Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Acetic Acid as a Catalyst for the *N*-Acetylation of Amines Using Acetate Esters as the Acyl Source

Daniel D. Sanz Sharley^a and Jonathan M. J. Williams^{a*}

^a Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.

E-mail: J.M.J.Williams@bath.ac.uk

<u>Contents</u>

Materials and Methods	S4
Acetamides	
Investigations into the effect of sulfuric acid on acetylation reactions	S5
General Procedure I – Sulfuric Acid Catalyst Screen	
Optimisation of the Reaction Conditions – Primary Amines	S5
General Procedure II – Catalyst Loading Screen	
General Procedure III – Reaction Time Screen	
General Procedure IV – Ethyl Acetate Solvent Screen	
General Procedure V – Reaction Temperature Screen	
Optimisation of the Reaction Conditions – Secondary Amines	S8
General Procedure VI – Catalyst Loading Screen with Ethyl Acetate	
General Procedure VII – Catalyst Loading Screen with Butyl Acetate	
General Procedure VIII – Reaction Temperature Screen	
Optimisation of the Reaction Conditions – Anilines	S9
General Procedure IX – Catalyst Loading Screen	
General Procedure X – Reaction Temperature Screen	
Synthesis of Acetamides	S11
General Procedure XI – Acetylation of Primary Amines	
General Procedure XII – Acetylation of Secondary Amines	
General Procedure XIII – Acetylation of Anilines	
General Procedure XIV – Scale-up Example	
Formamides and Other Amides	
Optimisation of the Reaction Conditions – Ethyl Formate	S19
General Procedure XV	
Optimisation of the Reaction Conditions – 4-Methyl Benzoate	S19
General Procedure XVI	
Synthesis of Formamides	S23
General Procedure XVII	
Synthesis of Other Amides	S23
General Procedure XVIII	
Investigations into the Reaction Mechanism	
Use of 3-Phenylpropionic Acid as the Catalyst	S27
General Procedure XIX – PhCH ₂ CH ₂ CO ₂ H Catalyst Screen	
Acetic Acid ¹³ C-Labelling Study	S28
General Procedure XX – ¹³ C-Labelled Acetic Acid Screen	

HPLC Traces	S33
¹ H and ¹³ C NMR Spectra	S34
References	S66

Materials and Methods

Unless preparative details are provided, all reagents were purchased from Alfa Aesar, Acros Organics, Aldrich, Fluka or Lancaster and used without further purification. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel 60 F254 aluminium or plastic plates, purchased from Fisher. The organic compounds were visualised under UV (254 nm) irradiation and stained with potassium permanganate dip, followed by gentle heating. Purification of the final products was performed by flash chromatography using the indicated solvent on Aldrich silica gel 60 (230-400 mesh).

¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Avance 250 (250 MHz), a Bruker Avance 300 (300 MHz) or an Agilent 500 (500 MHz) in CDCl₃ or DMSO-d₆ as solvents. Chemical shifts (δ) are reported as parts per million (ppm) and are referenced internally to the residual protic solvent signal for CDCl₃ (7.26 ppm) or DMSO-d₆ (2.50 ppm). Coupling constants (*J*) are reported in Hertz (Hz) and signal multiplicities are reported as singlet (s) , doublet (d), triplet (t), quartet (q), quintet (quint), sextet (sext), doublet of doublets (dd), multiplet (m), or broad singlet (br s). HRMS-ESI were run on an Agilent 1200 series LC/MSD coupled to a micrOTOF electrospray time-of-flight (ESI-TOF) mass spectrometer (Bruker Daltonik).

Infra-red spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer, using a Universal ATR accessory for sampling, with relevant absorbances quoted as v in cm⁻¹. Optical rotation ($[\alpha]_D$) values were measured at room temperature using an Optical Activity AA-10 Automatic Polarimeter (c = 1, CHCl₃). Enantiomeric excesses were measured by HPLC using an Agilent 1260 Infinity Quaternary LC System fitted with a Chiralcel OD column (25 cm, 0.8 cm diameter), eluting with HPLC grade hexane and isopropylalcohol. Melting points were determined using Stuart SMP10 melting point equipment using closed end glass capillary tubes and are uncorrected.

Acetylations

Investigations into the Effect of Sulfuric Acid on Acetylation Reactions

General Procedure I – Sulfuric Acid Catalyst Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added ethyl acetate (1 mL, 1 M) followed by the appropriate amount of H₂SO₄ (Table S1). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4methylbenzyl)acetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine) and 4.39 ppm (2H, *N*-(4-methylbenzyl)acetamide).

Table S1. Effect of sulfuric acid on acetylation reactions.

Optimisation of the Reaction Conditions - Primary Amines

General Procedure II – Catalyst Loading Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added ethyl acetate (1 mL, 1 M) followed by the appropriate amount of acetic acid (Table S2). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4methylbenzyl)acetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine) and 4.39 ppm (2H, *N*-(4-methylbenzyl)acetamide).

NH ₂	AcOH (mol%)	L L L
Entry	AcOH (mol%)	Conversion (%)
1	100	100
2	50	100
3	20	100
4	10	100
5	5	98
6	-	Traces

Table S2. Optimisation of the catalyst loading for the acetylation of primary amines.

General Procedure III – Reaction Time Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added ethyl acetate (1 mL, 1 M) followed by acetic acid (5.7 μ L, 10 mol%). The carousel tube was then sealed and the reaction mixture heated at 80 °C for the appropriate number of hours (Table S3). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4-methylbenzyl)acetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine) and 4.39 ppm (2H, *N*-(4methylbenzyl)acetamide).

NH ₂	AcOH (10 mol%)	T T
Entry	Time (h)	Conversion (%)
1	20	100
2	16	96
3	12	95
4	8	85

Table S3. Optimisation of the reaction time for the acetylation of primary amines.

General Procedure IV – Ethyl Acetate Solvent Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added the appropriate amount of ethyl acetate (Table S4) followed by acetic acid (5.7 μ L, 10 mol%). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4-methylbenzyl)acetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine) and 4.39 ppm (2H, *N*-(4-methylbenzyl)acetamide).

	AcOH (10 mol%)	H
Entry	EtOAc (mL)	Conversion (%)
1	2	100
2	1	100
3	0.5	100
4	0.25	90

Table S4. Optimisation of the solvent concentration for the acetylation of primary amines.

General Procedure V – Reaction Temperature Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added ethyl acetate (0.5 mL, 2 M) followed by acetic acid (5.7 μ L, 10 mol%). The carousel tube was then sealed and the reaction mixture heated at the appropriate temperature for 20 hours (Table S5). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4-methylbenzyl)acetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine) and 4.39 ppm (2H, *N*-(4methylbenzyl)acetamide).

Table S5. Optimisation of the reaction temperature for the acetylation of primary amines.

	NH ₂ EtOAc (2 M), 20 h	H N O
Entry	Temperature (°C)	Conversion (%)
1	80	100
2	60	53
3	40	10

Optimisation of the Reaction Conditions – Secondary Amines

General Procedure VI – Catalyst Loading Screen With Ethyl Acetate

To an oven dried Radleys carousel tube containing *N*-benzylmethylamine (129 µL, 1 mmol) was added ethyl acetate (0.5 mL, 2 M) followed by the appropriate amount of acetic acid (Table S6). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-Benzyl-*N*-methylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks of *N*-benzylmethylamine (2H, 3.78 ppm) and *N*-benzyl-*N*-methylacetamide (2H, 4.46 and 4.53 ppm, major and minor rotamers).

