Electronic Supplementary Information

1,2-Difunctionalization-Type (Hetero)arylation of

Unactivated Alkenes Triggered by Radical Addition/Remote

(Hetero)aryl Migration

Lei Li,‡ Qiang-Shuai Gu,‡ Ping Song, Zhong-Liang Li, Xiao-Hua Li, Fu-Li Wang, and Xin-Yuan Liu*

Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China. *Email: <u>liuxy3@sustc.edu.cn</u>

[‡] These authors contribute equally to this work.

Table of Contents

Supplementary Table S1S2
Supplementary Table S2S3
Supplementary Table S3S4
Supplementary Scheme S1
General Information
General Procedures for Azidation, Trifluoromethylation and Phosphonylation
Procedures for Synthetic Applications
Mechanistic Study
NMR SpectraS32
References

	H ₃ C OH +	F ₃ CuCN (10 mol%) Solvent, T	CH ₃ CF ₃
	1A 2b		4Ab Cl
Entry	Solvent	T (°C)	yield (%) ^[b]
1	1,4-dioxane	60	70
2	EtOAc	60	29
3	EtOAc	80	72
4	DCE	80	46
5	1,4-dioxane	80	82
6	CH ₃ CN	80	28
7	MeOH	80	49
8	DMSO	80	30

Table S1. Screening of reaction conditions for trifluoromethylation reaction of substrate 1A.^[a]

[a] Reaction conditions: **1A** (0.3 mmol), **2b** (0.6 mmol), and CuCN (10 mol%) in dried solvent (6 ml) at indicated temperatures; [b] Determined by 19 F-NMR with trifluoromethylbenzene as an internal standard.

OH 5A	+ CF ₃ - 0 2b	Catalyst (10 mol%) ► Solvent, 80 °C	F ₃ C 6Ab
Entry	Catalyst	Solvent	yield (%) ^[b]
1	CuI	EtOAc	68
2	CuBr	EtOAc	63
3	CuCl	EtOAc	61
4	CuCN	EtOAc	70
5	CuSCN	EtOAc	65
6	CuTc	EtOAc	64
7	CuBr ₂	EtOAc	50
8	Cu(OAc) ₂	EtOAc	38
9	Cu(CH ₃ CN) ₄ BF ₄	EtOAc	53
10	CuCN	MeOH	17
11	CuCN	DCE	34
12	CuCN	1,4-dioxane	76
13	CuCN	NMP	31
14	CuCN	MeOAc	63
15	CuCN	CH ₃ CN	60
16	CuCN	DMSO	27

 Table S2. Screening of reaction conditions for trifluoromethylation reaction of substrate 6Ab.^[a]

 \sim

[a] Reaction conditions: **5A** (0.2 mmol), **2b** (0.4 mmol), and catalyst (10 mol%) in dried solvent (4 ml) at 80 °C; [b] Determined by ¹⁹F-NMR with trifluoromethylbenzene as an internal standard.

	CI OH + HP(O)Ph ₂ 5A 2c	AgNO ₃ (X equiv) Solvent, 80 °C	Cl Ph ₂ (O)P 7Cc	
Entry	AgNO ₃ (X ec	quiv) Solvent	yield (%) ^[b]	
1	0.5	CH ₃ CN	62	
2	0.5	EtOAc	46	
3	0.5	DMF	57	
4	0.6	CH ₃ CN	77	
5	1.0	CH ₃ CN	64	

Table S3. Screening of reaction conditions for phosphonylation reaction of 7Cc.^[a]

[a] Reaction conditions: **5A** (0.2 mmol), **2c** (0.4 mmol), and AgNO₃ (X equiv) in dried solvent (2 ml) at 80 °C; [b] Determined by ¹H-NMR with dibromomethane as an internal standard.

Scheme S1. Control and cross experiments.

General Information

All reactions were carried out under argon using Schlenk techniques. Reagents were purchased from commercial sources and used as received. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on a Bruker DPX 400 or a Bruker DPX 500 spectrometers at 400 MHz or 500 MHz for ¹H NMR, 100 MHz or 125 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR, and 162 MHz for ³¹P NMR in CDCl₃ with tetramethylsilane (TMS) as an internal standard, [CFCl₃ as an external reference (0 ppm) for ¹⁹F NMR, H₃PO₄ as an external reference (0 ppm) for ³¹P NMR]. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Infrared absorption spectra were recorded as neat samples on a Shimadzu IRAffinity-1 Fourier Transform Infrared Spectrophotometer. Mass spectrometric data was obtained using Bruker Apex IV RTMS. All substrates were prepared according to literature.^[1]

General Procedures for Azidation, Trifluoromethylation and

Phosphonylation

General procedure for azidation reaction

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.3 mmol, 1.0 equiv), **2a** (104.0 mg, 0.36 mmol, 1.2 equiv), 1,10-phen (64.8 mg, 0.36 mmol, 1.2 equiv), and EtOAc (3.0 mL) under argon atmosphere. The sealed tube was then stirred at 60 °C for 10 h. After completion of the reaction as monitored by TLC, EtOAc (30 mL) was added. The organic phase was washed with saturated NaHCO₃ solution (2 \times 5 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to afford a crude product, which was purified by flash column chromatography to afford the corresponding product **3**.

1-(2-(2-azido-1-(4-chlorophenyl)ethyl)phenyl)ethanone

(66% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.0, 1.2 Hz, 1H), 7.45 (td, J = 7.6, 1.2 Hz, 1H), 7.34 (td, J = 7.6, 1.2 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.20 – 7.16 (m, 2H), 5.11 (t, J = 7.6 Hz, 1H), 3.90 (dd, J = 12.4, 7.2 Hz, 1H), 3.79 (dd, J = 12.4, 7.6 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.51, 140.30, 139.69, 138.44, 132.63, 131.56, 129.84, 129.17, 128.88, 128.62, 126.86, 54.99, 44.44, 29.97. IR (neat) v: 3028, 2987, 2098, 1685, 1492, 1357, 1244, 1093, 1014, 898 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₆H₁₅ON₃Cl [M + H]⁺ 300.0898, found 300.0901.

1-(2-(2-azido-1-(4-bromophenyl)ethyl)phenyl)ethanone

(64% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.48 – 7.39 (m, 3H), 7.34 (td, *J* = 7.6, 1.0 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 5.10 (t, *J* = 7.2 Hz, 1H), 3.90 (dd, *J* = 12.4, 7.2 Hz, 1H), 3.79 (dd, *J* = 12.4, 7.6 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.46, 140.23, 138.40, 131.57, 130.22, 129.21, 128.91, 126.88, 120.76, 54.92, 44.50, 29.98. IR (neat) v: 3076, 2929, 2873, 2100, 1685, 1600, 1489, 1419, 1282, 958 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₆H₁₄ON₃BrNa [M + Na]⁺ 366.0212, found 366.0208.

4-(1-(2-acetylphenyl)-2-azidoethyl)benzonitrile

(73% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.47 (td, *J* = 7.6, 1.6 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.26 – 7.22 (m, 1H), 5.21 (t, *J* = 7.2 Hz, 1H), 3.93 (dd, *J* = 12.4, 7.6 Hz, 1H), 3.82 (dd, *J* = 12.4, 7.7 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.09, 146.77, 139.51, 137.96, 132.18, 131.85, 129.65, 129.28, 129.01, 127.22, 118.67, 110.59, 54.62, 45.10, 29.80. IR (neat) v: 30788, 2954, 2890, 2230, 2102, 1695, 1610, 1479, 1440, 1285, 960 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₇H₁₅ON₄ [M + H]⁺ 291.1240, found 291.1233.

