oscillator strength=0.0271 Excited State 12: energy = 4.6252 eV=268.06 nm, 89 -> 91 0.69196 oscillator strength=0.0614 90 -> 92 0.12686 89 -> 92 0.20835 89 -> 93 0.22947 Excited State 3: energy = 3.2444 eV=382.15 nm, 89 -> 94 0.37003 oscillator strength=0.0067

Excited State 13: energy = 4.7825 eV=259.24 nm, Excited State 2: energy = 3.1201 eV=397.37 nm, oscillator strength=0.1690 oscillator strength=0.0055 89 -> 930.45451 74 -> 78 0.49242 89 -> 94 -0.38901 75 -> 78 -0.37338 90 -> 92 0.17022 76 -> 78 0.29462 77 -> 78 0.10446 Excited State 14: energy = 4.8476 eV=255.76 nm, oscillator strength=0.1583 Excited State 3: energy = 3.4026 eV = 364.39 nm, 83 -> 91 0.45781 oscillator strength=0.0658 74 -> 78 89 -> 92 0.19845 -0.1769389 -> 93 0.18795 75 -> 78 0.23855 76 -> 78 0.61296 Excited State 15: energy = 5.0093 eV=247.51 nm, 77 -> 79 0.13176 oscillator strength=0.0954 90 -> 95 0.56012 Excited State 4: energy = 3.7616 eV = 329.61 nm, oscillator strength=0.0456 Excited State 16: energy = 5.0906 eV=243.55 nm, 74 -> 78 0.43003 oscillator strength=0.0047 75 -> 78 0.52837 88 -> 92 0.64604 77 -> 79 0.10092 90 -> 96 0.23370 Excited State 5: energy = 4.1617 eV=297.92 nm, Excited State 17: energy = 5.1442 eV=241.02 nm, oscillator strength=0.0662 oscillator strength=0.0002 73 -> 780.19732 88 -> 92 -0.23049 76 -> 80 -0.12774 90 -> 96 0.58715 77 -> 79 0.60645 -0.16305 77 -> 80 Excited State 18: energy = 5.1786 eV=239.42 nm, oscillator strength=0.0113 Excited State 6: energy = 4.3222 eV = 286.85 nm, 88 -> 93 0.56102 oscillator strength=0.0283 90 -> 96 0.20295 71 -> 78 -0.29033 73 -> 78 0.59277 Excited State 19: energy = 5.2235 eV=237.36 nm, 77 -> 79 -0.18733 oscillator strength=0.0017 90 -> 97 0.68587 Excited State 7: energy = 4.5222 eV=274.17 nm, oscillator strength=0.0516 Excited State 20: energy = 5.3134 eV=233.34 nm, 71 -> 78 -0.34977oscillator strength=0.0453 73 -> 78 -0.11966 87 -> 92 0.53257 75 -> 79 0.11209 89 -> 95 -0.34811 77 -> 79 0.14351 TD-DFT Calculation of 5 77 -> 800.53641 b3lyp/6-311+g(d,p) Excited State 8: Singlet-A 4.5369 eV 273.28 nm (77: HOMO, 78: LUMO) f=0.0116 Excited State 1: energy = 2.7744 eV=446.89 nm, 70 -> 78 -0.11419 oscillator strength=0.0266 71 -> 78 0.45119 74 -> 78 -0.1235972 -> 78 0.32368 77 -> 78 0.69125 73 -> 78 0.17255