Table S6. Optimisation of the catalyst loading for the acetylation of secondary amines, using ethylacetate as the solvent.

	AcOH (mol%)	
L FR	EtOAc (2 M), 80 °C, 20 h	
Entry	AcOH (mol%)	Conversion (%)
1	50	32
2	100	45
3	250	31

General Procedure VII – Catalyst Loading Screen With Butyl Acetate

To an oven dried Radleys carousel tube containing *N*-benzylmethylamine (129 μ L, 1 mmol) was added butyl acetate (0.5 mL, 2 M) followed by the appropriate amount of acetic acid (Table S7). The carousel tube was then sealed and the reaction mixture heated at 120 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-Benzyl-*N*-methylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks of *N*benzylmethylamine (2H, 3.78 ppm) and *N*-benzyl-*N*-methylacetamide (2H, 4.46 and 4.53 ppm, major and minor rotamers). **Table S7.** Optimisation of the catalyst loading for the acetylation of secondary amines, using butylacetate as the solvent.

	AcOH (mol%)	
L R	BuOAc (2 M), 120 °C, 20 h	
Entry	AcOH (mol%)	Conversion (%)
1	-	Traces
2	10	76
3	25	94
4	50	100
5	100	100

General Procedure VIII – Reaction Temperature Screen

To an oven dried Radleys carousel tube containing *N*-benzylmethylamine (129 μ L, 1 mmol) was added butyl acetate (0.5 mL, 2 M) followed by acetic acid (28.6 μ L, 50 mol%). The carousel tube was then sealed and the reaction mixture heated at the appropriate temperature for 20 hours (Table S8). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-Benzyl-*N*-methylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks of *N*-benzylmethylamine (2H, 3.78 ppm) and *N*-benzyl-*N*-methylacetamide (2H, 4.46 and 4.53 ppm, major and minor rotamers).

Table S8. Optimisation of the reaction temperature for the acetylation of secondary amines.

	AcOH (50 mol%) BuOAc (2 M), 20 h	
Entry	Temperature (°C)	Conversion (%)
1	80	44
2	110	96
3	120	100

Optimisation of the Reaction Conditions - Anilines

General Procedure IX – Catalyst Loading Screen

To an oven dried Radleys carousel tube containing aniline (91 μ L, 1 mmol) was added ethyl acetate (0.5 mL, 2 M) followed by the appropriate amount of acetic acid (Table S9). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 24 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting

crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-phenylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 6.50-6.66 ppm (3H, aniline) and 7.28 ppm (2H, *N*-phenylacetamide).

	AcOH (equiv.)	
NH ₂	EtOAc (2 M), 80 °C, 24 h	N N
Entry	AcOH (equiv.)	Conversion (%)
1	0.5	16
2	1	37
3	2.5	58

Table S9. Optimisation of the catalyst loading for the acetylation of aniline derivatives.

General Procedure X – Reaction Temperature Screen

To an oven dried Radleys carousel tube containing aniline (91 μ L, 1 mmol) was added butyl acetate (0.5 mL, 2 M) followed by acetic acid (143 μ L, 2.5 equiv.). The carousel tube was then sealed and the reaction mixture heated at the appropriate temperature for 24 hours (Table S10). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-phenylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 6.50-6.66 ppm (3H, aniline) and 7.28 ppm (2H, *N*-phenylacetamide).

Table S10. Optimisatio	on of the reaction	temperature for	the acetylation	of aniline derivatives.
· · · · · · · · · · · · · · · ·				

		AcOH (2.5 equiv.)	
 Entry	~ NH ₂	BuOAc (2 M), 24 h	H Conversion (%)
 Entry		Temperature (C)	Conversion (%)
1		80	60
2		100	86
3		110	>99
4		120	96
5		130	93

Synthesis of Acetamides

General Procedure XI – Acetylation of Primary Amines

To an oven dried Radleys carousel tube containing the appropriate primary amine (2 mmol) was added ethyl acetate (1 mL, 2 M) followed by acetic acid (11.4 μ L, 10 mol%). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

General Procedure XII – Acetylation of Secondary Amines

To an oven dried Radleys carousel tube containing the appropriate secondary amine (2 mmol) was added butyl acetate (1 mL, 2 M) followed by acetic acid (57.2 μ L, 50 mol%). The carousel tube was then sealed and the reaction mixture heated at 120 °C for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

General Procedure XIII – Acetylation of Anilines

To an oven dried Radleys carousel tube containing the appropriate aniline (2 mmol) was added butyl acetate (1 mL, 2 M) followed by acetic acid (286 μ L, 2.5 equiv.). The carousel tube was then sealed and the reaction mixture heated at 110 °C for 24 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

General Procedure XIV - Scale-up Example

To a round bottomed flask containing benzylamine (7.3 mL, 67 mmol) was added ethyl acetate (34 mL, 2 M) followed by acetic acid (0.38 mL, 10 mol%). The round bottomed flask was then sealed and the reaction mixture heated at 80 °C for 22 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

Following general procedure XI, benzylamine (218 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.37) as an off-white solid (283 mg, 95%).

mp 61-63 °C (lit.¹ 61 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.34 – 7.22 (m, 5H, *Ph*), 6.14 (s, 1H, N*H*), 4.39 (d, *J* = 4.4 Hz, 2H, *CH*₂), 1.98 (s, 3H, *CH*₃); ¹³C NMR (126 MHz, CDCl₃): δ 170.0, 138.3, 128.6, 127.8, 127.4, 43.7, 23.2; HRMS-ESI calcd for [C₉H₁₁NONa]⁺: 172.0738 [M+Na]⁺. Found: 172.0758; FT-IR (neat) v in cm⁻¹: 1640 (C=O stretch).

N-(4-Chlorobenzyl)acetamide² (1b)

Following general procedure XI, 4-chlorobenzylamine (243 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (94:6, DCM/MeOH, R_f 0.31) as a beige solid (343 mg, 93%).

mp 107-108 °C (lit.² 106-108 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, J = 8.4 Hz, 2H, m-CH_{Ar}), 7.21 (d, J = 8.3 Hz, 2H, o-CH_{Ar}), 5.80 (s, 1H, NH), 4.39 (d, J = 5.9 Hz, 2H, CH₂), 2.02 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 170.0, 136.8, 133.3, 129.1, 128.8, 43.0, 23.2; HRMS-ESI calcd for [C₉H₁₀ClNONa]⁺: 206.0349 [M+Na]⁺. Found: 206.0376; FT-IR (neat) v in cm⁻¹: 1638 (C=O stretch).

N-(Pyridin-3-ylmethyl)acetamide³ (1c)

Following general procedure XI, 3-picolylamine (204 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (88:12, DCM/MeOH, R_f 0.32) as a yellow oil (271 mg, 90%).