1-(2-(2-azido-1-phenylethyl)phenyl)ethanone

(62% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.61 (m, 1H), 7.47 – 7.41 (m, 1H), 7.36 – 7.30 (m, 4H), 7.26 – 7.20 (m, 3H), 5.12 (t, *J* = 7.6 Hz, 1H), 3.92 (dd, *J* = 12.4, 7.6 Hz, 1H), 3.84 (dd, *J* = 12.4, 7.6 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.83, 141.11, 140.63, 138.91, 131.31, 128.93, 128.77, 128.50, 126.81, 126.61, 124.95, 55.14, 45.03, 30.05. IR (neat) v: 3056, 2987, 2975, 2100, 1685, 1448, 1423, 1357, 958, 898 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₆H₁₅ON₃Na[M + Na]⁺ 288.1107, found 288.1100.

1-(2-(2-azido-1-(4-methoxyphenyl)ethyl)phenyl)ethanone

(52% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.34 – 7.28 (m, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 5.05 (t, *J* = 7.6 Hz, 1H), 3.89 (dd, *J* = 12.4, 7.2 Hz, 1H), 3.82 – 3.77 (m, 4H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.00, 158.41, 141.02, 139.00, 133.27, 131.32, 129.58, 128.79, 126.60, 126.27, 113.96, 55.38, 55.24, 44.37, 30.15. IR (neat) v: 3066, 2977, 2932, 2095, 1684, 1610, 1495, 1423, 1275, 962 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₇ H₁₇O₂N₃Na [M + Na]⁺ 318.1213, found 318.1205.

N-(4-(1-(2-acetylphenyl)-2-azidoethyl)phenyl)-N,4-dimethylbenzenesulfonamide

(79% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 5.09 (t, *J* = 7.0 Hz, 1H), 3.88 (dd, *J* = 12.5, 7.0 Hz, 1H), 3.81 (dd, *J* = 12.5, 7.5 Hz, 1H), 3.12 (s, 3H), 2.49 (s, 3H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.7, 143.5, 140.3, 140.2, 140.2, 138.7, 133.3, 131.5, 129.3, 129.0, 128.9, 128.9, 127.8, 126.8, 126.5, 55.1, 44.6, 37.9, 30.0, 21.5. IR (neat) v: 3076, 3028, 2926, 2100, 1685, 1435, 1419, 1348, 1282,

908 cm⁻¹. HRMS (APCI) m/z calcd. for $C_{24}H_{25}N_4O_3S$ [M + H]⁺ 449.1642, found 449.1630.

1-(2-(2-azido-1-(2-bromophenyl)ethyl)phenyl)ethanone

(66% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.41 – 7.31 (m, 4H), 7.16 – 7.08 (m, 2H), 5.32 (dd, *J* = 8.4, 5.6 Hz, 1H), 4.00 (dd, *J* = 12.8, 5.6 Hz, 1H), 3.81 (dd, *J* = 12.8, 8.4 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.11, 140.04, 139.15, 138.65, 133.43, 131.41, 129.46, 129.06, 128.49, 127.27, 126.77, 125.93, 53.54, 45.60, 29.50. IR (neat) v: 3051, 2929, 2872, 2098, 1683, 1598, 1571, 1469, 1280, 1232, 908 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₆H₁₅ON₃Br [M + H]⁺ 344.0393, found 344.0405.

(2-(2-azido-1-phenylethyl)phenyl)(phenyl)methanone

(44% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.66 (m, 2H), 7.58 – 7.53 (m, 1H), 7.50 – 7.46 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.23 (m, 4H), 7.23 – 7.18 (m, 2H), 7.14 – 7.09 (m, 1H), 4.85 (t, *J* = 7.5 Hz, 1H), 3.05 – 2.95 (m, 1H), 2.94 – 2.83 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 198.32, 140.64, 140.35, 139.30, 137.49, 133.32, 130.37, 130.21, 128.72, 128.51, 128.32, 128.24, 128.22, 126.87, 126.10, 55.18, 45.92. IR (neat) v: 3072, 3039, 2966, 2100, 1662, 1597, 1448, 1411, 1282, 927 cm⁻¹. HRMS (APCI) m/z calcd. for C₂₁H₁₈ON₃ [M + H]⁺ 328.1444, found 328.1436.

1-(2-(1-azido-2-phenylpropan-2-yl)phenyl)ethanone

(75% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.44 (td, *J* = 8.0, 1.5 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.23 – 7.19 (m, 1H), 7.12 – 7.06 (m, 3H), 4.26 (d, *J* = 11.5 Hz, 1H), 3.97 (d, *J* = 11.5 Hz, 1H), 1.80 (s, 3H), 1.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 206.34, 146.15, 143.41, 143.39, 129.00, 128.21, 128.06, 127.86, 126.50, 126.46, 126.25, 61.56, 47.90, 29.66, 28.08. IR (neat) v: 3072, 2981, 2933, 2105, 1693, 1419, 1415, 1305, 1244, 893 cm⁻¹. HRMS (APCI) m/z calcd. for C₁₇H₁₇ON₃Na [M + Na]⁺ 302.1264, found 302.1257. **1-(2-(2-azido-1-phenylpropyl)phenyl)ethanone**

(52% yield), ¹H NMR (400 MHz, CDCl₃, a mixture of two diastereomers with a ratio of ca. 2:1) δ 7.70 – 7.16 (m, 9H), 4.85 (d, *J* = 9.8 Hz, 1H), 4.33 – 4.15 (m, 1H), 2.51 (s, 2H), 2.45 (s, 1H), 1.33 – 1.26 (m, 3H). ¹³C NMR (101 MHz, CDCl₃, a mixture of two diastereomers with a ratio of ca. 2:1) δ 203.42, 203.32, 141.27, 140.94, 140.88, 140.54, 139.73, 139.30, 131.13, 130.98, 129.12, 128.8, 128.70, 128.54, 128.42, 128.34, 126.75, 126.32, 126.29, 60.83, 60.40, 50.73, 50.63, 30.40, 30.34, 18.55, 18.35. IR (neat) v: 3072, 2927, 2854, 2108, 1687, 1419, 1357, 1244, 958, 893 cm⁻¹.

General procedure for trifluoromethylation reaction of 1 (method a)

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.3 mmol, 1.0 equiv), **2b** (189.0 mg, 0.6 mmol, 2.0 equiv), CuCN (2.7 mg, 0.03 mmol, 0.1 equiv), and dioxane (6.0 mL) under argon atmosphere. The sealed tube was then stirred at 80 °C for 24 h. After completion of the reaction as monitored by TLC, EtOAc (30 mL) was added and the reaction mixture was washed with saturated NaHCO₃ (2 \times 5 mL) solution. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product, which was purified by flash column chromatography to afford product **4**.

