Electronic Supplementary Information

Oxatub[5,6]arene: Synthesis, Conformational Analysis, and Recognition of C60 and C70

Fei Jia, Dong-Hao Li, Ti-Long Yang, Liu-Pan Yang, Li Dang, and Wei Jiang* Department of Chemistry, South University of Science and Technology of China (SUSTC), Xueyuan Blvd 1088, Nanshan District, Shenzhen, 518055, P. R. China *E-mail: jiangw@sustc.edu.cn;

Table of Contents

1. Experimental Section	S2
2. ¹ H NMR of the Diol 2 Containing Impurity TA6	S9
3. Comparison of TA4, TA5 and TA6	S9
4. Variable Temperature NMR Spectra	S10
5. ¹ H NMR spectra of Host-Guest Complexes	S11
6. Determination of Binding Constants	S14
7. Computational Results	S24

1. Experimental Section

1.1 General method

All the reagents involved in this research were commercially available and used without further purification unless otherwise noted. Solvents were either employed as purchased or dried prior to use by standard laboratory procedures. Thin-layer chromatography (TLC) was carried out on 0.25 mm Yantai silica gel plates (60F-254). Column chromatography was performed on silica gel 60 (Tsingdao 40 – 63 nm, 230 – 400 mesh). ¹H and ¹³C NMR spectra were recorded on Bruker Avance-400, 500 spectrometers. All chemical shifts are reported in ppm with residual solvents or TMS (tetramethylsilane) as the internal standards. The following abbreviations were used for signal multiplicities: s, singlet; d, doublet; t triplet; m, multiplet. Electrosprayionization time-of-flight high-resolution mass spectrometry (ESI-TOF-HRMS) experiments were conducted on an applied biosystems Elite ESI-QqTOF mass spectrometry system. Theoretical calculations were performed by using Gaussion 09¹ with the BMK/6-31G level of theory to optimize the geometry and relative energies. The synthesis and characterization of compound **1**, compound **2**, and **TA4** have been reported.²

^{1.2} Synthesis and Purification of TA5 and TA6 G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. E. M. Hada, , K. F. R. Toyota, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, Gaussian. 2 F. Jia, Z. He, L.-P. Yang, Z.-S. Pan, M. Yi, R.-W. Jiang and W. Jiang, *Chem. Sci.*, 2015, **6**, 6731.

The same synthetic procedure as used for the synthesis of **TA4** was employed here.¹ To the mixture of NaH (0.43 g, 18 mmol) and Cs_2CO_3 (5.9 g, 18 mmol) in dry THF (400 mL) at reflux was added the solution of dibromide **1** (1.4 g, 3.0 mmol) and diol **2** (1.0 g, 3.0 mmol) in dry THF (60 mL) dropwise through a syringe pump during 6 h. The resulting mixture was stirred at reflux for another 60h. The solvent was removed under reduced pressure. The residue was suspended in H₂O (30 mL), and then extracted with CH₂Cl₂ (30mL×3). The combined organic phase was washed with saturated NaCl and dried over anhydrous Na₂SO₄. Then, the solvent was removed with rotary evaporator to give the crude product which was purified several times by column chromatography (SiO₂, petroleum ether: ethylacetate = 8:1 ~ 3:1) to give pure *per*-butyl oxatub[5]arene (**TA5**) and *per*-butyl oxatub[6]arene (**TA6**).

TA5: a white solid (20 mg, 1.1%).¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 7.80 (d, *J* = 9.3 Hz, 10H), 6.97 (d, *J* = 9.3 Hz, 10H), 4.98 (s, 20H), 3.82 (t, *J* = 6.4 Hz, 20H), 1.63 – 1.56 (m, 21H), 1.40 – 1.33 (m, 20H), 0.87 (t, *J* = 7.4 Hz, 30H). ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 153.34, 129.33, 126.09, 119.49, 115.34, 69.44, 61.79, 31.61, 19.25, 13.65. ESI-TOF-HRMS: *m/z* calcd for [M+K]⁺ C₁₀₀H₁₃₀O₁₅K⁺, 1609.9041; found 1609.9107 (Error = 4.1 ppm). Elemental Analysis: calcd for C₁₀₀H₁₃₀O₁₅: C 76.40, H 8.33; found C 76.56, H 8.35 (For C, Error = 0.2%).

S4

ESI-TOF mass spectrum of TA5.

Elemental analysis of TA5.

TA6: a white solid (65 mg, 3.4%). ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 7.80 (d, J = 9.3 Hz, 12H), 6.98 (d, J = 9.3 Hz, 12H), 4.96 (s, 24H), 3.87 (t, J = 6.4 Hz, 24H), 1.66 – 1.59 (m, 24H), 1.43 – 1.36 (m, 24H), 0.88 (t, J = 7.4 Hz, 36H). ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 153.81, 129.74, 126.66, 119.78, 115.79, 69.90, 62.25, 32.03, 19.66, 14.04. ESI-TOF-HRMS: *m/z* calcd for [M+K]⁺ C₁₂₀H₁₅₆O₁₈K⁺, 1924.0923; found 1924.0889 (Error = -1.8 ppm). Elemental Analysis: calcd for C₁₂₀H₁₅₆O₁₈: C 76.40, H 8.33; found C 76.47, H 8.41 (For C, Error = 0.09%).

ESI-TOF mass spectrum of TA6.

Elemental analysis of TA6.