¹H NMR (300 MHz, CDCl₃): δ 8.52 – 8.47 (m, 2H, 1 & 4), 7.63 (d, *J* = 7.8 Hz, 1H, 3), 7.28 – 7.21 (m, 1H, 2), 6.19 (br s, 1H, *6*), 4.43 (d, *J* = 5.9 Hz, 2H, 5), 2.02 (s, 3H, 7) ; ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 149.1, 148.8, 135.8, 134.3, 123.7, 41.1, 23.2; HRMS-ESI calcd for [C₈H₁₁N₂O]⁺: 151.0871 [M+H]⁺. Found: 151.0871; FT-IR (neat) v in cm⁻¹: 1648 (C=O stretch).

N-(2-Chlorobenzyl)acetamide⁴ (1d)

Following general procedure XI, 2-chlorobenzylamine (241 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (96:4, DCM/MeOH, R_f 0.30) as a white solid (348 mg, 95%).

mp 72-74 °C (lit.⁴ 71-73 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.35 (m, 2H, CH_{Ar}), 7.25-7.22 (m, 2H, CH_{Ar}), 5.87 (s, 1H, NH), 4.53 (d, J = 6.0 Hz, 2H, CH₂), 2.02 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 170.1, 135.7, 133.5, 130.0, 129.4, 128.8, 127.0, 41.5, 23.1; HRMS-ESI calcd for [C₉H₁₀ClNONa]⁺: 206.0348 [M+Na]⁺. Found: 206.0359; FT-IR (neat) v in cm⁻¹: 1639 (C=O stretch).

N-(4-Methylbenzyl)acetamide¹ (1e)

Following general procedure XI, 4-methylbenzylamine (255 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (94:6, DCM/MeOH, R_f 0.32) as a beige solid (323 mg, 99%).

mp 112-114 °C (lit.¹ 111 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.18 – 7.12 (m, 4H, CH_{Ar}), 5.76 (s, 1H, NH), 4.38 (d, J = 5.6 Hz, 2H, CH₂), 2.33 (s, 3H, PhCH₃), 2.00 (s, 3H, C(O)CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 169.8, 137.3, 135.2, 129.4, 127.9, 43.5, 23.3, 21.1; HRMS-ESI calcd for [C₁₀H₁₃NONa]⁺: 186.0895 [M+Na]⁺. Found: 186.0910; FT-IR (neat) v in cm⁻¹: 1633 (C=O stretch).

N-(3-(Trifluoromethyl)benzyl)acetamide⁵ (1h)

F₃C

Following general procedure XI, 3-(trifluoromethyl)benzylamine (287 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (93:7, DCM/MeOH, R_f 0.31) as a yellow-white solid (420 mg, 97%).

mp 56-57 °C (lit.⁵ 56-57 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.51 – 7.35 (m, 4H, CH_{Ar}), 6.67 (s, 1H, NH), 4.39 (d, J = 6.0 Hz, 2H, CH₂), 1.95 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ = 170.5, 139.6, 131.1, 131.0 (q, J_{CF} = 32.2 Hz), 129.2, 124.3 (q, J_{CF} = 3.8 Hz), 124.2 (q, J_{CF} = 3.8 Hz), 124.1 (q, J_{CF} = 272.2 Hz), 43.1, 23.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -62.67; HRMS-ESI calcd for [C₁₀H₁₀F₃NONa]⁺: 240.0612 [M+Na]⁺. Found: 240.0605; FT-IR (neat) v in cm⁻¹: 1628 (C=O stretch).

N-(2-Methoxybenzyl)acetamide⁴ (1i)

Following general procedure XI, 2-methoxybenzylamine (261 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.26) as a yellow solid (333 mg, 93%).

mp 93-95 °C (lit.⁴ 91-93 °C); ¹H NMR (300 MHz, CDCl₃): δ 7.29 – 7.21 (m, 2H, *o*-CH_{Ar} and *p*-CH_{Ar}), 6.94 – 6.83 (m, 2H, *m*-CH_{Ar}), 6.12 (s, 1H, NH), 4.40 (d, *J* = 5.8 Hz, 2H, CH₂), 3.84 (s, 3H, OCH₃), 1.95 (s, 3H, C(O)CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 157.5, 129.8, 128.9, 126.3, 120.7, 110.3, 55.3, 39.4, 23.4; HRMS-ESI calcd for [C₁₀H₁₃NO₂Na]⁺: 202.0844 [M+Na]⁺. Found: 202.0851; FT-IR (neat) v in cm⁻¹: 1646 (C=O stretch).

N-Hexylacetamide⁶ (1j)

Following general procedure XI, hexylamine (264 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (96:4, DCM/MeOH, R_f 0.36) as a colourless oil (276 mg, 97%).

¹H NMR (500 MHz, $CDCl_3$): δ 5.86 (s, 1H, 2), 3.18 (td, J = 7.2, 5.9 Hz, 2H, 3), 1.93 (s, 3H, 1), 1.47 – 1.42 (m, 2H, 4), 1.29 – 1.22 (m, 6H, 5-7), 0.84 (t, J = 6.7 Hz, 3H, 8); ¹³C NMR (126 MHz, $CDCl_3$): δ 170.2, 39.7, 31.4, 29.5, 26.6, 23.2, 22.5, 13.9; HRMS-ESI calcd for $[C_8H_{16}NO]^+$: 142.1226 [M-H]⁻. Found: 142.1251; FT-IR (neat) v in cm⁻¹: 1649 (C=O stretch).

N-(2-(5-Methoxy-1H-indol-3-yl)ethyl)acetamide⁷ (1k)

Following general procedure XI, 5-methoxytryptamine (380 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (94:6, DCM/MeOH, R_f 0.31) as a dark brown oil (324 mg, 70%).

¹H NMR (500 MHz, DMSO-d⁶): δ 10.63 (br s, 1H, CHN*H*), 7.92 (br s, 1H, CH₂N*H*), 7.22 (d, *J* = 8.7 Hz, 1H, NHCC*H*), 7.09 (s, 1H, CH_{Ar}), 7.01 (s, 1H, CH_{Ar}), 6.71 (d, *J* = 8.7 Hz, 1H, CH₃OCC*H*), 3.78 (s, 3H,

OCH₃), 3.30 (q, J = 7.0 Hz, 2H, CH₂NH), 2.77 (t, J = 7.4 Hz, 2H, CCH₂), 1.81 (s, 3H, C(O)CH₃); ¹³C NMR (126 MHz, DMSO-d⁶): δ 169.4, 153.4, 131.8, 128.0, 123.7, 112.4, 112.1, 111.5, 100.6, 55.8, 40.2, 25.7, 23.2; HRMS-ESI calcd for [C₁₃H₁₆N₂O₂Na]⁺: 255.1109 [M+Na]⁺. Found: 255.1116; FT-IR (neat) v in cm⁻¹: 1627 (C=O stretch).

N-(3-Hydroxypropyl)acetamide⁸ (1m)

Following general procedure XI, 3-amino-1-propanol (150 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (90:10, DCM/MeOH) as a colourless oil (209 mg, 89%).