1-(2-(1-(4-chlorophenyl)-3,3,3-trifluoropropyl)phenyl)ethanone

(80% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 7.6, 1.2 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.35 – 7.24 (m, 6H), 5.25 (t, J = 7.6 Hz, 1H), 2.93 – 2.78 (m, 2H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.93, 141.43, 140.95, 138.45, 132.50, 131.46, 129.31, 128.74, 128.61, 128.36, 126.64, 126.27 (q, J = 276.1 Hz), 39.38 (q, J = 27.2 Hz), 38.07 (q, J = 2.7 Hz), 29.99. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.44. HRMS (APCI) m/z calcd. for C₁₇H₁₅OClF₃ [M + H]⁺ 327.0758, found 327.0751.

1-(2-(1-(4-bromophenyl)-3,3,3-trifluoropropyl)phenyl)ethanone

(82% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 1H), 7.47 – 7.38 (m, 3H), 7.36 – 7.27 (m, 2H), 7.22 – 7.18 (m, 2H), 5.24 (t, J = 7.6 Hz, 1H), 2.93 – 2.78 (m, 2H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.90, 141.47, 141.34, 138.41, 131.56, 131.47, 129.68, 128.76, 128.37, 126.65, 126.25 (q, J = 276.1 Hz), 120.61, 39.31 (q, J= 27.3 Hz), 38.11 (q, J = 2.6 Hz), 29.98. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.43. HRMS (APCI) m/z calcd. for C₁₇H₁₅OBrF₃ [M + Na]⁺ 371.0253, found 371.0245. **4-(1-(2-acetylphenyl)-3,3,3-trifluoropropyl)benzonitrile**

(88% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.46 (t, J = 8.0 Hz, 3H), 7.36 – 7.30 (m, 2H), 5.36 (t, J = 7.2 Hz, 1H), 2.96 – 2.79 (m, 2H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.53, 147.77, 140.56, 138.02, 132.23, 131.78, 129.22, 128.76, 128.47, 127.04, 126.07 (q, J = 276.0 Hz), 118.63, 110.57, 39.11 (q, J = 27.5 Hz), 38.70 (q, J = 2.1 Hz), 29.82. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.46. HRMS (APCI) m/z calcd. for C₁₈H₁₅ONF₃ [M + H]⁺ 318.1100, found 318.1092.

1-(2-(3,3,3-trifluoro-1-phenylpropyl)phenyl)ethanone

(79% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.33 – 7.27 (m, 5H), 7.23 – 7.18 (m, 1H), 5.25 (t, J = 7.6 Hz, 1H), 2.96 – 2.83 (m, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 203.23, 142.44, 141.79, 138.88, 131.19, 128.49, 128.35, 127.94, 126.67, 126.44 (q, J = 276.0 Hz), 126.38, 39.42 (q, J = 27.1 Hz), 38.64 (q, J = 2.6 Hz), 30.05. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.44. HRMS (APCI) m/z calcd. for C₁₇H₁₆OF₃ [M + H]⁺ 293.1148, found 293.1141.

1-(2-(3,3,3-trifluoro-1-(4-methoxyphenyl)propyl)phenyl)ethanone

(69% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.48 (m, 1H), 7.41 – 7.33 (m, 2H), 7.25 – 7.18 (m, 3H), 6.83 – 6.78 (m, 2H), 5.18 (t, *J* = 7.6 Hz, 1H), 3.72 (s, 3H), 2.93 – 2.77 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.17, 158.18, 142.10, 138.77, 134.53, 131.07, 128.89, 128.22, 126.45 (q, *J* = 276.1 Hz), 126.22, 113.78, 55.02, 39.47 (q, *J* = 27.1 Hz), 37.90 (q, *J* = 2.6 Hz), 29.95. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.35. HRMS (APCI) m/z calcd. for C₁₈H₁₈O₂F₃ [M + H]⁺ 323.1253, found 323.1246.

N-(4-(1-(2-acetylphenyl)-3,3,3-trifluoropropyl)phenyl)-N,4-dimethylbenzenesulfo namide

(72% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 8.0 Hz, 3H), 7.30 (t, J = 7.5 Hz, 1H), 7.22 (dd, J = 12.5, 8.5 Hz, 4H), 7.01 (d, J = 8.5 Hz, 2H), 5.23 (t, J = 7.5 Hz, 1H), 3.10 (s, 3H), 2.92 – 2.78 (m, 2H), 2.46 (s, 3H), 2.41 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 203.1, 143.6, 141.5, 141.4, 140.0, 138.6, 133.3, 131.4, 129.3, 128.6, 128.4, 128.4, 127.8, 126.6, 126.5, 126.3 (q, J = 276.1 Hz), 39.4 (q, J = 27.1 Hz), 38.2 (q, J = 2.5 Hz), 37.9, 30.0, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.4. HRMS (APCI) m/z calcd. for C₂₅H₂₅F₃NO₃S [M + H]⁺ 476.1502, found 476.1489.

1-(2-(1-(2-bromophenyl)-3,3,3-trifluoropropyl)phenyl)ethanone

(74% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.6, 1.2 Hz, 1H), 7.54 (dd, J = 8.0, 1.2 Hz, 1H), 7.42 – 7.29 (m, 4H), 7.24 (d, J = 7.6 Hz, 1H), 7.13 – 7.08 (m, 1H), 5.45 (t, J = 7.2 Hz, 1H), 2.97 – 2.87 (m, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.29, 140.41, 139.99, 138.67, 133.51, 131.20, 129.32, 129.03, 128.77, 128.42, 127.08, 126.71, 125.91 (q, J = 276.7 Hz), 125.38, 39.98 (q, J = 2.7 Hz), 38.11 (q, J = 27.9 Hz), 29.56. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.09. HRMS (APCI) m/z calcd. for C₁₇H₁₅OBr F₃ [M + H]⁺ 371.0253, found 371.0247.

phenyl(2-(3,3,3-trifluoro-1-phenylpropyl)phenyl)methanone

(70% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.56 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.40 – 7.35 (m, 2H), 7.26 – 7.21 (m, 4H), 7.20 – 7.16 (m, 2H), 7.12 – 7.07 (m, 1H), 4.83 (t, *J* = 7.5 Hz, 1H), 3.04 – 2.82 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 198.33, 141.97, 141.92, 138.67, 137.52, 133.20, 130.48, 130.22, 128.96, 128.47, 128.22, 127.81, 127.77, 126.69, 126.26 (q, *J* = 276.1 Hz), 125.81, 39.79 (q, *J* = 2.6 Hz), 39.30 (q, *J* = 27.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.41. HRMS (APCI) m/z calcd. for C₂₂H₁₈OF₃ [M + H]⁺ 355.1304, found 355.1297.