2. ¹H NMR of the Diol 2 Containing Impurity

Figure S1 ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 25 °C) of the diol **2**. The inset spectrum shows that there is some impurity in the diol. The diol was synthesized through the hydrolysis of the dibromide **1**.² Presumably, the impurity is the partially hydrolyzed product **2a** which should have four doublets in the aromatic region: Three of them were observed, and the fourth one may be overlapped with the NMR peaks of the diol **2**.

3. Comparison of TA4, TA5 and TA6

Figure S2 ¹H NMR spectra (400 MHz, CD_2Cl_2 , 25 °C) of **TA4**, **TA5** and **TA6**. As shown in the figure, compared with **TA4**, the protons (*1*, *2* and *c*) of **TA5** and **TA6** shift a little downfield, while the proton (*a*+*b*) of **TA5** and **TA6** shifts a little upfield.

Figure S3 ¹³C NMR spectra (400 MHz, CD₂Cl₂, 25 °C) of **TA4**, **TA5** and **TA6**. There are also slight differences in their ¹³C NMR spectra, indicating the cavity sizes and structures are different.

4. Variable Temperature NMR Spectra

Figure S4 ¹H NMR spectra (500 MHz, toluene-*d*₈) of TA6 at -80 °C and 25 °C.

5. ¹H NMR Spectra of Host-Guest Complexes

Figure S5 ¹H NMR spectra (400 MHz, toluene- d_8 , [TA4]=1.0 mM, 25 °C) of TA4, and 1:2 mixture of TA4 with C60 or C70. No obvious complexation-induced shifts of the protons on TA4 were observed, suggesting no complexation between TA4 and fullerenes (C60 and C70).

Figure S6 ¹H NMR spectra (400 MHz, toluene- d_8 , [TA5]=1.0 mM, 25 °C) of TA5, and 1:2 mixture of TA5 with C60 or C70. The complexation-induced shifts of the protons on TA5 by adding C60 or C70 are shown in Table for comparison. Obviously, the complexation-induced shifts are too small to accurately determine the binding constants.

Figure S7 ¹H NMR spectra (400 MHz, toluene- d_8 , [TA6]=1.0 mM, 25 °C) of TA6, and 1:2 mixture of TA6 with C60 or C70. The complexation-induced shifts of the protons on TA6 by adding C60 or C70 are shown in Table for comparison. Obviously, the large shifts suggest that TA6 can complex with C60 or C70.

6. Determination of Binding Constants

Figure S8 Job's plot obtained by plotting the chemical shift change ($\Delta\delta$) of the Host's proton *c* in ¹H NMR spectra by varying the ratio of the host and the guest against the mole fraction of **TA6**. The total concentration of the host and the guest is fixed: [Host] + [Guest] = 1.0 mM. This experiment supports the 1:1 binding stoichiometry between **C70** and **TA6** in the Toluene-*d*₈.

Figure S9 Partial ¹H NMR spectra (400 MHz, Toluene- d_8 , 25 °C) of **TA6** (0.10 mM) titrated by **C60**. From bottom to top, the concentration of **C60** was 0~3.5 mM. Proton 2 of **TA6** was monitored during the titration for the calculation of binding constants, which is the same for all the following experiments, unless otherwise noted. Nonlinear curve-fitting method used here has been reported.³ Note: Since the solubilities of **C60** (2.8mg/mL, 25 °C) and **C70** are poor in toluene,⁴ it is not possible to make their solution in very high concentrations. Addition of the solution of **C60** or **C70** in large volume will perturb the concentration of **TA6**. In order to avoid this, **TA6** was also added to the stock solution of guests and is kept at the same concentration as the titrated **TA6** solution. In this way, when large volume of guest solution was titrated into the solution of **TA6**, the concentration of **TA6** is kept constant.

³ G. Huang, Z. He, C.-X. Cai, F. Pan, D. Yang, K. Rissanen and W. Jiang, *Chem. Commun.*, 2015, **51**, 15490.

⁴ R. S. Ruoff, D. S. Tse, R. Malhotra, and D. Lorents, J. Phys. Chem., 1993, 97, 3379.

Figure S10 Partial ¹H NMR spectra (400 MHz, Toluene- d_8 , 25 °C) of TA6 (0.1 mM) titrated by C70. From bottom to top, the concentration of C70 was 0~1.875 mM.

Figure S11 Non-linear curve-fitting for the complexation between C70 and TA6 in Toluene- d_8 at 25 °C.

Figure S12 Partial ¹H NMR spectra (400 MHz, Toluene- d_8 , 35 °C) of **TA6** (0.1 mM) titrated by **C60**. From bottom to top, the concentration of **C60** was 0~3.5 mM.

Figure S13 Non-linear curve-fitting for the complexation between C60 and TA6 in Toluene- d_8 at 35 °C.

Figure S14 Partial ¹H NMR spectra (400 MHz, Toluene- d_8 , 45 °C) of **TA6** (0.1 mM) titrated by **C60**. From bottom to top, the concentration of **C60** was 0~3.5 mM.

Figure S15 Non-linear curve-fitting for the complexation between C60 and TA6 in Toluene- d_8 at 45 °C.

Figure S16 Partial ¹H NMR spectra (400 MHz, Toluene- d_{8} ,55 °C) of TA6 (0.1 mM) titrated by C60. From bottom to top, the concentration of C70 was 0~3.5 mM.

Figure S17 Non-linear curve-fitting for the complexation between C60 and TA6 in Toluene- d_8 at 55 °C.

7. Computational Results

Figure S18. Optimized geometries of the complexes of (a) C60 or (b) C70 at the cavity of each conformer of TA6 (along the long axis: C70-L@TA6; along the short one: C70-S@TA6) at the BMK/6-31G level of theory by Gaussion 09.