R_f (80:20, DCM/MeOH) 0.24; ¹H NMR (500 MHz, CDCl₃): δ 6.01 (br s, 1H, 2), 3.64 (t, 2H, 5), 3.40 (q, J = 6.1 Hz, 2H, 3), 3.25 (br s, 1H, 6), 2.00 (s, 3H, 1), 1.71 – 1.65 (m, 2H, 4); ¹³C NMR (126 MHz, CDCl₃): δ 171.4, 59.3, 36.4, 32.2, 23.1; HRMS-ESI calcd for [C₅H₁₂NO₂]⁺: 118.0868 [M+H]⁺. Found: 118.0881; FT-IR (neat) v in cm⁻¹: 1625 (C=O stretch), 3287 (O-H stretch).

N-(3-Aminobenzyl)acetamide⁹ (1n)

Following general procedure XI, 3-aminobenzylamine (244 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (91:9, DCM/MeOH, R_f 0.28) as a orange-brown solid (308 mg, 94%).

mp 97-99 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.11 (t, *J* = 7.6 Hz, 1H, *3*), 6.68 – 6.63 (m, 1H, *5*), 6.63 – 6.57 (m, 2H, *2* & *4*), 5.66 (s, 1H, *7*), 4.34 (d, *J* = 5.6 Hz, 2H, *6*), 3.69 (s, 2H, *1*), 2.02 (s, 3H, *8*); ¹³C NMR (126 MHz, CDCl₃): δ 169.8, 146.8, 139.4, 129.6, 117.9, 114.4, 114.2, 43.8, 23.3; HRMS-ESI calcd for [C₁₈H₂₄N₄O₂Na]⁺: 351.1797 [2M+Na]⁺. Found: 351.1747; FT-IR (neat) v in cm⁻¹: 1617 (C=O stretch).

N-(2-(Benzylamino)ethyl)acetamide¹⁰ (10)

Following general procedure XI, *N*-benzylethylenediamine (300 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (90:10, DCM/MeOH) as a viscous yellow oil (346 mg, 90%).

R_f (85:15, DCM/MeOH) 0.28; ¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.24 (m, 5H, 1), 6.05 (br s, 1H, 5), 3.79 (s, 2H, 2), 3.34 (q, J = 5.5 Hz, 2H, 4), 2.78 (t, J = 5.8 Hz, 2H, 3), 1.97 (s, 3H, 6); ¹³C NMR (126 MHz, CDCl₃): δ 170.6, 139.7, 128.5, 128.1, 127.1, 53.5, 48.0, 39.1, 23.1; HRMS-ESI calcd for $[C_{11}H_{17}N_2O]^+$: 193.1341 [M+H]⁺. Found: 193.1324; FT-IR (neat) v in cm⁻¹: 1638 (C=O stretch).

1-(Indolin-1-yl)ethan-1-one¹¹ (2a)

Following general procedure XII, indoline (224 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (97:3, DCM/MeOH, R_f 0.31) as a brown solid (251 mg, 78%).

mp 98-100 °C (lit.¹¹ mp 100-102 °C); ¹H NMR (500 MHz, DMSO-d⁶): δ 8.03 (d, J = 8.0 Hz, 1H, CH_{Ar}), 7.21 (d, J = 7.2 Hz, 1H, CH_{Ar}), 7.13 (t, J = 7.6 Hz, 1H, CH_{Ar}), 6.97 (t, J = 7.4 Hz, 1H, CH_{Ar}), 4.07 (t, J = 8.5 Hz, 2H, NCH₂), 3.12 (t, J = 8.5 Hz, 2H, NCH₂CH₂), 2.14 (s, 3H, CH_3); ¹³C NMR (126 MHz, DMSO-d⁶): δ 168.5, 142.9, 131.7, 126.9, 124.7, 123.0, 115.8, 48.1, 27.3, 24.0; HRMS-ESI calcd for [C₁₀H₁₁NONa]⁺: 184.0738 [M+Na]⁺. Found: 184.0737; FT-IR (neat) v in cm⁻¹: 1642 (C=O stretch).

N-Benzyl-N-methylacetamide¹² (2b)

Following general procedure XII, *N*-benzylmethylamine (258 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (96:4, DCM/MeOH, R_f 0.33) as a yellow-brown oil (296 mg, 91%). The product was observed as two rotamers in its ¹H and ¹³C NMR spectra.

¹H NMR (500 MHz, DMSO-d⁶): δ 7.36 – 7.16 (m, 5H, *Ph*), 4.53 (s, 2H, minor rotamer, CH₂), 4.46 (s, 2H, major rotamer, CH₂), 2.88 (s, 3H, major rotamer, NCH₃), 2.77 (s, 3H, minor rotamer, NCH₃), 2.04 (s, 3H, major rotamer, C(O)CH₃), 2.02 (s, 3H, minor rotamer, C(O)CH₃); ¹³C NMR (126 MHz, CDCl₃): δ S16

170.3 (major rotamer), 170.3 (minor rotamer), 138.3 (major rotamer), 138.0 (minor rotamer), 129.2 (minor rotamer), 128.8 (major rotamer), 127.9 (major rotamer), 127.6 (minor rotamer), 127.4 (minor rotamer), 127.0 (major rotamer), 53.7 (minor rotamer), 50.1 (major rotamer), 35.8 (major rotamer), 33.6 (minor rotamer), 22.0 (major rotamer), 21.7 (minor rotamer); HRMS-ESI calcd for $[C_{10}H_{13}NONa]^+$: 186.0895 [M+Na]⁺. Found: 186.0897; FT-IR (neat) v in cm⁻¹: 1638 (C=O stretch).

1-(4-Cinnamylpiperazin-1-yl)ethan-1-one (2c)

Following general procedure XII, 1-cinnamylpiperazine (405 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (88:12, DCM/MeOH, R_f 0.31) as a dark brown oil (451 mg, 92%).

¹H NMR (500 MHz, CDCl₃): δ 7.45-7.42 (m, 2H, *m*-CH_{Ar}), 7.35 – 7.29 (m, 2H, *o*-CH_{Ar}), 7.26 – 7.21 (m, 1H, *p*-CH_{Ar}), 6.53 (d, *J* = 16.0 Hz, 1H, PhCH), 6.30 (dt, *J* = 15.9, 6.6 Hz, 1H, PhCHCH), 3.48 – 3.39 (m, 4H, C(O)NCH₂), 3.13 – 3.07 (m, 2H, CHCH₂), 2.39 (t, *J* = 5.0 Hz, 2H, CH₂NCH₂), 2.34 (t, *J* = 5.1 Hz, 2H, CH₂NCH₂), 1.98 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 168.1, 136.6, 132.3, 128.5, 127.4, 126.7, 126.2, 60.0, 52.8, 52.3, 45.6, 40.8, 21.2; HRMS-ESI calcd for [C₁₅H₂₀N₂ONa]⁺: 267.1473 [M+Na]⁺. Found: 267.1480; FT-IR (neat) v in cm⁻¹: 1627 (C=O stretch).