(4-fluorophenyl)(2-(3,3,3-trifluoro-1-(4-fluorophenyl)propyl)phenyl) methanone (4-fluorophenyl)(2-(3,3,3-trifluoro-1-(4-fluorophenyl)propyl)phenyl) methanone (4-fluorophenyl)(2-(3,3,3-trifluoro-1-(4-fluorophenyl)propyl)phenyl)phenyl) methanone (4-fluorophenyl)(4-fluorophenyl)(4-fluorophenyl)(4-fluorophenyl)phenyl)phenyl) methanone (4-fluorophenyl)(4-fluorophenyl)(4-fluorophenyl)phenyl)phenyl) methanone (4-fluorophenyl)(4

(71% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.51 – 7.45 (m, 2H), 7.28 (td, J = 7.5, 1.5 Hz, 1H), 7.23 (dd, J = 7.5, 1.5 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.09 – 7.03 (m, 2H), 6.89 – 6.84 (m, 2H), 4.78 (t, J = 7.5 Hz, 1H), 3.01 – 2.89 (m, 1H), 2.89 – 2.77 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 196.68, 165.86 (d, J = 254.4 Hz), 161.50 (d, J = 244.4 Hz), 141.68, 138.40, 137.69 (d, J = 3.3 Hz), 133.71 (d, J = 2.9 Hz), 132.87 (d, J = 9.5 Hz), 130.64, 129.44 (d, J = 8.0 Hz), 128.77, 127.62, 126.16 (q, J = 276.1 Hz), 126.05, 115.47 (d, J = 19.9 Hz), 115.30 (d, J = 19.3 Hz), 39.37 (q, J = 27.4 Hz), 39.15 (q, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.40 (s, 3F), -104.31 (s, 1F), -115.91 (s, 1F). HRMS (APCI) m/z calcd. for C₂₂H₁₆OF₅ [M + H]⁺ 391.1116, found 391.1107.

1-(5-methyl-2-(3,3,3-trifluoro-1-phenylpropyl)phenyl)ethanone

(62% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.32 (s, 1H), 7.30 – 7.26 (m, 4H), 7.25 – 7.20 (m, 2H), 7.19 – 7.15 (m, 1H), 5.18 (t, *J* = 7.5 Hz, 1H), 2.94 – 2.80 (m, 2H), 2.42 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 203.38, 142.70, 138.82, 138.76, 136.06, 131.89, 128.92, 128.45, 128.36, 127.87, 126.56, 126.48 (q, *J* = 276.9 Hz), 39.40 (q, *J* = 27.1 Hz), 38.38 (q, *J* = 2.6 Hz), 30.03, 20.87. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.42. HRMS (APCI) m/z calcd. for C₁₈H₁₈OF₃ [M + H]⁺ 307.1304, found 307.1298.

1-(2-(4,4,4-trifluoro-2-phenylbutan-2-yl)phenyl)ethanone

(72% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.31 – 7.23 (m, 3H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 2H), 3.79 – 3.67 (m, 1H), 2.93 – 2.82 (m, 1H), 1.85 (s, 3H), 1.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.27, 148.37, 143.80, 143.04, 129.01, 128.21, 127.84, 127.35, 127.08 (q, *J* = 276.8 Hz), 126.56, 126.43, 126.33, 44.04 (q, *J* = 25.6 Hz), 43.91 (q, *J* = 1.6 Hz), 30.76 (q, *J* = 1.8 Hz), 29.63. ¹⁹F NMR (376 MHz, CDCl₃) δ –58.56. HRMS (APCI) m/z calcd. for C₁₈H₁₈OF₃ [M + H]⁺ 307.1304, found 307.1296.

1-(2-(3,3,3-trifluoro-1-(pyridin-4-yl)propyl)phenyl)ethanone

(65% yield), ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 5.5 Hz, 2H), 7.65 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.45 (td, *J* = 7.5, 1.5 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.24 (d, *J* = 6.0 Hz, 2H), 5.28 (t, *J* = 7.5 Hz, 1H), 2.92 – 2.83 (m, 2H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.46, 151.34, 149.84, 140.31, 138.14, 131.76, 129.16, 128.75, 127.07, 126.10 (q, *J* = 276.1 Hz), 123.09, 38.74 (q, *J* = 27.8 Hz), 38.16 (q, *J* = 2.7 Hz), 29.80. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.52. HRMS (APCI) m/z calcd. for C₁₆H₁₅ONF₃ [M + H]⁺ 294.1100, found 294.1093.

6,6,6-trifluoro-1-phenyl-4-(pyridin-4-yl)hexan-1-one

4Nb (36% yield), ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 2H), 7.84 – 7.78 (m, 2H), 7.57 – 7.51 (m, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.14 (s, 2H), 3.11 – 3.02 (m, 1H), 2.86 – 2.77 (m, 1H), 2.77 – 2.69 (m, 1H), 2.56 – 2.44 (m, 2H), 2.33 – 2.24 (m, 1H), 2.07 – 1.98 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 198.7, 151.3, 150.3, 136.5, 133.3 128.6, 127.8, 126.0 (q, *J* = 27.8 Hz), 122.9, 40.2 (q, *J* = 275.9 Hz), 38.7 (d, *J* = 2.4 Hz), 35.5, 29.8. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6. HRMS (APCI) m/z calcd. for C_{17H17}F₃NO [M + H]⁺ 308.1257 , found 308.1246.

General procedure for trifluoromethylation reaction (method b)

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 5 (0.2 mmol, 1.0 equiv), **2b** (126.0 mg, 0.4 mmol, 2.0 equiv), CuCN (1.8 mg, 0.02 mmol, 0.1 equiv) and dioxane (4.0 mL) under argon atmosphere. The sealed tube was then stirred at 80 °C for 24 h. After completion of the reaction as monitored by TLC, EtOAc (30 mL) was added and the reaction mixture was washed with saturated NaHCO₃ solution (2×5 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product, which was purified by flash column chromatography to afford product **6**.

1-(2-(4,4,4-trifluoro-2-phenylbutyl)phenyl)ethanone

(73% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 7.6, 1.6 Hz, 1H), 7.30 (td, J = 7.6, 1.6 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.21 – 7.17 (m, 1H), 7.09 – 7.05 (m, 2H), 6.99 (dd, J = 7.6, 1.2 Hz, 1H), 3.32 – 3.15 (m, 3H), 2.62 – 2.47 (m, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.87, 142.47, 139.19, 137.89, 132.11, 131.31, 129.44, 128.36, 127.61, 126.67, 126.61 (q, J = 276.0 Hz), 126.35, 41.90 (q, J = 2.4 Hz), 40.78, 39.04 (q, J = 27.1 Hz), 29.49. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.49. HRMS (APCI) m/z calcd. for C₁₈H₁₈OF₃ [M + H]⁺ 307.1310, found 307.1303.

1-(2-(4,4,4-trifluoro-2-(4-methoxyphenyl)butyl)phenyl)ethanone

(67% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.30 (td, *J* = 7.5, 1.5 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.02 – 6.97 (m, 3H), 6.80 – 6.76 (m, 2H), 3.77 (s, 3H), 3.29 – 3.23 (m, 1H), 3.23 – 3.16 (m, 1H), 3.15 – 3.09 (m, 1H), 2.58 – 2.42 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 201.87, 158.22, 139.34, 137.86, 134.49, 132.13, 131.32, 129.43, 128.53, 126.64 (q, *J* = 275.8 Hz), 126.30, 113.71, 55.16, 41.08 (q, *J* = 2.4 Hz), 40.94, 39.2 (q, *J* = 26.8 Hz), 29.53. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.45. HRMS (APCI) m/z calcd. for C₁₉H₂₀O₂F₃ [M + H]⁺ 337.1410, found 337.1404. **1-(2-(2-(4-chlorophenyl)-4,4,4-trifluorobutyl)phenyl)ethanone**

(78% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.6, 1.6 Hz, 1H), 7.34 – 7.26 (m, 2H), 7.25 – 7.19 (m, 2H), 7.06 – 7.02 (m, 2H), 6.96 (dd, J = 7.6, 1.6 Hz, 1H), 3.31 – 3.23 (m, 2H), 3.15 – 3.07 (m, 1H), 2.58 – 2.44 (m, 5H). ¹³C NMR (100 MHz,

CDCl₃) δ 201.59, 141.03, 138.94, 137.47, 132.33, 132.14, 131.51, 129.84, 128.96, 128.48, 126.58, 126.44 (q, *J* = 275.9 Hz), 41.23 (q, *J* = 2.4 Hz), 41.02, 38.88 (q, *J* = 27.1 Hz), 29.41. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.40. HRMS (APCI) m/z calcd. for C₁₈H₁₇OClF₃ [M + H]⁺ 341.0915, found 341.0912.

