Electronic Supplementary Information

In-situ generation and reactions of *p*-(trifluoromethyl)benzyl electrophiles: efficient access to *p*-(trifluoromethyl)benzyl

compounds

Jinhuan Dong,^a Shuang Xin,^a Yanqing Wang,^a Ling Pan*^{ab} and Qun Liu*^{ab}

^a Department of Chemistry, Northeast Normal University, Changchun 130024, China. ^b Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China. E-mail: panl948@nenu.edu.cn; liuqun@nenu.edu.cn

Contents

Table of Contents	S 1
I. General Information	S2
II. Procedures and Analytical Data for Compounds	S2
III. Mechanism Study	S23
IV. Crystal Data and OPTEP Drawings	S25
V. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	527

I. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. *N*,*N*-Dimethylformamide (DMF) was dried over calcium hydride and distilled before use. *p*-Quinone derivatives were purchased or synthesized according to the literature.¹ All reactions were carried out in the sealed tubes and monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by flash column chromatography on silica gel (300–400 mesh). Melting points were uncorrected. NMR spectra were obtained on a Varian Inova 500 spectrometer (500 MHz for ¹H NMR; 125 MHz for ¹³C NMR; 470 MHz for ¹⁹F NMR). ¹H NMR and ¹³C NMR were determined with TMS as the internal standard. ¹⁹F NMR was determined with C₆H₃F as external reference. All chemical shifts are given in ppm. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). Part of the mass spectra were idientified by GC-MS, by which gas chromatography was performed on a Hewlett Packard HP 6890 chromatograph with a HP5 column. Mass spectra were recorded on a AMD 402/3 mass spectrometer.

II. Procedures and Analytical Data for Compounds

Synthesis of (trifluoromethyl)benzylamines

9a: N,4-dimethyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

To the solution of *N*,4-dimethylbenzenesulfonamide **8a** (278 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) in DCE (1 mL) was added TMSCl (126 μ L, 1 mmol) and In(OTf)₃ (141 mg, 0.25 mmol). Then, 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol) was added. After the reaction was finished as indicated by TLC (reaction time, 36 h), the resulting mixture was poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1: 40) to afford **9a** (133 mg, 75%).

Colorless crystals, m.p. 40–41 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.29 (d, J = 7.0 Hz, 3H), 2.44

¹ P. Camps, A. González, D. Muñoz-Torrero, M. Simon, A. Zúñiga, M. A. Martins, M. Font-Bardia, X. Solans, *Tetrahedron*, 2000, **56**, 8141.

(s, 3H), 2.59 (s, 3H), 5.32 (q, J = 7.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 15.0, 21.4, 28.5, 54.4, 123.9 (CF₃, q, J = 270.6 Hz), 125.3 (q, J = 3.8 Hz), 126.9, 127.5, 129.4 (q, J = 32.3 Hz), 129.7, 136.7, 143.4, 144.2. ¹⁹**F** NMR (470 MHz, CDCl₃) δ -64.5. HRMS (ESI-TOF) Calcd for C₁₇H₁₈F₃NNaO₂S (M+Na)⁺ 380.0903. Found 380.0899.

9c: *N*,4-dimethyl-*N*-(1-(4-(trifluoromethyl)phenyl)propyl)benzenesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), *N*,4-dimethylbenzenesulfonamide **8a** (278 mg, 1.5 mmol) and heptan-4-one **7f** (140 μ L, 1.5 mmol) gave **9c** (56 mg, 30%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 48 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 0.86 (t, J = 7.0 Hz, 3H), 1.69–1.76 (m, 1H), 1.91–1.97 (m, 1H), 2.41 (s, 3H), 2.64 (s, 3H), 5.05 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 11.2, 21.4, 23.6, 28.6, 61.1, 123.9 (CF₃, q, J = 270.6 Hz), 125.3 (q, J = 3.8 Hz), 127.0, 128.2, 129.5, 129.8 (q, J = 32.3 Hz), 137.1, 142.8, 143.2. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -64.6. **HRMS** (ESI-TOF) Calcd for C₁₈H₂₀F₃NNaO₂S (M+Na) ⁺ 394.1059. Found 394.1065.