N-Phenylacetamide¹³ (3a)

N N

Following general procedure XIII, aniline (182 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.30) as a pale brown solid (249 mg, 92%).

mp 114-116 °C (lit.¹³ 114-115 °C); ¹H NMR (500 MHz, DMSO-d⁶): δ 9.90 (br s, 1H, NH), 7.57 (d, J = 8.0 Hz, 2H, o- CH_{Ar}), 7.28 (t, J = 7.7 Hz, 2H, m- CH_{Ar}), 7.01 (t, J = 7.4 Hz, 1H, p- CH_{Ar}), 2.04 (s, 3H, C(O)CH₃); ¹³C NMR (126 MHz, DMSO-d⁶): δ 168.2, 139.3, 128.6, 122.9, 118.9, 23.98; HRMS-ESI calcd for [C₈H₁₀NO]⁺: 136.0762 [M+H]⁺. Found: 136.0773; FT-IR (neat) v in cm⁻¹: 1662 (C=O stretch).

Following general procedure XIII, *p*-anisidine (246 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.26) as a brown solid (290 mg, 88%).

mp 129-130 °C (lit.¹³ 128-129 °C); ¹H NMR (500 MHz, DMSO-d⁶): δ 9.76 (br s, 1H, NH), 7.48 (d, *J* = 8.9 Hz, 2H, *o*-CH_{Ar}), 6.86 (d, *J* = 8.9 Hz, 2H, *m*-CH_{Ar}), 3.71 (s, 3H, OCH₃), 2.00 (s, 3H, C(O)CH₃); ¹³C NMR (126 MHz, DMSO-d⁶): δ 167.7, 155.0, 132.5, 120.5, 113.8, 55.1, 23.8; ESI-MS of [C₉H₁₁NO₂]⁺; HRMS-ESI calcd for [C₉H₁₂NO₂]⁺: 166.0868 [M+H]⁺. Found: 166.0887; FT-IR (neat) v in cm⁻¹: 1646 (C=O stretch).

N-Benzylacetamide¹⁴ (1a)

Following general procedure XIV, benzylamine (7.3 mL, 67 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.37) as an off-white solid (9.18 g, 92%).

mp 61-63 °C (lit.¹⁴ 61 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.34 – 7.21 (m, 5H, *Ph*), 6.18 (s, 1H, N*H*), 4.37 (d, *J* = 4.4 Hz, 2H, *CH*₂), 1.97 (s, 3H, *CH*₃); ¹³C NMR (126 MHz, CDCl₃): δ 170.1, 138.4, 128.7, 127.9, 127.5, 43.8, 23.2; HRMS-ESI calcd for [C₉H₁₁NONa]⁺: 172.0738 [M+Na]⁺. Found: 172.0752; FT-IR (neat) v in cm⁻¹: 1642 (C=O stretch).

Formamides and Other Amides

Optimisation of the Reaction Conditions – Ethyl Formate

General Procedure XV

To an oven dried Radleys carousel tube containing aniline (91 µL, 1 mmol) was added ethyl formate (0.5 mL, 2 M) followed by the appropriate amount of either formic acid or acetic acid. The carousel tube was then sealed and the reaction mixture heated at 20 °C for the appropriate amount of hoursm (Table S11). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-phenylformamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 6.50-6.66 ppm (3H, aniline) and 7.26-7.37 ppm (2H, major and minor rotamers, *N*-phenylformamide).

		Acid cat. (mc NH ₂ Ethyl formate (2 M	A), 20 °C	р Ч
Entry	Acid	Acid (mol%)	Time (h)	Conversion (%)
1	-	-	20	36
2	Formic acid	10	20	94
3	Formic acid	20	20	97
4	Formic acid	50	20	100
5	Acetic acid	50	20	100
6	Formic acid	50	16	100
7	Acetic acid	50	16	100

Table S11. Optimisation for the formylation of aniline.

Optimisation of the Reaction Conditions – 4-Methyl Benzoate

General Procedure XVI

To an oven dried Radleys carousel tube containing benzylamine (109 µL, 1 mmol) was added methyl benzoate followed by the appropriate amount of acetic acid. The carousel tube was then sealed and the reaction mixture heated at the appropriate temperature for 20 hours (Table S12). After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-benzylbenzamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.92 ppm (2H, benzylamine) and 4.66 ppm (2H, *N*-benzylbenzamide). Percentage conversion into *N*-benzylacetamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.92

ppm (2H, benzylamine) and 4.44 ppm (2H, *N*-benzylacetamide). Total conversion was calculated by the addition of the percentage conversions into *N*-benzylbenzamide and *N*-benzylacetamide.

(NH	H ₂ + 0	Acid cat. (mol%)	HN NO	+	→ ^H → O
				8a		8b
Entry	Acid	Temperature	Equivalents of	Conversion	Conversion	Total
	(mol%)	(°C)	Ester	into 8a (%)	into 8b (%)	Conversion
						(%)
1	10	110	1	23	5	28
2	10ª	110	1	6	3	9
3	50	110	1	17	21	38
4	50ª	110	1	7	13	20
5	10ª	110	3	5	1	6
6	10	120	3	17	3	20
7	10	120	4	16	2	8
8	20	120	4	11	3	14
9	10	150	1	32	6	38
10	10	150	3	18	2	20

Table S12. Optimisation for the reaction of methyl benzoate and benzylamine.

^a Reaction performed in toluene (2M).

Synthesis of Formamides

General Procedure XVII

To an oven dried Radleys carousel tube containing the appropriate aniline (2 mmol), was added ethyl formate (1 mL, 2 M) followed by acetic acid (28.6 μ L, 50 mol%). The carousel tube was then sealed and the reaction mixture heated at 20 °C for 16 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

N-Phenylformamide¹⁵ (7d)

N H H

Following general procedure XVII, aniline (182 μ L, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.30) as a colourless oil (228 mg, 94%).

¹H NMR (300 MHz, DMSO-d⁶): δ 10.16 (m, 1H, minor and major rotamers, NH), 8.79 (d, *J* = 11.0 Hz, 1H, minor rotamer, *CHO*), 8.27 (d, *J* = 1.9 Hz, 1H, major rotamer, *CHO*), 7.59 (d, *J* = 7.6 Hz, 2H, major rotamer, *o*-CH_{Ar}), 7.37 – 7.26 (m, 2H, minor and major rotamers, *m*-CH_{Ar}), 7.19 (d, *J* = 7.5 Hz, 2H, minor rotamer, *o*-CH_{Ar}), 7.11 – 7.02 (m, 1H, minor and major rotamers, *p*-CH_{Ar}); ¹³C NMR (75 MHz, DMSO-d⁶): δ 162.6 (minor rotamer), 159.6 (major rotamer), 138.4 (minor rotamer), 138.3 (major rotamer), 129.4 (minor rotamer), 128.9 (major rotamer), 123.7 (minor rotamer), 123.6 (major rotamer), 119.1 (major rotamer), 117.5 (minor rotamer); HRMS-ESI calcd for [C₇H₇NONa]⁺: 144.0425 [M+Na]⁺. Found: 144.0481; FT-IR (neat) v in cm⁻¹: 1670 (C=O stretch).