1-(2-(4,4,4-trifluoro-2-(4-fluorophenyl)butyl)phenyl)ethanone

(72% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, J = 7.5, 1.5 Hz, 1H), 7.33 – 7.25 (m, 2H), 7.07 – 7.03 (m, 2H), 6.97 – 6.90 (m, 3H), 3.30 – 3.22 (m, 2H), 3.14 – 3.08 (m, 1H), 2.57 – 2.44 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 201.67, 161.57 (d, J = 243.1Hz), 139.11, 138.17 (d, J = 3.3 Hz), 137.55, 132.16, 131.48, 129.79, 129.03 (d, J = 7.9 Hz), 126.53, 126.49 (q, J = 275.9 Hz), 115.18 (d, J = 21.1 Hz), 41.13, 39.10 (q, J = 27.0 Hz), 29.50. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.45 (s, 3F), –116.25 (s, 1F). HRMS (APCI) m/z calcd. for C₁₈H₁₇OF₄ [M + Na]⁺ 325.1210, found 325.1207.

(90% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.74 (m, 1H), 7.58 – 7.53 (m, 2H), 7.35 – 7.29 (m, 2H), 7.27 – 7.23 (m, 2H), 6.93 – 6.89 (m, 1H), 3.43 – 3.34 (m, 1H), 3.27 (dd, *J* = 12.8, 7.2 Hz, 1H), 3.11 (dd, *J* = 12.8, 8.0 Hz, 1H), 2.62 – 2.47 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 201.34, 148.25, 138.56, 137.03, 132.20, 132.16, 131.74, 130.34, 128.48, 126.93, 126.22 (q, *J* = 275.9 Hz), 118.76, 110.61, 41.79 (q, *J* = 2.4 Hz), 41.16, 38.45 (q, *J* = 27.5 Hz), 29.42. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.44. HRMS (APCI) m/z calcd. for C₁₉H₁₇ONF₃ [M + H]⁺ 332.1257, found 332.1251. **1-(2-(2-(2-bromophenyl)-4,4,4-trifluorobutyl)phenyl)ethanone**

(70% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.2, 1.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.0 – 7.22 (m, 4H), 7.06 – 7.00 (m, 2H), 4.01 (s, 1H), 3.51 (dd, J = 12.8, 6.8 Hz, 1H), 3.04 (s, 1H), 2.76 – 2.30 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 201.73, 141.52, 138.46, 137.80, 132.79, 131.96, 131.40, 129.51, 128.05, 127.46 (q, J = 275.9 Hz), 127.54, 126.49, 39.70 (s), 39.67, 39.39, 38.36, 29.49. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.59. HRMS (APCI) m/z calcd. for C₁₈H₁₇OBrF₃ [M + H]⁺ 385.0409, found 385.0404.

phenyl(2-(4,4,4-trifluoro-2-phenylbutyl)phenyl)methanone

(62% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.60 – 7.56 (m, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.34 (td, J = 7.5, 2.0 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.17 – 7.08 (m, 4H), 7.04 – 7.00 (m, 2H), 3.27 – 3.20 (m, 1H), 3.14 – 3.06 (m, 2H), 2.54 – 2.36 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 198.20, 142.20, 138.59, 138.46, 137.62, 133.14, 130.99, 130.24, 129.19, 128.42, 128.32, 127.86, 126.46 (q, J = 275.9 Hz), 127.39, 126.79, 125.63, 41.80 (q, J = 2.4 Hz), 39.94, 39.24 (q, J = 27.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.55. HRMS (APCI) m/z calcd. for C₂₃H₂₀OF₃ [M + H]⁺ 369.1461, found 369.1460.

p-tolyl(2-(4,4,4-trifluoro-2-(p-tolyl)butyl)phenyl)methanone

(60% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.5 Hz, 2H), 7.36 – 7.32 (m, 1H), 7.24 – 7.19 (m, 4H), 7.16 (d, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 3.19 – 3.13 (m, 1H), 3.11 – 3.03 (m, 2H), 2.43 (s, 3H), 2.41 – 2.31 (m, 2H), 2.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 197.87, 143.99, 139.14, 138.92, 138.43, 136.18, 135.00, 130.91, 130.42, 130.01, 129.09, 128.95, 128.92, 127.21, 126.51 (q, *J* = 276.0 Hz), 125.49, 41.45 (q, *J* = 2.4 Hz), 39.82, 39.35 (q, *J* = 26.9 Hz), 21.69, 20.97. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.48. HRMS (APCI) m/z calcd. for C₂₅H₂₄OF₃ [M + H]⁺ 397.1774, found 397.1769.

(4-fluorophenyl) (2-(4,4,4-trifluoro-2-(4-fluorophenyl) butyl) phenyl) methanone

(59% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.61 (m, 2H), 7.39 – 7.34 (m, 1H), 7.24 –7.20 (m, 2H), 7.16 – 7.08 (m, 3H), 6.97 – 6.92 (m, 2H), 6.84 – 6.76 (m, 2H), 3.26 – 3.18 (m, 1H), 3.10 – 3.06 (m, 2H), 2.49 – 2.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.42, 165.83 (d, *J* = 254.1 Hz), 161.60 (d, *J* = 243.5 Hz), 138.31, 138.21, 137.68 (d, *J* = 3.2 Hz), 133.83 (d, *J* = 2.9 Hz), 132.83 (d, *J* = 9.3 Hz), 131.11, 130.42, 129.03, 128.86 (d, *J* = 7.9 Hz), 126.33 (q, *J* = 278.0 Hz), 125.75, 115.50 (d, *J* = 18.9 Hz), 115.29 (d, *J* = 18.3 Hz), 41.32 (q, *J* = 2.2 Hz), 39.86, 39.55 (q, *J* = 27.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.56 (s, 3F), –104.57 (s, 1F), –115.88 (s, 1F). HRMS (APCI) m/z calcd. for C₂₃H₁₈OF₅ [M + H]⁺ 405.1272, found 405.1266.

phenyl(1-(4,4,4-trifluoro-2-phenylbutyl)naphthalen-2-yl)methanone

(64% yield), ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.96 – 7.89 (m, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.69 – 7.52 (m, 5H), 7.39 (t, J = 8.0 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.14 – 7.00 (m, 5H), 3.67 – 3.59 (m, 1H), 3.55 – 3.42 (m, 2H), 2.62 – 2.39 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 198.64, 142.66, 137.57, 136.88, 134.90, 134.32, 133.15, 132.03, 130.24, 129.05, 128.52, 128.34, 127.20, 127.07, 126.99, 126.97, 126.60, 126.58 (q, J = 276.0 Hz), 125.24, 124.72, 41.27 (q, J = 2.3 Hz), 38.99 (q, J = 27.1 Hz), 36.15. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.46. HRMS (APCI) m/z calcd. for C₂₇H₂₂OF₃ [M + H]⁺ 419.1617, found 419.1612.