75 -> 79	0.11198	Excited Stat	e 14: energy = $5.2480 \text{ eV} = 236.25 \text{ nm}$,
77 -> 80	0.29883	oscillator str	rength=0.0111
		74 -> 79	0.27354
Excited State	e 9: energy = $4.6303 \text{ eV} = 267.77 \text{ nm}$,	74 -> 80	0.41635
oscillator str	ength=0.0538	75 -> 79	-0.29135
71 -> 78	0.12799	75 -> 80	-0.35829
76 -> 79	0.55850		
77 -> 79	0.12251	Excited Stat	e 15: energy = $5.2591 \text{ eV} = 235.75 \text{ nm}$,
77 -> 80	0.15747	oscillator sc	trength=0.0300
77 -> 81	0.28757	70 -> 78	0.40086
E	10.	74 -> 80	-0.17621
Excited State	10. energy = 4.0946 ev = 264.10 nm,	76 -> 81	0.40231
oscillator sat	engtn=0.0530	77 -> 82	-0.25793
/1 -> /8	-0.16654	77 -> 83	0.14097
/2 -> /8	0.56621	E : 10.	1. 5 2750 . 11 225 0.4
/3 -> /8	-0.14039	Excited Stat	e 16: energy $5.2750 \text{ eV} = 235.04 \text{ nm},$
// -> 81	0.28219	oscillator str	rength=0.1804
Excited State	e 11: energy = 4.9115 eV=252.44 nm.	70 -> 78	0.32629
oscillator str	ength=0.1021	74 -> 79	0.16225
72 -> 78	-0 11708	74 -> 80	0.16349
74 -> 79	-0 12562	75 -> 79	0.32860
75 -> 79	-0.16879	76 -> 80	-0.17061
$75 \rightarrow 79$	-0.34117	76 -> 81	-0.15835
76 -> 80	0.33130	77 -> 81	0.27434
70 -> 80	0.17246	77 -> 83	-0.21503
77 -> 80	0.37360	Excited Stat	a_{17} anaroy = 5 3525 aV=231 64 nm
		exclicu Stat	e^{-17} . energy $-5.5525 e^{-251.04}$ mm,
Excited State	e 12: energy = $4.9634 \text{ eV} = 249.80 \text{ nm}$,	60 > 79	0 10040
oscillator set	rength=0.0198	09 - 70	0.10949
75 -> 79	0.34544	70 -> 78	0.226099
76 -> 79	0.11987	74 -> 79	-0.22627
76 -> 80	0.52841	/4 -> 80	0.20124
77 -> 79	0.11276	/5 -> /9	-0.20124
77 -> 80	-0.10882	75 -> 80	0.31217
77 -> 81	-0.11736	76 -> 79	0.10//4
Excited State	-12: energy = 5 1450 eV=240.08 nm	/6 -> 81	-0.21671
oscillator=0	-15. energy -5.1450 c v -240.96 mm,	77 -> 81	-0.14293
74 > 70	0.52408	77 -> 86	-0.15534
74 -> 79	0.352408	Excited Stat	e_{18} energy = 5 3768 eV=230 59 nm
/4 -> 80	-0.25209	oscillator str	renoth=0.0191
13 -~ 19 75 < 00	-0.17007	70 -> 78	0 13395
/ 3 -> 8U	0.12634	75 -> 79	0.11481
/6 -> 80	0.12034	77 -> 87	0.36766
/6 -> 81	-0.16487	11 - 02	0.50700
		// -> 83	0.33883

Excited State 19: energy = 5.4085 eV=229.24 nm, Excited State 6: energy = 4.1595 eV=298.07 nm, oscillator strength=0.0219 oscillator strength=0.0723 69 -> 78 -0.11963 76 -> 82 0.12515 74 -> 80 0.10096 80 -> 82 0.10842 75 -> 80 80 -> 83 0.21217 0.10078 76 -> 81 0.41006 80 -> 84 -0.13363 77 -> 82 0.37663 81 -> 83 0.62341 77 -> 83 -0.25632 81 -> 84 0.16134 Excited State 20: energy = 5.4563 eV=227.23 nm, Excited State 7: energy = 4.4266 eV=280.09 nm, oscillator strength=0.0055 oscillator strength=0.0271 69 -> 78 0.64184 75 -> 82 -0.13692 75 -> 80 76 -> 82 -0.13866 0.62861 77 -> 82 0.16765 77 -> 82 0.13909 81 -> 83 -0.15127 TD-DFT Calculation of 6 81 -> 84 0.10749 b3lyp/6-311+g(d,p) Excited State 8: energy = 4.5300 eV=273.69 nm, (81: HOMO, 82: LUMO) oscillator strength=0.0557 Excited State 1: energy = 2.7707 eV=447.48 nm, 75 -> 82 0.20814 oscillator strength=0.0247 79 -> 83 0.15282 78 -> 82 -0.13270 81 -> 83 -0.10169 81 -> 82 0.68888 81 -> 84 0.60742 81 -> 85 0.13127 Excited State 2: energy = 3.1115 eV=398.47 nm, oscillator strength=0.0062 Excited State 9: energy = 4.6219 eV = 268.26 nm, 78 -> 82 0.47274 oscillator strength=0.0528 79 -> 82 0.36049 75 -> 82 -0.16356 80 -> 82 -0.32419 80 -> 83 0.56696 81 -> 82 0.11904 81 -> 83 -0.12611 81 -> 84 0.14262 Excited State 3: energy = 3.4169 eV=362.85 nm, 81 -> 85 -0.26613 oscillator strength=0.0669 78 -> 82 0.19845 Excited State 10: energy = 4.6981 eV=263.90 nm, 79 -> 82 0.25505 oscillator strength=0.0454 80 -> 82 0.59761 75 -> 82 0.58235 81 -> 83 -0.13731 76 -> 82 0.10043 -0.30360 81 -> 85 Excited State 4: energy = 3.7456 eV = 331.01 nm, oscillator strength=0.0469 Excited State 11: energy = 4.9119 eV=252.42 nm, 78 -> 82 -0.44255 oscillator strength=0.0982 79 -> 82 0.51571 75 -> 82 0.12311 78 -> 83 -0.18640 Excited State 5: energy = 3.9484 eV=314.01 nm, 79 -> 83 0.18061 oscillator strength=0.0026 80 -> 83 0.34714 76 -> 82 -0.16147 80 -> 84 0.28473 77 -> 82 0.66636 79 -> 82 0.12154 81 -> 84 -0.19140