N-(4-Methoxyphenyl)formamide¹⁵ (7e)

N H

Following general procedure XVII, *p*-anisidine (246 mg, 2 mmol) was used as the amine species. The title compound was recovered after purification by column chromatography (95:5, DCM/MeOH, R_f 0.25) as a white-yellow solid (278 mg, 92%).

mp 79-81 °C (lit.¹⁵ 79-81 °C); ¹H NMR (500 MHz, DMSO-d⁶): δ 10.00 (br s, 1H, minor and major rotamers, NH), 8.59 (d, J = 11.1 Hz, 1H, minor rotamer, CHO), 8.20 (d, J = 1.6 Hz, 1H, major rotamer, CHO), 7.50 (d, J = 9.0 Hz, 2H, major rotamer, o-CH_{Ar}), 7.11 (d, J = 8.9 Hz, 2H, minor rotamer, o-CH_{Ar}), 6.91 – 6.86 (m, 2H, minor and major rotamers, m-CH_{Ar}), 3.72 (s, 3H, OCH₃); ¹³C NMR (126 MHz, DMSO-d⁶): δ 162.5 (minor rotamer), 159.0 (major rotamer), 156.0 (minor rotamer), 155.4 (major rotamer), 131.4 (major rotamer), 131.3 (minor rotamer), 120.6 (major rotamer), 119.7 (minor

rotamer), 114.6 (minor rotamer), 114.0 (major rotamer), 55.3 (minor rotamer), 55.2 (major rotamer); HRMS-ESI calcd for $[C_8H_9NO_2Na]^+$: 174.0531 [M+Na]⁺. Found: 174.0546; FT-IR (neat) v in cm⁻¹: 1655 (C=O stretch).

Synthesis of Other Amides

General Procedure XVIII

To an oven dried Radleys carousel tube containing the appropriate amine (2 mmol), was added the appropriate ester followed by acetic acid (11.4 μ L, 10 mol%), unless otherwise stated. The carousel tube was then sealed and the reaction mixture heated at 110 °C, unless otherwise stated, for 20 hours. After being allowed to cool to room temperature, the solvent was removed *in vacuo* on a rotary evaporator and the resulting crude amide product was purified by silica column chromatography.

N-Benzylpropionamide¹⁶ (7a)

Following general procedure XVIII, benzylamine (218 μ L, 2 mmol) and ethyl propionate (461 μ L, 4 mmol) were used as the amine and ester species, respectively. The title compound was recovered after purification by column chromatography (100% DCM) as a yellow oil (300 mg, 92%). R_f (96:4, DCM/MeOH) 0.34; ¹H NMR (300 MHz, CDCl₃): δ 7.38 – 7.24 (m, 5H, *Ph*), 5.71 (br s, 1H, N*H*), 4.45 (d, *J* = 5.7 Hz, 2H, PhCH₂), 2.25 (q, *J* = 7.6 Hz, 2H, CH₃CH₂), 1.19 (t, *J* = 7.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 173.6, 138.4, 128.8, 127.9, 127.6, 43.6, 29.8, 9.9; HRMS-ESI calcd for

[C₁₀H₁₃NONa]⁺: 186.0895 [M+Na]⁺. Found: 186.0949; FT-IR (neat) v in cm⁻¹: 1641 (C=O stretch).

N-Benzyl-2-phenylacetamide¹⁷ (7b)

Following general procedure XVIII, benzylamine (218 μ L, 2 mmol) and ethyl phenylacetate (638 μ L, 4 mmol) were used as the amine and ester species, respectively. The title compound was recovered after purification by column chromatography (from 100% DCM to 96:4, DCM/MeOH) as a white solid (419 mg, 93%).

R_f (99:1, DCM/MeOH) 0.34; mp 123-124 °C (lit.¹⁷ 121-123 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.37 – 7.21 (m, 8H, *Ph*), 7.20 – 7.15 (m, 2H, *Ph*), 6.05 (br s, 1H, N*H*), 4.38 (d, *J* = 5.9 Hz, 2H, NHC*H*₂), 3.58 (s, 2H, C(O)C*H*₂); ¹³C NMR (126 MHz, CDCl₃): δ 170.9, 138.2, 134.9, 129.4, 129.0, 128.6, 127.5, 127.4, 127.3, 43.8, 43.6; HRMS-ESI calcd for $[C_{15}H_{15}NONa]^+$: 248.1051 [M+Na]⁺. Found: 248.1108; FT-IR (neat) v in cm⁻¹: 1636 (C=O stretch).

N-Benzyl-2-cyanoacetamide¹⁸ (7c)

Following general procedure XVIII, benzylamine (218 μ L, 2 mmol) and ethyl cyanoacetate (426 μ L, 4 mmol) were used as the amine and ester species, respectively. The title compound was recovered after purification by column chromatography (from 100% DCM to 96:4, DCM/MeOH) as a white solid (327 mg, 94%).

R_f (96:4, DCM/MeOH) 0.31; mp 124-126 °C (lit.¹⁸ 124 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.47 – 7.17 (m, 5H, *Ph*), 6.54 (br s, 1H, N*H*), 4.45 (d, *J* = 5.7 Hz, 2H, PhCH₂), 3.36 (s, 2H, CNCH₂); ¹³C NMR (126 MHz, CDCl₃): δ 160.8, 136.8, 128.9, 128.0, 127.9, 114.6, 44.4, 25.8; HRMS-ESI calcd for $[C_{10}H_{10}N_2ONa]^+$: 197.0691 [M+Na]⁺. Found: 197.0696; FT-IR (neat) v in cm⁻¹: 1643 (C=O stretch), 2257 (C=N stretch).

N-Benzyl-2,2,2-trifluoroacetamide¹⁹ (7f)

Following general procedure XVIII, benzylamine (218 µL, 2 mmol) and ethyl trifluoroacetate (238 µL, 2 mmol) were used as the amine and ester species, respectively, and the reaction was performed at room temperature (25 °C) with no acid catalyst present. The title compound was recovered after purification by column chromatography (100% DCM, R_f 0.36) as a white solid (406 mg, 100%). mp 74-75 °C (lit.²⁰ 74-75 °C); ¹H NMR (300 MHz, CDCl₃): δ 7.46 – 7.19 (m, 5H, *Ph*), 6.82 (br s, 1H, N*H*), 4.51 (d, *J* = 5.8 Hz, 2H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃): δ 157.2 (q, *J*_{CF} = 37.1 Hz), 135.9, 129.1, 128.3, 128.0, 115.9 (q, *J*_{CF} = 287.7 Hz), 43.9; ¹⁹F NMR (470 MHz, CDCl₃): δ -75.84; HRMS-ESI calcd for [C₉H₇F₃NO]⁺: 202.0480 [M+H]⁺. Found: 202.0486; FT-IR (neat) v in cm⁻¹: 1699 (C=O stretch).