(85% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 3H), 7.47 – 7.35 (m, 5H), 7.30 – 7.23 (m, 2H), 7.16 – 7.11 (m, 3H), 3.40 – 3.30 (m, 1H), 3.18 – 3.06 (m, 2H), 2.55 – 2.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.83, 147.60, 138.23, 137.71, 137.33, 133.41, 132.27, 130.99, 130.54, 130.15, 129.61, 128.39, 128.34, 126.09 (q, *J* = 275.8 Hz), 125.98, 118.61, 110.85, 42.20 (q, *J* = 2.3 Hz), 39.60, 39.00 (q, *J* = 27.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.53. HRMS (APCI) m/z calcd. for C_{24H19}ONF₃ [M + H]⁺ 394.1413, found 394.1408.

(72% yield), ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 7.5 Hz, 1H), 7.22 – 7.16 (m, 3H), 3.12 – 2.94 (m, 1H), 2.39 – 2.27 (m, 3H), 2.21 (d, J = 18.0 Hz, 1H), 2.04 (d, J = 17.5 Hz, 1H), 1.80 (dd, J = 14.0, 2.0 Hz, 1H), 1.71 (s, 3H), 1.43 – 1.33 (m, 8H), 1.30 – 1.22 (m, 2H). ¹³C NMR (125 MHz, CDCl3) δ 208.42, 144.53, 128.65, 127.85, 127.76, 126.64, 126.42 (q, J = 276.3 Hz), 124.78, 48.78, 43.03 (q, J = 26.3 Hz), 41.87, 36.29, 36.21, 35.99, 35.71 (q, J = 2.3 Hz), 31.44, 26.05, 21.46, 21.32. ¹⁹F NMR (376 MHz, CDCl₃) δ –63.56. HRMS (APCI) m/z calcd. for C₁₉H₂₅OBrF₃ [M + H]⁺ 405.1035, found 405.1037.

General procedure for phosphonylation reaction

To a flame-dried Schlenk tube equipped with a magnetic stir bar were added **5** (0.2 mmol, 1.0 equiv), **2c** (80.8 mg, 0.4 mmol, 2.0 equiv), and AgNO₃ (20.4 mg, 0.12 mmol, 0.6 equiv). The tube was evacuated and backfilled with argon for three times, and then CH₃CN (2.0 mL) were added. The tube was stirred at 80 °C for 12 h and then H₂O (5 mL) was added. EtOAc was used to extract the product from the aqueous layer (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product, which was purified by flash column chromatography to afford product **7**.

(75% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.51 (dd, J = 7.6, 1.2 Hz, 1H), 7.46 – 7.32 (m, 6H), 7.31 – 7.26 (m, 1H), 7.25 – 7.15 (m, 3H), 7.08 (dd, J = 7.6, 0.8 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.86 – 6.81 (m, 2H), 3.47 – 3.36 (m, 1H), 3.35 – 3.24 (m, 2H), 2.77 – 2.61 (m, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.03, 141.18 (d, J = 4.3 Hz), 138.97, 138.02, 134.33, 133.26 (d, J = 20.2 Hz), 132.18, 131.92, 131.43 (d, J = 2.6 Hz), 131.24, 130.88 (d, J = 2.8 Hz), 130.48 (d, J = 9.4 Hz), 130.36 (d, J = 9.1 Hz), 129.34, 128.99, 128.46 (d, J = 11.4 Hz), 128.09 (d, J = 11.7 Hz), 127.96, 126.13, 41.35 (d, J = 3.0 Hz), 41.25 (d, J = 11.5 Hz), 35.56 (d, J =

70.4 Hz), 29.46. ³¹P NMR (162 MHz, CDCl₃) δ 29.40. HRMS (APCI) m/z calcd. for C₂₉H₂₇O₂ClP [M + H]⁺ 473.1432, found 473.1427.

(87% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 3H), 7.48 – 7.29 (m, 7H), 7.28 – 7.19 (m, 5H), 7.12 – 6.97 (m, 3H), 3.58 – 3.44 (m, 1H), 3.29 (d, *J* = 7.2 Hz, 2H), 2.80 – 2.64 (m, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.61, 148.40 (d, *J* = 3.3 Hz), 138.03 (d, *J* = 123.4 Hz), 133.37 (d, *J* = 79.8 Hz), 132.38 (d, *J* = 79.6 Hz), 131.96, 131.63, 131.60, 131.51, 131.15 (d, *J* = 2.5 Hz), 130.384, 130.381 (d, *J* = 17.1 Hz), 129.65, 128.87, 128.52 (d, *J* = 11.6 Hz), 128.16 (d, *J* = 11.7 Hz), 126.51, 118.79, 109.96, 41.87 (d, *J* = 3.1 Hz), 41.51 (d, *J* = 12.4 Hz), 34.78 (d, *J* = 70.4 Hz), 29.45. ³¹P NMR (162 MHz, CDCl₃) δ 29.34. HRMS (APCI) m/z calcd. for C₃₀H₂₇O₂NP [M + H]⁺ 464.1774, found 464.1768.

(77% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.54 (m, 4H), 7.51 – 7.28 (m, 7H), 7.25 – 7.13 (m, 4H), 7.07 (d, *J* = 7.6 Hz, 2H), 6.85 (t, *J* = 7.2 Hz, 1H), 3.98 (s, 1H), 3.62 – 3.50 (m, 1H), 3.26 (s, 1H), 2.72 (dd, *J* = 11.6, 5.2 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.27, 142.02 (d, *J* = 4.1 Hz), 138.45, 133.87, 132.99 (d, *J* = 23.1 Hz), 132.42 (d, *J* = 5.7 Hz), 132.35 (d, *J* = 2.4 Hz), 132.07, 131.31 (d, *J* = 2.5 Hz), 131.22, 131.05, 130.68 (d, *J* = 9.3 Hz), 130.53 (d, *J* = 9.1 Hz), 128.62, 127.49, 128.38, 128.22 (d, *J* = 11.8 Hz), 127.75, 127.27, 126.05, 124.78, 39.96 (br, 2C), 35.20 (d, *J* = 71.5 Hz), 29.58. ³¹P NMR (162 MHz, CDCl₃) δ 29.98. HRMS (APCI) m/z calcd. for C₂₉H₂₇O₂BrP [M + H]⁺ 517.0927, found 517.0923.