9d: *N*,4-dimethyl-*N*-(1-(3-methyl-4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 3-methyl-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5b** (330 mg, 1.25 mmol), *N*,4-dimethylbenzenesulfonamide **8a** (93 mg, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9d** (90 mg, 49%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 48 h.

Colorless crystals, m.p. 99–100 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.29 (d, J = 7.0 Hz, 3H), 2.43 (s, 3H), 2.44 (s, 3H), 2.59 (s, 3H), 5.25 (q, J = 7.0 Hz, 1H), 7.16 (s, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 15.1, 19.3, 21.4, 28.6, 54.3, 124.2, 124.3 (CF₃, q, J = 272.0 Hz), 125.8 (q, J = 5.5 Hz),

127.0, 127.9 (q, J = 29.9 Hz), 129.7, 130.8, 136.7, 136.9, 143.3, 143.8. **HRMS** (ESI-TOF) Calcd for C₁₈H₂₀F₃NNaO₂S (M+Na)⁺ 394.1059. Found 394.1047.

9e:

N-(1-(4'-methoxy-6-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)ethyl)-*N*,4-dimethylbenzenesulfonamid e

Following the procedure for the synthesis of **9a**, the reaction of 4'-methoxy-6-(trifluoromethyl)-6-((trimethylsilyl)oxy)-[1,1'-biphenyl]-3(6*H*)-one **5c** (178 mg, 0.5 mmol), *N*,4-dimethylbenzenesulfonamide **8a** (278 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9e** (123 mg, 53%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 60). Reaction time 48 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.31 (d, J = 7.0 Hz, 3H), 2.41 (s, 3H), 2.63 (s, 3H), 3.85 (s, 3H), 5.30 (q, J = 7.0 Hz, 1H), 6.93 (d, J = 8.5 Hz, 2H), 7.15 (s, 1H), 7.19 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 15.3, 21.5, 28.7, 54.4, 55.2, 113.1, 124.0 (CF₃, q, J = 272.0 Hz), 125.8, 126.3 (q, J = 5.3 Hz), 126.9, 127.7 (q, J = 29.6 Hz), 129.7, 129.9, 130.9, 131.8, 136.7, 141.3, 143.3, 143.5, 159.1. **HRMS** (ESI-TOF) Calcd for C₂₄H₂₄F₃NNaO₃S (M+Na) ⁺ 486.1321. Found 486.1318.

9f: N-(1-(3-(tert-butyl)-4-(trifluoromethyl)phenyl)ethyl)-N,4-dimethylbenzenesulfonamide Following the procedure for the synthesis of 9a. the reaction of 3-(tert-butyl)-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone 5d (153 mg, 0.5 mmol), N,4-dimethylbenzenesulfonamide 8a (278 mg, 1.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) gave 9f (95 mg, 46%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 72 h.

Colorless crystals, m.p. 100–101 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.34 (d, J = 7.0 Hz, 3H), 1.40 (s, 9H), 2.43 (s, 3H), 2.61 (s, 3H), 5.29 (q, J = 7.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.58 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 15.5, 21.4, 28.6, 31.8 (q, J = 2.8 Hz), 36.5, 54.6, 124.2, 124.7 (CF₃, q, J = 272.0

Hz), 126.9, 127.2 (q, J = 29.9 Hz), 128.0, 128.4 (q, J = 7.4 Hz), 129.7, 136.9, 143.3, 143.5, 149.4. **HRMS** (ESI-TOF) Calcd for C₂₁H₂₆F₃NNaO₂S (M+Na)⁺ 436.1529. Found 436.1510.

9g:

N-(1-(4'-bromo-6-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)ethyl)-N,4-dimethylbenzenesulfonamide procedure for synthesis of reaction Following the the 9a, the of 4'-bromo-6-(trifluoromethyl)-6-((trimethylsilyl)oxy)-[1,1'-biphenyl]-3(6H)-one 5e (202 mg, 0.5 mmol), N,4-dimethylbenzenesulfonamide 8a (278 mg, 1.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) gave 9g (102 mg, 40%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 48 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.31 (d, *J* = 7.0 Hz, 3H), 2.41 (s, 3H), 2.63 (s, 3H), 5.31 (q, *J* = 7.0 Hz, 1H), 7.12 (s, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 15.3, 21.5, 28.6, 54.3, 122.0, 123.8 (CF₃, q, *J* = 272.0 Hz), 126.3, 126.4 (q, *J* = 5.3 Hz), 126.9, 127.5 (q, *J* = 29.6 Hz), 129.7, 130.5, 130.9, 136.6, 138.3, 140.2, 143.4, 143.8. **HRMS** (ESI-TOF) Calcd for C₂₃H₂₁BrF₃NNaO₂S (M+Na)⁺ 534.0321. Found 534.0334.