2,2,2-Trifluoro-N-(1-phenylethyl)acetamide²¹ (7g)

Following general procedure XVIII, *racemic*-methylbenzylamine (255 μ L, 2 mmol) and ethyl trifluoroacetate (238 μ L, 2 mmol) were used as the amine and ester species, respectively, and the reaction was performed at room temperature (25 °C) with no acid catalyst present. The title

compound was recovered after purification by column chromatography (100% DCM, R_f 0.30) as a white solid (433 mg, 100%).

mp 89-90 °C (lit.²² 88 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.36 (m, 2H, *Ph*), 7.35 – 7.30 (m, 3H, *Ph*), 6.43 (br s, 1H, NH), 5.15 (quint, *J* = 7.1 Hz, 1H, NHC*H*), 1.60 (d, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃): δ 156.3 (q, *J*_{CF} = 37.0 Hz), 140.9, 129.0, 128.1, 126.1, 115.8 (q, *J*_{CF} = 288.1 Hz), 49.8, 21.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -75.92; HRMS-ESI calcd for [C₁₀H₁₁F₃NO]⁺: 218.0793 [M+H]⁺. Found: 218.0789; FT-IR (neat) v in cm⁻¹: 1693 (C=O stretch); [α]_D²⁰ + 0 (*c* 1.0 in CHCl₃); HPLC: Chiracel OD column (25 cm), 1.0 mL min⁻¹, 98:2 Hexane:IPA, (*S*)-enantiomer retention time 11.20 minutes, (*R*)-enantiomer retention time 19.40 minutes.

(R)-2,2,2-Trifluoro-N-(1-phenylethyl)acetamide²² (7h)

Following general procedure XVIII, (*R*)-(+)- α -methylbenzylamine (255 µL, 2 mmol) and ethyl trifluoroacetate (238 µL, 2 mmol) were used as the amine and ester species, respectively, and the reaction was performed at room temperature (25 °C) with no acid catalyst present. The title compound was recovered after purification by column chromatography (100% DCM, R_f 0.30) as a white solid (434 mg, 100%).

mp 89 °C (lit.²² 88 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.36 (m, 2H, *Ph*), 7.35 – 7.30 (m, 3H, *Ph*), 6.43 (br s, 1H, NH), 5.15 (quint, *J* = 7.1 Hz, 1H, NHC*H*), 1.60 (d, *J* = 6.9 Hz, 3H, *CH*₃); ¹³C NMR (126 MHz, CDCl₃): δ 156.3 (q, *J*_{CF} = 37.0 Hz), 140.9, 129.0, 128.1, 126.1, 115.8 (q, *J*_{CF} = 288.1 Hz), 49.8, 21.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -75.92; HRMS-ESI calcd for $[C_{10}H_{11}F_3NO]^+$: 218.0793 [M+H]⁺. Found: 218.0797; FT-IR (neat) v in cm⁻¹: 1697 (C=O stretch); $[\alpha]_D^{20}$ + 138 (*c* 1.0 in CHCl₃) (lit.²³ $[\alpha]_D^{25}$ + 137 (*c* 1.0 in CHCl₃)); HPLC: Chiracel OD column (25 cm), 1.0 mL min⁻¹, 98:2 Hexane:IPA, (*R*)-enantiomer retention time 18.81 minutes, no peak observed for (*S*)-enantiomer at 11.20 minutes, *ee* > 99%.

N-Benzyl-4-nitrobenzamide²⁴ (7i)

Following general procedure XVIII, benzylamine (218 μ L, 2 mmol) and methyl 4-nitrobenzoate (362 mg, 2 mmol) were used as the amine and ester species, respectively, and the reaction was performed at 150 °C. The title compound was recovered after purification by column chromatography (from 100% DCM to 96:4, DCM/MeOH) as an off-white solid (307 mg, 60%).

R_f (98:2, DCM/MeOH) 0.33; mp 140-142 °C (lit.²⁵ 139-140 °C); ¹H NMR (500 MHz, CDCl₃): δ 8.26 (d, J = 8.9 Hz, 2H, m-CH_{Ar}), 7.94 (d, J = 8.9 Hz, 2H, o-CH_{Ar}), 7.40 – 7.29 (m, 5H, Ph), 6.59 (br s, 1H, NH), 4.65 (d, J = 5.7 Hz, 2H, CH₂); ¹³C NMR (126 MHz, CDCl₃): δ 165.3, 149.6, 139.9, 137.4, 128.9, 128.2, 128.0, 127.9, 123.8, 44.5; HRMS-ESI calcd for [C₁₄H₁₂N₂O₃Na]⁺: 279.0746 [M+Na]⁺. Found: 279.0726; FT-IR (neat) v in cm⁻¹: 1629 (C=O stretch).

tert-Butyl (2-(benzylamino)-2-oxoethyl)carbamate²⁶ (7j)

Following general procedure XVIII, benzylamine (218 μ L, 2 mmol) and *N*-Boc-glycine methyl ester (351 μ L, 2 mmol) were used as the amine and ester species, respectively. The title compound was recovered after purification by column chromatography (94:6, DCM/MeOH, R_f 0.32) as an off-white solid (512 mg, 97%).

mp 66-68 °C (lit.²⁶ 65 °C); ¹H NMR (300 MHz, CDCl₃): δ 7.34 – 7.16 (m, 5H, *Ph*), 6.93 (br s, 1H, PhCH₂N*H*), 5.50 (t, *J* = 5.6 Hz, 1H, OC(O)N*H*), 4.39 (d, *J* = 5.8 Hz, 2H, PhCH₂), 3.79 (d, *J* = 5.1 Hz, 2H, C(O)CH₂), 1.39 (s, 9H, (CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.6, 156.2, 138.0, 128.7, 127.6, 127.5, 80.2, 44.4, 43.3, 28.3; HRMS-ESI calcd for [C₁₄H₂₀N₂O₃Na]⁺: 287.1372 [M+Na]⁺. Found: 287.1346; FT-IR (neat) v in cm⁻¹: 1655 (amide C=O stretch), 1703 (carbamate C=O stretch).

Investigations into the Reaction Mechanism

Use of 3-Phenylpropionic Acid as the Catalyst

General Procedure XIX – PhCH₂CH₂CO₂H Catalyst Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 µL, 1 mmol) was added the appropriate amount of ethyl acetate, followed by the appropriate amount of 3phenylpropionic acid (Table S13). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with NaHCO₃ (3 x 20 mL). The organics were dried with MgSO₄, filtered and concentrated *in vacuo* on a rotary evaporator. The resulting crude reaction mixture was analysed by ¹H NMR. Percentage conversion into *N*-(4-methylbenzyl)acetamide and N-(4-methylbenzyl)-3-phenylpropanamide was calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.85 ppm (2H, 4-methylbenzylamine), 4.39 ppm (2H, N-(4methylbenzyl)acetamide and N-(4-methylbenzyl)-3-phenylpropanamide). Product ratios were also calculated from the crude ¹H NMR spectra by comparison of the peaks at 3.00 ppm (2H, N-(4methylbenzyl)-3-phenylpropanamide) and 2.02 ppm (3H, N-(4-methylbenzyl)acetamide).

\sum	NH ₂ EtOAc	H ₂ CO ₂ H (mol%)	H + H	H N O 4b
Entry ^a	Acid (mol%)	EtOAc (mL)	Conversion into 4a & 4b (%) ^b	4a : 4b ^b
1	-	1	2	-
2	100	1	100	95 : 5
3	50	1	100	96 : 4
4	20	1	100	97:3
5	10	1	100	98 : 2
6	5	1	97	99:1
7	2	1	76	99:1
8	100	0.5	100	93 : 7
9	100	0.25	97	91:9
10*	100	0.098	62	84 : 16

Table S13. Investigations into the reaction mechanism using 3-phenylpropionic acid as the catalyst.

^{*} Low solvent volume may have resulted in inefficient stirring.