(2-(3-(diphenylphosphoryl)-2-phenylpropyl)phenyl)(phenyl)methanone

(50% yield), ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 7.6 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.62 – 7.50 (m, 6H), 7.50 – 7.45 (m, 2H), 7.39 – 7.27 (m, 7H), 7.19 (d, J = 8.4 Hz, 1H), 6.90 – 6.75 (m, 5H), 3.91 – 3.76 (m, 1H), 3.71 – 3.59 (m, 2H), 2.88 – 2.76 (m, 1H), 2.70 – 2.60 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.58, 143.50 (d, J = 7.1 Hz), 137.12 (d, J = 104.2 Hz), 135.05 (d, J = 128.0 Hz), 134.21, 133.41 (d, J = 4.3 Hz), 132.76, 132.41, 132.10, 131.34 (d, J = 2.5 Hz), 130.58 (d, J = 9.2 Hz), 130.23 (d, J = 9.1 Hz), 130.11, 128.54 (d, J = 9.0 Hz), 128.34 (d, J = 6.3 Hz), 128.19, 128.16, 127.39, 126.97, 126.87, 126.67, 126.24, 125.77, 125.10, 41.07 (d, J = 1.5 Hz), 37.30 (d, J = 7.8 Hz), 35.81 (d, J = 73.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.48. HRMS (APCI) m/z calcd. for C₃₄H₃₀O₂P [M+H]⁺ 501.1978, found 501.1972 .

4-(1-(2-benzoylphenyl)-3-(diphenylphosphoryl)propan-2-yl)benzonitrile

(60% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.53 (m, 3H), 7.47 – 7.42 (m, 3H), 7.42 – 7.30 (m, 8H), 7.28 – 7.24 (m, 1H), 7.24 – 7.14 (m, 4H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 3.65 – 3.53 (m, 1H), 3.31 – 3.17 (m, 2H), 2.80 – 2.70 (m, 1H), 2.65 – 2.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.70, 147.91 (d, *J* = 4.4 Hz), 138.28, 138.09, 137.19, 134.03, 133.20, 132.96 (d, *J* = 15.6 Hz), 131.71, 131.66, 131.18 (d, *J* = 2.7 Hz), 130.79 (d, *J* = 50.1 Hz), 130.46 (d, *J* = 9.4 Hz), 130.30 (d, *J* = 9.2 Hz), 130.09, 129.16, 128.74, 128.62 (d, *J* = 11.6 Hz), 128.195 (t, *J* = 11.7 Hz), 128.192, 125.50, 118.62, 110.22, 42.31 (d, *J* = 2.9 Hz), 40.12 (d, *J* = 11.3 Hz), 35.71 (d, *J* = 70.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.84. HRMS (APCI) m/z calcd. for C₃₅H₂₉O₂NP [M + H]⁺ 526.1930, found 526.1925.

1-(2-(3-(diphenylphosphoryl)-2-(pyridin-4-yl)propyl)phenyl)ethanone

(55% yield), ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 6.0 Hz, 2H), 7.63 – 7.52 (m, 3H), 7.48 – 7.41 (m, 3H), 7.39 – 7.31 (m, 3H), 7.29 – 7.18 (m, 4H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 5.6 Hz, 2H), 3.46 – 3.36 (m, 1H), 3.35 – 3.23 (m, 2H), 2.76 – 2.64 (m, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.74, 151.87 (d, *J* = 4.1 Hz), 149.20, 138.51, 137.64, 133.89, 132.91 (d, *J* = 1.6 Hz), 131.94, 131.56 (d, *J* = 2.6 Hz), 131.41, 131.34 (d, *J* = 2.6 Hz), 130.46 (d, *J* = 9.0 Hz), 130.37 (d, *J* = 9.0 Hz), 129.39, 128.50 (d, *J* = 11.6 Hz), 128.19 (d, *J* = 11.7 Hz), 126.41, 123.29, 41.21 (d, *J* = 2.8 Hz), 41.08 (d, *J* = 11.5 Hz), 34.50 (d, *J* = 70.2 Hz), 29.41. ³¹P NMR (162 MHz, CDCl₃) δ 29.19 (s). HRMS (APCI) m/z calcd. for C₂₈H₂₇O₂NP [M + H]⁺ 440.1774, found 440.1769.

Procedures for Synthetic Applications

 $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Experimental procedure for transformation of 3Ga to 8

To a solution of **3Ga** (34.4 mg, 0.1 mmol, 1.0 equiv), phenylacetylene (18 mg, 0.15 mmol, 1.5 equiv) in H₂O/*t*-BuOH (1 mL/1 mL) were added CuSO4•5H₂O (12 mg, 0.05 mmol, 0.5 equiv) and sodium ascorbate (21 mg, 0.11 mmol, 1.1 equiv). The resulting mixture was stirred at room temperature for 20 h. Then the mixture was diluted with ethyl acetate (30 mL), saturated aqueous EDTA solution (0.2 mL) and water (5 mL). The aqueous layer was extracted with ethyl acetate (3×5 mL). The combined organic layer was dried over Na₂SO₄, filtered through a short silica gel plug, and concentrated to afford a crude product, which was purified by flash column chromatography to afford product **8**.

(82% yield), ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.81 (d, *J* = 13.0, 7.5 Hz, 2H), 7.79 (d, J = 13.0, 7.5 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.32 (m, 5H), 7.29 (t, *J* = 7.0 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 5.72 (dd, *J* = 10.5, 5.0 Hz, 1H), 5.17 (dd, *J* = 14.0, 10.5 Hz, 1H), 4.92 (dd, *J* = 14.5, 5.0 Hz, 1H), 2.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.55, 147.83, 139.07, 138.18, 137.98, 133.43, 132.05, 130.56, 129.52, 129.47, 129.12, 128.81, 128.65, 127.93, 127.50, 127.13, 125.93, 125.62, 119.32, 52.41, 46.82, 29.51. HRMS (APCI) m/z calcd. for C₂₄H₂₁ON₃Br [M + H]⁺ 446.0863, found 446.0858.

Experimental procedure for transformation of 3Ga to 9 and 10

To a solution of **3Ga** (34.4 mg, 0.1 mmol, 1.0 equiv) in DCM (2.0 mL) was added TfOH (0.2 mmol, 2 equiv) at 0 °C and then the solution was stirred at room temperature for 12 h. After completion of the reaction as monitored by TLC, the reaction solution was diluted with DCM (30 mL) and washed with saturated NaHCO₃ (2×5 mL) and brine (5 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford a crude product, which was purified by flash column chromatography to afford products **9** and **10**.

(42% yield), ¹H NMR (500 MHz, CDCl₃) δ 8.23 – 8.18 (m, 1H), 7.63 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.19 – 7.10 (m, 2H), 7.01 – 6.96 (m, 1H), 6.82 (dd, *J* = 7.5, 1.5 Hz, 1H), 4.83 (t, *J* = 5.5 Hz, 1H), 3.90 (dd, *J* = 12.5, 5.5 Hz, 1H), 3.65 (dd, *J* = 12.5, 5.5Hz, 1H), 3.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.60, 139.79, 139.29, 133.15, 132.07, 130.16, 129.80, 128.80, 128.32, 127.70, 127.68, 127.42, 124.33, 53.33, 42.47, 35.33. HRMS (APCI) m/z calcd. for C₁₆H₁₅ONBr [M + H]⁺ 316.0332, found 316.0326.