9h: N-(1-(3,5-dimethyl-4-(trifluoromethyl)phenyl)ethyl)-N,4-dimethylbenzenesulfonamide To the solution of N,4-dimethylbenzenesulfonamide 8a (278 mg, 1.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) in DCE (1 mL) was added TMSCl (126 μ L, 1 mmol) and In(OTf)₃(141 mg, 0.25 mmol). Then, 45 °C the mixture was heated to and 3,5-dimethyl-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone 5f (139 mg, 0.5 mmol) was added. After the reaction was finished as indicated by TLC (reaction time, 15 h), the resulting mixture was poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1:40) to afford 9h (60 mg, 31%).

Colorless crystals, m.p. 131–132 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.28 (d, J = 7.0 Hz, 3H), 2.41 (s, 3H), 2.42 (s, 3H), 2.44 (s, 3H), 2.60 (s, 3H), 5.18 (q, J = 7.0 Hz, 1H), 6.92 (s, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 15.3, 21.4, 21.5 (q, J = 4.0 Hz), 28.7, 54.2, 126.0 (CF₃, q, J = 267.6 Hz), 126.7 (q, J = 29.9 Hz), 127.1, 128.9, 129.7, 137.1, 137.5 (q, J = 1.9 Hz), 142.6, 143.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -56.1. HRMS (ESI-TOF) Calcd for C₁₉H₂₂F₃NNaO₂S (M+Na)⁺ 408.1216. Found 408.1222.

9i: N,4-dimethyl-N-(1-(4-(perfluoroethyl)phenyl)ethyl)benzenesulfonamide

Following the procedure for the synthesis of 9a, reaction of the 4-(perfluoroethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5g** (150 mg, 0.5 mmol), N,4-dimethylbenzenesulfonamide 8a (278 mg, 1.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) gave 9i (107 mg, 53%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 36 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.29 (d, J = 7.0 Hz, 3H), 2.44 (s, 3H), 2.60 (s, 3H), 5.33 (q, J = 7.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 15.0, 21.4, 28.5, 54.4, 113.5 (qt, J = 253.1 Hz, J₂ = 38.6 Hz), 119.1 (tq, J₁ = 249.4 Hz, J₂ = 39.4 Hz), 126.5 (t, J = 6.3 Hz), 126.9, 127.5, 127.8 (t, J = 23.9 Hz), 129.7, 136.7, 143.4, 144.4. HRMS (ESI-TOF) Calcd for C₁₈H₁₈F₅NNaO₂S (M+Na)⁺ 430.0871. Found 430.0889.

9j: N-methyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), *N*-methylbenzenesulfonamide **8b** (257 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9j** (130 mg, 76%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 36 h.

Colorless crystals, m.p. 85–86 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.30 (d, *J* = 7.0 Hz, 3H), 2.61 (s, 3H), 5.33 (q, *J* = 7.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.53–7.63 (m, 5H), 7.86 (d, *J* = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 15.1, 28.5, 54.5, 123.9 (CF₃, q, *J* = 270.6 Hz), 125.4 (q, *J* =

3.8 Hz), 126.9, 127.5, 129.2, 129.8 (q, J = 32.1 Hz), 132.6, 139.7, 143.9. **HRMS** (ESI-TOF) Calcd for C₁₆H₁₆F₃NNaO₂S (M+Na)⁺ 366.0746. Found 366.0735.

9k: N,2-dimethyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), *N*,2-dimethylbenzenesulfonamide **8c** (277 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9k** (114 mg, 64%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 48 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.50 (d, J = 7.0 Hz, 3H), 2.62 (s, 6H), 5.22 (q, J = 7.0 Hz, 1H), 7.34 (m, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 7.5 Hz, 1H). ¹³**C** NMR (125 MHz, CDCl₃): δ 15.7, 20.4, 28.2, 53.9, 123.9 (CF₃, q, J = 270.6 Hz), 125.3 (q, J = 3.8 Hz), 126.1, 127.7, 129.8 (q, J = 32.1 Hz), 130.0, 132.7, 132.8, 137.4, 137.7, 143.7. **HRMS** (ESI-TOF) Calcd for C₁₇H₁₈F₃NNaO₂S (M+Na) ⁺ 380.0903. Found 380.0907.