81 -> 85	0.36690	74 -> 82	0.35771
		78 -> 84	0.19122
Excited State	e 12: energy = $4.9555 \text{ eV} = 250.20 \text{ nm}$,	80 -> 85	-0.31323
oscillator str	ength=0.0189	81 -> 87	0.27765
78 -> 84	-0.10043		
79 -> 83	-0.33858	Excited State	e 18: energy = $5.2791 \text{ eV} = 234.86 \text{ nm}$,
80 -> 84	0.54340	oscillator str	ength=0.2006
81 -> 83	0.11783	74 -> 82	-0.28295
Excited State	2 + 12; anargy = 5 1120 aV = 242 53 nm	78 -> 83	-0.11243
	r = -242.55 mm,	78 -> 84	0.13514
	engtn=0.0027	79 -> 83	0.37698
/8 -> 83	0.55798	80 -> 84	0.16957
/8 -> 84	0.19332	80 -> 85	-0.20082
79 -> 83	0.22387	81 -> 85	-0.31525
79 -> 84	0.15259		
80 -> 84	0.16109	Excited Stat	e 19: energy = $5.3483 \text{ eV} = 231.82 \text{ nm}$,
80 -> 85	0.14408	oscillator str	ength=0.0816
Excited State	14: energy = 5 1757 eV=239 55 nm	73 -> 82	-0.14082
oscillator str	ength=0.0002	74 -> 82	0.26792
	0.60476	78 -> 83	-0.18762
01 -> 00	0.09470	78 -> 84	-0.18922
Excited State	e 15: energy = $5.2076 \text{ eV} = 238.08 \text{ nm}$,	79 -> 83	0.17614
oscillator str	ength=0.0056	79 -> 84	0.39685
73 -> 82	0.46996	80 -> 85	0.18022
74 -> 82	0.10948	81 -> 85	-0.12774
78 -> 83	-0.20821	81 -> 92	0.15320
78 -> 84	0.36224	Evoited Stat	2.20; margy = 5.2002 eV=220.60 mm
79 -> 83	-0.12510	Excited Stat	e^{-20} . energy -3.3982 e v -229.08 mm,
79 -> 84	0.20522	70 > 94	0.12404
		/9 -> 84	-0.13494
Excited State	e 16: energy = $5.2242 \text{ eV} = 237.33 \text{ nm}$,	80 -> 84	-0.10013
oscillator str	ength=0.0242	80 -> 85	0.44315
73 -> 82	0.37062	81 -> 87	0.46805
74 -> 82	0.28997		
78 -> 84	-0.32117		
79 -> 83	0.19509		
79 -> 84	-0.27411		
80 -> 85	-0.13437		
Excited State	e 17: energy = 5.2636 eV=235.55 nm,		

oscillator strength=0.0109

73 -> 82 -0.31552

7. References

- 1. Y. L. Chow, D. C. Zhao and C. I. Johansson, Can. J. Chem., 1988, 66, 2556-2564.
- 2. DOI: 10.1021/acs.joc.6b02046
- 3. CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- 4. G.M. Sheldrick, University of Gottingen, Germany, 1996.
- 5. G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 6. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.