(37% yield), ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.0 Hz, 1H), 7.62 (dd, J = 8.0, 1.0 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.22 (t, J = 7.0 Hz, 1H), 7.13 (td, J = 8.0, 1.5 Hz,

1H), 7.08 – 7.04 (m, 2H), 6.93 (d, J = 7.0 Hz, 1H), 5.11 (dd, J = 10.5, 6.0 Hz, 1H), 4.55 (t, J = 10.5 Hz, 1H), 3.82 (dd, J = 10.5, 6.0 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.68, 143.50, 142.55, 132.89, 132.62, 129.05, 128.78, 128.49, 128.03, 125.25, 124.31, 123.98, 117.14, 56.79, 45.46, 24.23. HRMS (APCI) m/z calcd. for C₁₆H₁₅ONBr [M+H]⁺ 316.0332, found 316.0327.

Transformation of azido ketone 3Ga to 11

To a solution of **3Ga** (34.4 mg, 0.1 mmol, 1.0 equiv) in THF (2.0 mL) was added PPh₃ (31.4 mg, 0.12 mmol, 1.2 equiv). The resulting mixture was then stirred at 60 °C for 6 h. After completion of the reaction as monitored by TLC, the solvent were concentrated to afford a crude product, which was purified by flash column chromatography to give **11**.

4-(2-bromophenyl)-1-methyl-3,4-dihydroisoquinoline

(89% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 8.0, 1.2 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.38 – 7.31 (m, 2H), 7.21 (td, J = 7.6, 1.2 Hz, 1H), 7.11 (td, J = 7.6, 1.6 Hz, 1H), 6.97 (dd, J = 7.6, 1.6 Hz, 1H), 6.93 – 6.88 (m, 1H), 4.65 (dd, J = 10.8, 6.4 Hz, 1H), 3.98 (ddd, J = 15.6, 6.4, 1.2 Hz, 1H), 3.88 – 3.79 (m, 1H), 2.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.76, 140.41, 138.80, 133.16, 131.17, 129.66, 129.35, 128.38, 127.58, 127.35, 127.27, 125.56, 125.29, 52.49, 40.89, 23.26. HRMS (APCI) m/z calcd. for C₁₆H₁₅NBr [M + H]⁺ 300.0382, found 300.0376.

Mechanistic Study

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with **1A** (51.6 mg, 0.2 mmol, 1.0 equiv), **2a** (70 mg, 0.24 mmol, 1.2 equiv), 1,10-phen (43.2 mg, 0.24 mmol, 0.12 equiv), 2,6-di-*tert*-butyl-4-methylphenol (BHT, 52.8 mg, 0.24 mmol, 1.2 equiv) or 2,2,6,6-Tetramethylpiperidinooxy (TEMPO, 37.5 mg, 0.24 mmol, 1.2 equiv), and EtOAc (2.0 mL) under argon atmosphere. The sealed tube was then stirred at 60 °C for 12 h. Upon completion, the reaction solution was diluted with EtOAc (30 mL) and washed with saturated NaHCO₃ (2 × 5 mL) solution. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product. To a solution of this crude product in CDCl₃ was added mesitylene (24.0 mg, 0.2 mmol) as an internal standard. ¹H NMR analysis of this reaction mixture indicated that **3Aa** was not formed under either reaction conditions.

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with **5A** (47.6 mg, 0.2 mmol, 1.0 equiv), **2b** (126 mg, 0.4 mmol, 2.0 equiv), CuCN (1.8 mg, 0.02 mmol, 0.1 equiv), 2,2,6,6-Tetramethylpiperidinooxy (63 mg, 0.4 mmol, 2.0 equiv) or 1,4-dinitrobenzene (67 mg, 0.4 mmol, 2.0 equiv), and dioxane (4.0 mL) under argon atmosphere. The sealed tube was then stirred at 60 °C for 24 h. Upon completion, PhCF₃ (29.2 mg, 0.2 mmol) was added as an internal standard. ¹⁹F NMR analysis of this reaction mixture indicated that **6Ab** was not formed under either conditions.

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with **5**C (54.4 mg, 0.2 mmol, 1.0 equiv), **2**c (80.8 mg, 0.4 mmol, 2.0 equiv), AgNO₃ (20.4 mg, 0.12 mmol, 0.6 equiv), 2,2,6,6-tetramethylpiperidinooxy (63 mg, 0.4 mmol, 2.0 equiv) or 1,4-dinitrobenzene (67 mg, 0.4 mmol, 2.0 equiv), and CH₃CN (2.0 mL) under argon atmosphere. The sealed tube was stirred at 80 °C for 12 h and then H₂O (5 mL) was added. EtOAc was used to extract the product from the aqueous layer (3×20 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product. To a solution of this crude product in CDCl₃ was added mesitylene (24.0 mg, 0.2 mmol) as an internal standard. ¹H NMR analysis of this reaction mixture indicated that **7Cc** was not formed under either conditions.

Cross-experiment

A 50 mL Schlenk tube equipped with a magnetic stir bar was charged with **1A** (0.2 mmol, 1.0 equiv), **1J** (0.2 mmol, 1.0 equiv), **2b** (252 mg, 0.8 mmol, 2.0 equiv), CuCN (3.6 mg, 0.04 mmol, 0.1 equiv), and dioxane (8.0 mL) under argon atmosphere. The sealed tube was then stirred at 80 °C for 24 h. Upon completion, EtOAc (30 mL) was added and the reaction mixture was washed with saturated NaHCO₃ (2×5 mL) solution. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to afford a crude product. To a solution of this crude product in CDCl₃ was added mesitylene (24.0 mg, 0.2 mmol) as an internal standard. ¹H NMR analysis of this reaction mixture indicated that there were no cross products formed.

NMR Spectra

11-10-134-2-1 F 11-10-134-2-1 F

---63.436

11-10-133-2 F 11-10-133-2 F

0

ĊN **4Cb**

---63.458

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130

11-13-48 F 11-13-48 F

11-10-101-1-1 F 11-10-101-1-1 F

--63.094

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110

;

--63.628

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120

11-7-49 F 11-7-49 F

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120

11-9-92 F 11-9-92 F

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -12

Ò

6Hb

CF₃

15 11-6-126 F 3/15

---63.458

11-11-56 F 11-11-56 F

---63.564

11-9-107 P 11-9-107 P

-29.338

9.0 7.5 7.0 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 -0. 9.5 8.5 8.0 6.5 6.0 0.5 0.0 5.5 1.5 1.0

8 8 7,7833 8 7,7833 8 7,7833 8 7,7833 8 7,7833 8 7,7833 8 7,7533 7,580 7,5570 7,559 7,5570 7,559 7,5570 7,559 7,5533 7,557 7,5533 7,557 7,5533 7,557 7,5533 7,553 7,5533 7,557 7,5533 7,557 7,5533 7,557 7,5533 7,557 7,355 7,357 7,355 7,357 7,355 7,357 7,355 7,355 7,355 7,355 7,356 7,357 7,357 7,355 7,356 7,357 7,357 7,356 7,356 7,357 7,357 7,357 7,357 7,357 7,357 <td

11-9-102 P 11-9-102 P

-30.479

r \$ ____

0

7Mc

POPh₂

-29.187

References

 L. Li, Z.-L. Li, F.-L. Wang, Z. Guo, Y.-F. Cheng, N. Wang, X.-W. Dong, C. Fang, J. Liu, C. Hou, B. Tan and X.-Y. Liu, *Nat. Commun.*, 7, 13852.