91: 4-chloro-*N*-methyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 4-chloro-*N*-methylbenzenesulfonamide **8d** (307 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9l** (143 mg, 76%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 36 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.32 (d, *J* = 7.0 Hz, 3H), 2.61 (s, 3H), 5.33 (q, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 15.2, 28.5, 54.6, 123.9 (CF₃, q, *J* = 270.6 Hz), 125.4 (q, *J* = 3.8 Hz), 127.5, 128.4, 129.4, 129.8 (q, *J* = 32.1 Hz), 138.3, 139.0, 143.8. **HRMS** (ESI-TOF) Calcd for C₁₆H₁₅ClF₃NNaO₂S (M+Na)⁺ 400.0356. Found 400.0346.

9m: N-methyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)naphthalene-2-sulfonamide Following the procedure for the synthesis of 9a. the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone 5a (125 mg, 0.5 mmol), *N*-methylnaphthalene-2-sulfonamide 8e (331 mg, 1.5 mmol) and pentan-3-one 7a (157 µL, 1.5 mmol) gave 9m (126 mg, 64%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 40). Reaction time 48 h.

Colorless crystals, m.p. 126–127 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.31 (d, J = 7.0 Hz, 3H), 2.65 (s, 3H), 5.41 (q, J = 7.0 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.60–7.67 (m, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.97 (t, J = 8.0 Hz, 2H), 8.43 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 15.3, 28.6, 54.5, 122.3, 123.9 (CF₃, q, J = 270.5 Hz), 125.4 (q, J = 3.8 Hz), 127.5, 127.6, 127.9, 128.3, 128.8, 129.1, 129.5, 129.8 (q, J = 32.1 Hz), 132.2, 134.7, 136.7, 144.0. HRMS (ESI-TOF) Calcd for C₂₀H₁₈F₃NNaO₂S (M+Na) ⁺ 416.0903. Found 416.0901.

9n: N-methyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)methanesulfonamide

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), *N*-methylmethanesulfonamide **8f** (164 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9n** (118 mg, 84%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 24). Reaction time 36 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.62 (d, J = 7.0 Hz, 3H), 2.67 (s, 3H), 2.87 (s, 3H), 5.31 (q, J = 7.0 Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 16.3, 28.3, 38.5, 54.4, 123.9 (CF₃, q, J = 270.6 Hz), 125.5 (q, J = 3.8 Hz), 127.6, 129.9 (q, J = 32.1 Hz), 143.7. **HRMS** (ESI-TOF) Calcd for C₁₁H₁₄F₃NNaO₂S (M+Na)⁺ 304.0590. Found 304.0584.

9o: 4-methyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide Following the procedure for the synthesis of **9a**, the

Following the procedure for the synthesis of **9a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 4-methylbenzenesulfonamide **8g** (256 mg, 1.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **9o** (45 mg, 26%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 15). Reaction time 36 h. Some 4-methyl-*N*-(3-(3-oxopentan-2-yl)-4-(trifluoromethyl)phenyl) benzenesulfonamide,² which has been reported previously by us can't be isolated from 9o.

¹**H** NMR (500 MHz, CDCl₃): δ 1.42 (d, J = 7.0 Hz, 3H), 2.31 (s, 3H), 4.55 (q, J = 7.0 Hz, 1H), 5.82 (d, J = 7.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H). **HRMS** (ESI-TOF) Calcd for C₁₆H₁₇F₃NO₂S (M+H)⁺ 344.0927. Found 344.0930.

Synthesis of unsymmetrical trifluoromethylateddiarylmethanes

11a: 2-fluoro-1-methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

To the solution of 1-fluoro-2-methoxybenzene **10a** (57 µL, 0.5 mmol) and pentan-3-one **7a** (157 µL, 1.5 mmol) in DCE (1 mL) was added TMSCl (126 µL, 1 mmol) and In(OTf)₃ (141 mg, 0.25 mmol) at 45 °C. Then, 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (250 mg, 1.0 mmol) was added. After the reaction was finished as indicated by TLC (reaction time, 8 h), the resulting mixture was poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1: 240) to afford **11a** (128 mg, 86%).