Acetic Acid ¹³C-Labelling Study

General Procedure XX – ¹³C-Labelled Acetic Acid Screen

To an oven dried Radleys carousel tube containing 4-methylbenzylamine (127 μ L, 1 mmol) was added ethyl acetate (0.5 mL, 2 M) followed by the appropriate amount of acetic acid-2-¹³C (Table S14 and S15). The carousel tube was then sealed and the reaction mixture heated at 80 °C for 20 hours. After being allowed to cool to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with NaHCO₃ (3 x 20 mL). The organics were dried with MgSO₄, filtered and concentrated *in vacuo* on a rotary evaporator. The resulting crude reaction mixture was analysed by ¹H and ¹³C NMR. Percentage incorporation of labelled acetic acid was calculated using (i) the integrals of the two methyl peaks in each of the quantitative ¹³C NMR spectra; (ii) the integrals of the arene methyl satellite peaks and the acetyl methyl satellite peaks in each of the ¹H NMR spectra.

Table S14. Investigations into catalyst incorporation using ¹³C-labelled AcOH (Quantitative ¹³C NMR spectra).

NH ₂	H ₃ ¹³ C OH (mol%) EtOAc (2 M), 80 °C, 20 h	$ \begin{array}{c} H \\ H \\ O \\ O \\ Sa \\ 5a \\ 5b \\ 5b$
Entry	AcOH-2- ¹³ C (mol%)	AcOH-2- ¹³ C Incorporation (%) ^a
1 ^b	-	0
2	10	0.52
3	50	3.01

^a Percentage incorporation calculated using the integrals of the two methyl peaks in each of the quantitative ¹³C NMR spectra; ^b Unlabelled 10 mol% AcOH used.

Table S15. Investigations into catalyst incorporation using ¹³C-labelled AcOH (¹H NMR spectra).

^a Percentage incorporation calculated using the integrals of the arene methyl satellite peaks and the acetyl methyl satellite peaks in each of the ¹H NMR spectra; ^b Unlabelled AcOH used.

0.51

3.03

10

50

2

3

HPLC Traces

(R)-2,2,2-Trifluoro-N-(1-phenylethyl)acetamide + 2,2,2-Trifluoro-N-(1-phenylethyl)acetamide

N-Benzylacetamide¹ (1a)

N-(Pyridin-3-ylmethyl)acetamide³ (1c)

N-(3-(Trifluoromethyl)benzyl)acetamide⁵ (1h)

---62.67

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

S42

N-(2-(5-Methoxy-1H-indol-3-yl)ethyl)acetamide⁷ (1k)

N-(3-Hydroxypropyl)acetamide⁸ (1m)

N-(3-Aminobenzyl)acetamide⁹ (1n)

N-(2-(Benzylamino)ethyl)acetamide¹⁰ (10)

O N H

N-Phenylacetamide¹³ (3a)

N-(4-Methoxyphenyl)acetamide¹³ (3b)

S53

N-Benzyl-2-phenylacetamide¹⁷ (7b)

N-Benzyl-2-cyanoacetamide¹⁸ (7c)

N-Phenylformamide¹⁵ (7d)

S56

N-Benzyl-2,2,2-trifluoroacetamide¹⁹ (7f)

2,2,2-Trifluoro-N-(1-phenylethyl)acetamide²¹ (7g)

(R)-2,2,2-Trifluoro-N-(1-phenylethyl)acetamide²² (7h)

N-Benzyl-4-nitrobenzamide²⁴ (7i)

100 90 f1 (ppm) 90 180

References

- 1. M. Barbero, S. Bazzi, S. Cadamuro and S. Dughera, Eur. J. Org. Chem., 2009, 2009, 311.
- 2. R. W. Darbeau, E. H. White, F. Song, N. R. Darbeau and J. Chou, *J. Org. Chem.*, 1999, **64**, 5966.
- 3. M. P. Trova, A. Wissner, M. L. Carroll, S. S. Kerwar, W. C. Pickett, R. E. Schaub, L. W. Torley and C. A. Kohler, *J. Med. Chem.*, 1993, **36**, 580.
- 4. J. T. Li, X. Meng and X. Zhai, Ultrason. Sonochem., 2009, 16, 590.
- 5. I. Pravst and S. Stavber, J. Fluorine Chem., 2013, 156, 276.
- 6. B. Nammalwar, N. P. Muddala, F. M. Watts and R. A. Bunce, *Tetrahedron*, 2015, **71**, 9101.
- 7. D. W. Thomson, A. G. J. Commeureuc, S. Berlin and J. A. Murphy, *Synth. Commun.*, 2003, **33**, 3631.
- 8. R. Pelagalli, I. Chiarotto, M. Feroci and S. Vecchio, Green Chem., 2012, 14, 2251.
- 9. Y. Lee, P. Martasek, L. J. Roman and R. B. Silverman, *Bioorg. Med. Chem. Lett.*, 2000, **10**, 2771.
- 10. K. Kondo, E. Sekimoto, J. Nakao and Y. Murakami, Tetrahedron, 2000, 56, 5843.
- 11. M. D. Ganton and M. A. Kerr, Org. Lett., 2005, 7, 4777.
- K. Nishiwakia, T. Ogawaa, K. Shigetaa, K. Takahashib and K. Matsuoa, *Tetrahedron*, 2006, **62**, 7034.
- L. Liu, H. Liu, H. Pi, S. Yang, M. Yao, W. Du and W. Du and W. Deng, *Synth. Commun.*, 2011, 41, 553.
- 14. Y. Yang, S. Liu, J. Li, X. Tian, X. Zhen and J. Han, Synth. Commun., 2012, 42, 2540.
- 15. K. Bao, W. Zhang, X. Bu, Z. Song, L. Zhang and M. Cheng, Chem. Commun., 2008, 42, 5429.
- 16. D. C. Johnson and T. S. Widlanski, *Tetrahedron Lett.*, 2004, **45**, 8483.
- 17. V. A. Ignatenko, N. Deligonul and R. Viswanathan, Org. Lett., 2010, 12, 3594.
- 18. K. M. Al-Zaydi, Ultrason. Sonochem., 2009, 16, 805.
- A. Ojeda-Porras, A. Hernández-Santana and D. Gamba-Sánchez, *Green Chem.*, 2015, 17, 3157.
- 20. E. J. Bourne, , C. E. M. Tatlow, and J. C. Tatlow, J. Chem. Soc., 1952, 4014.
- 21. K. W. Fiori and J. D. Bois, J. Am. Chem. Soc., 2007 129, 562.
- 22. S. Pache, C. Botuha, R. Franz and E. P. Kündig, Helv. Chim. Acta, 2000, 83, 2436.
- 23. J-G. Kim and D. O. Jang, Tet. Lett., 2010, 51, 683.
- 24. A. R. Katritzky, C. Cai and S. K. Singh, J. Org. Chem., 2006, 71, 3375.
- 25. H. Suzuki, J. Tsuji, Y. Hiroi, N. Sato, A. Osuka, Chem. Lett., 1983, 12, 449.
- K. C. Nadimpally, K. Thalluri, N. B. Palakurthy, A. Saha, B. Mandal, *Tetrahedron Lett.*, 2011, 52, 2579.