² J. Dong, L. Shi, L. Pan, X. Xu, Q. Liu, Sci. Rep., 2016, 6, 26957.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.60 (d, J = 7.0 Hz, 3H), 3.84 (s, 3H), 4.13 (q, J = 7.0 Hz, 1H), 6.86–6.93 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 21.6, 43.7, 56.2, 113.3, 115.3 (d, J = 18.3 Hz), 123.0 (d, J = 3.4 Hz), 124.2 (CF₃, q, J = 272.0 Hz), 125.4 (q, J = 3.8 Hz), 127.8, 128.5 (q, J = 32.1 Hz), 138.3 (d, J = 5.5 Hz), 146.0 (d, J = 10.6 Hz), 150.1, 152.3 (d, J = 244.5 Hz). MS (70 eV): m/z (%): 298.1 (39) [M⁺], 283.1 (100) [M⁺ – CH₃], 283.1 (6) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₆H₁₄F₄O: 298.0981, found 298.1.

11b: 2-chloro-1-methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (250 mg, 1.0 mmol), 1-chloro-2-methoxybenzene **10b** (64 μ L, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11b** (113 mg, 72%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.59 (d, J = 7.0 Hz, 3H), 3.84 (s, 3H), 4.11 (q, J = 7.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 7.21 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 21.5, 43.6, 56.0, 112.0, 122.3, 123.1 (CF₃, q, J = 272.0 Hz), 125.3 (q, J = 3.5 Hz), 126.7, 127.8, 128.4 (q, J = 32.1 Hz), 129.2, 138.4, 150.1, 153.4. MS (70 eV): m/z (%): 316.1 (13) [M⁺], 314.1 (37) [M⁺], 301.1 (33) [M⁺ - CH₃], 299.1 (100) [M⁺ - CH₃]; MS (70 eV): calcd for C₁₆H₁₄ClF₃O: 314.0685, found 314.1.

11c: 1-methoxy-4-methyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 1-methoxy-4-methylbenzene **10c** (126 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11c** (102 mg, 70%) after purification by column chromatography on silica gel (EtOAc/PE =

1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.57 (d, J = 7.5 Hz, 3H), 2.27 (s, 3H), 3.71 (s, 3H), 4.56 (q, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.99 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 20.6, 20.7, 37.4, 55.5, 110.6, 124.8 (CF₃, q, J = 270.1 Hz), 124.9 (q, J = 3.6 Hz), 127.7, 127.8 (q, J = 32.3 Hz), 127.9, 128.1, 129.7, 133.4, 150.7, 154.7. MS (70 eV): m/z (%): 294.2 (88) [M⁺], 279.1 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₇H₁₇F₃O: 294.1231, found 294.2.

11d: 1,4-dimethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), p-xylene **10d** (124 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11d** (97 mg, 70%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.60 (d, J = 7.5 Hz, 3H), 2.15 (s, 3H), 2.32 (s, 3H), 4.33 (q, J = 7.5 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 19.3, 21.2, 21.9, 40.9, 124.9 (CF₃, q, J = 270.1 Hz), 125.2 (q, J = 3.6 Hz), 127.1, 127.3, 127.9, 128.3 (q, J = 32.3 Hz), 130.5, 132.8, 135.5, 142.6, 150.5. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -64.2. MS (70 eV): m/z (%): 278.1 (44) [M⁺], 263.1 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₇H₁₇F₃: 278.1282, found 278.1.

11e: 1,3,5-trimethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), mesitylene **10e** (140 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11e** (112 mg, 77%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.67 (d, J = 7.0 Hz, 3H), 2.09 (s, 6H), 2.25 (s, 3H), 4.63 (q, J = 7.0 Hz, 1H), 6.83 (s, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 16.7, 20.7, 21.0, 37.9, 124.8 (CF₃, q, J = 270.1 Hz), 125.0 (q, J = 3.6 Hz), 127.1, 127.6 (q, J = 32.1 Hz), 130.1, 135.8, 136.3, 139.1, 149.8. MS (70 eV): m/z (%): 292.2 (46) [M⁺], 277.2 (100) [M⁺ – CH₃], 262.1 (10) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₈H₁₉F₃: 292.1439, found 292.2.

11f: 1,2,4,5-tetramethyl-3-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 1,2,4,5-tetramethylbenzene **10f** (134 mg, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11f** (109 mg, 71%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.69 (d, J = 7.0 Hz, 3H), 1.99 (s, 6H), 2.20 (s, 6H), 4.74 (q, J = 7.0 Hz, 1H), 6.91 (s, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 16.7, 17.1, 19.0, 20.8, 38.4, 124.8 (CF₃, q, J = 270.1 Hz), 125.0 (q, J = 3.6 Hz), 126.8, 127.4 (q, J = 32.3 Hz), 130.4, 131.0, 132.5, 142.1, 150.4. MS (70 eV): m/z (%): 306.2 (85) [M⁺], 291.2 (100) [M⁺ – CH₃], 276.1 (11) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₉H₂₁F₃: 306.1595, found 306.2.

11g: 1,2,3,4,5-pentamethyl-6-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 1,2,3,4,5-pentamethylbenzene **10g** (148 mg, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11g** (115 mg, 72%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.70 (d, J = 7.0 Hz, 3H), 2.05 (s, 6H), 2.20 (s, 6H), 2.26 (s, 3H), 4.77 (q, J = 7.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 16.9, 17.1, 17.6, 17.8, 38.7, 124.8 (CF₃, q, J = 270.1 Hz), 125.0 (q, J = 3.6 Hz), 126.7, 127.3 (q, J = 32.1 Hz), 132.1, 133.4, 139.6, 150.8. MS (70 eV): m/z (%): 320.2 (87) [M⁺], 305.2 (100) [M⁺ – CH₃], 290.1 (7) [M⁺ – 2 CH₃], 275.1 (21) [M⁺ – 3 CH₃]; MS (70 eV): calcd for C₂₀H₂₃F₃: 320.1752, found 320.2.

11h: 1,2,3-trimethoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), 1,2,3-trimethoxybenzene **10h** (168 mg, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11h** (90 mg, 53%) and little unidentified compounds after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 8 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.57 (d, J = 7.0 Hz, 3H), 3.62 (s, 3H), 3.84 (s, 6H), 4.49 (q, J = 7.0 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ 21.3, 37.9, 55.9, 60.5, 60.6, 106.9, 121.6, 124.7 (CF₃, q, J = 270.1 Hz), 125.1 (q, J = 3.6 Hz), 127.8, 127.9 (q, J = 32.3 Hz), 131.2, 142.3, 151.2, 151.4, 152.4. MS (70 eV): m/z (%): 340.2 (92) [M⁺], 325.1 (100) [M⁺ - CH₃], 310.1 (6) [M⁺ - 2 CH₃]; HR-MS (70 eV): calcd for C₁₈H₁₉F₃O₃: 340.1286, found 340.2.

11i: 1,2-dimethoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (150 mg, 0.6 mmol), 1,2-dimethoxy benzene **10i** (64 μ L, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11i** (79 mg, 51%) and little unidentified compounds after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.63 (d, J = 7.0 Hz, 3H), 3.82 (s, 3H), 3.84 (s, 3H), 4.13 (q, J = 7.0 Hz, 1H), 6.69 (s, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz,

1H), 7.31 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H). MS (70 eV): m/z (%): 310.1 (57) [M⁺], 295.1 (100) [M⁺ - CH₃], 280.1 (4) [M⁺ - 2 CH₃]; MS (70 eV): calcd for C₁₇H₁₇F₃O₂: 310.1181, found 310.1.

11j: 1-methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), anisole **10j** (108 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11j** (57 mg, 41%) and little unidentified compounds after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.62 (d, J = 7.0 Hz, 3H), 3.77 (s, 3H), 4.15 (q, J = 7.0 Hz, 1H), 6.84 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H). MS (70 eV): m/z (%): 280.1 (72) [M⁺], 265.1 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₆H₁₅F₃O: 280.1075, found 280.1.

11k: 4-chloro-1-methoxy-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (250 mg, 1.0 mmol), p-xylene **10k** (62 μ L, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11k** (57 mg, 36%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.55 (d, J = 7.5 Hz, 3H), 3.72 (s, 3H), 4.54 (q, J = 7.5 Hz, 1H), 6.75 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 7.13–7.16 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 20.5, 37.5, 55.6, 111.8, 124.9 (CF₃, q, J = 270.1 Hz), 125.1 (q, J = 3.6 Hz), 125.5, 127.1, 127.5, 127.8, 128.2 (q, J = 32.3 Hz), 135.4, 149.8, 150.4. MS (70 eV): m/z (%): 316.1 (18) [M⁺], 314.1 (54) [M⁺], 301.1 (14) [M⁺ - CH₃], 299.1 (43) [M⁺ - CH₃], 159.1 (100) [M⁺ - C₈H₈ClO]; MS (70 eV): calcd for

111: 1,2-dimethyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

111': 1,2-dimethyl-3-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), o-xylene **10l** (120 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11l/l'** (91 mg, 66%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid, 111/111' = 20/3.

¹**H NMR** (500 MHz, CDCl₃):

111, δ 1.61 (d, *J* = 7.0 Hz, 3H), 2.21 (s, 6H), 4.12 (q, *J* = 7.0 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.97 (s, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H).

11¹, δ 1.60 (d, *J* = 7.0 Hz, 3H), 2.09 (s, 3H), 2.26 (s, 3H), 4.42 (q, *J* = 7.0 Hz, 1H), 7.05 (m, 1H), 7.11 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 15.1, 19.3, 19.9, 20.9, 21.6, 22.2, 41.2, 44.3, 124.9 (CF₃, q, *J* = 270.1 Hz), 124.5, 124.8, 125.3 (q, *J* = 3.6 Hz), 125.4, 127.8, 127.9, 128.2 (q, *J* = 32.1 Hz), 128.9, 129.8, 134.6, 136.7, 137.1, 142.6, 142.8, 150.7.

MS (70 eV): m/z (%): 278.1 (39) [M⁺], 263.1 (100) [M⁺ – CH₃], 248.1 (18) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₇H₁₇F₃: 278.1282, found 278.1.

11m: 2,4-dimethyl-1-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

11m': 1,3-dimethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), m-xylene **10m** (123 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11m/m'** (94 mg, 68%) after purification by column chromatography on silica gel using petroleum ether as eluant.

Reaction time 10 h.

Colorless viscous liquid, 11m/11m' = 20/1.

¹**H NMR** (500 MHz, CDCl₃):

11m, δ 1.59 (d, *J* = 7.0 Hz, 3H), 2.16 (s, 3H), 2.29 (s, 3H), 4.31 (q, *J* = 7.0 Hz, 1H), 6.96 (s, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 2H), 7.48 (d, *J* = 7.5 Hz, 2H).

11m', δ 1.68 (d, *J* = 7.0 Hz, 3H), 2.09 (s, 3H), 2.26 (s, 3H), 4.67 (q, *J* = 7.0 Hz, 1H), 6.99–7.05 (m, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 16.5, 19.6, 20.9, 21.1, 21.9, 38.2, 40.6, 124.9 (CF₃, q, *J* = 270.1 Hz), 125.1 (q, *J* = 3.6 Hz), 125.2 (q, *J* = 3.6 Hz), 126.4, 126.5, 126.8, 127.1, 127.9, 128.3 (q, *J* = 32.1 Hz), 131.4, 135.8, 135.9, 136.4, 139.9, 142.1, 149.5, 150.6.

MS (70 eV): m/z (%): 278.2 (40) [M⁺], 263.2 (100) [M⁺ – CH₃], 248.1 (17) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₇H₁₇F₃: 278.1282, found 278.2.

11n: 1-isopropyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

11n': 1-isopropyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5a** (125 mg, 0.5 mmol), cumene **10n** (140 μ L, 1.0 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11n/n'** (73 mg, 50%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid, 11n/11n' = 20/1.

¹**H NMR** (500 MHz, CDCl₃):

11n, δ 1.22 (d, J = 6.5 Hz, 6H), 1.64 (d, J = 7.0 Hz,, 3H), 2.87 (m, 1H), 4.16 (q, J = 7.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H).

11n', δ 1.07 (d, *J* = 6.5 Hz, 6H), 1.64 (d, *J* = 7.0 Hz, 3H), 3.18 (m, 1H), 4.53 (q, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.18–7.29 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 21.7 (2), 22.4, 23.9, 24.0, 33.6, 34.1, 44.3, 44.7, 124.8 (CF₃, q, *J* = 270.1 Hz), 125.3 (q, *J* = 3.6 Hz), 125.8 (CF₃, q, *J* = 270.1 Hz), 126.5, 127.4, 127.9, 128.4 (q, *J* = 32.1 Hz), 141.5, 142.5, 145.1, 146.5, 149.1, 150.7, 150.9.

MS (70 eV): m/z (%): 292.2 (37) [M⁺], 277.2 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₈H₁₉F₃: 292.1439, found 292.2.

110: 2-fluoro-1-methoxy-4-(1-(3-methyl-4-(trifluoromethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of **11a**. the reaction of 3-methyl-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5b** (264 mg, 1.0 mmol), 1-fluoro-2-methoxybenzene 10a (57 μ L, 0.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) gave 110 (89 mg, 57%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.59 (d, J = 7.5 Hz, 3H), 2.43 (s, 3H), 3.85 (s, 3H), 4.07 (q, J = 7.5 Hz, 1H), 6.86–6.93 (m, 3H), 7.08 (d, J = 8.5 Hz, 1H), 7.09 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 19.3 (q, J = 1.8 Hz), 21.5, 43.5, 56.2, 113.2, 115.2 (d, J = 18.3 Hz), 122.9 (d, J = 3.4 Hz), 124.5 (CF₃, q, J = 272.0 Hz), 124.6, 125.9 (q, J = 3.8 Hz), 126.8 (q, J = 32.1 Hz), 131.0, 136.7, 138.4 (d, J = 5.5 Hz), 145.9 (d, J = 10.6 Hz), 149.8, 152.2 (d, J = 244.3 Hz). MS (70 eV): m/z (%): 312.2 (31) [M⁺], 297.2 (100) [M⁺ – CH₃], 282.1 (8) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₇H₁₆F₄O: 312.1137, found 312.2.

11p: 2-(*tert*-butyl)-4-(1-(3-fluoro-4-methoxyphenyl)ethyl)-1-(trifluoromethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 3-(tert-butyl)-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5d** (306 mg, 1.0 mmol), 1-fluoro-2-methoxybenzene **10a** (57 μ L, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11p** (90 mg, 51%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.42 (s, 9H), 1.61 (d, J = 7.0 Hz, 3H), 3.86 (s, 3H), 4.10 (q, J = 7.0 Hz, 1H), 6.88–6.94 (m, 3H), 7.09 (d, J = 8.0 Hz, 1H), 7.48 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 21.7, 31.9 (q, J = 3.3 Hz), 36.5, 43.9, 56.2, 113.3, 115.3 (d, J = 18.3 Hz), 122.9 (d, J = 3.4 Hz), 124.6, 125.4 (CF₃, q, J = 272.0 Hz), 125.9 (q, J = 32.1 Hz), 128.2, 128.5(q, J = 3.8 Hz), 138.5 (d, J = 5.5 Hz), 145.9 (d, J = 10.6 Hz), 149.3, 149.5, 152.3 (d, J = 244.3 Hz). MS (70 eV): m/z (%): 354.2 (35) [M⁺], 339.2 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₂₀H₂₂F₄O: 354.1607, found 354.2.

11q: 5-(1-(3-fluoro-4-methoxyphenyl)ethyl)-1,3-dimethyl-2-(trifluoromethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of 3,5-dimethyl-4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone **5f** (278 mg, 1.0 mmol), 1-fluoro-2-methoxybenzene **10a** (57 μ L, 0.5 mmol) and pentan-3-one **7a** (157 μ L, 1.5 mmol) gave **11q** (78 mg, 48%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H** NMR (500 MHz, CDCl₃): δ 1.57 (d, J = 7.0 Hz, 3H), 2.43 (s, 6H), 3.85 (s, 3H), 4.00 (q, J = 7.0 Hz, 1H), 6.86–6.93 (m, 5H). ¹³C NMR (125 MHz, CDCl₃): δ 21.5, 21.6 (q, J = 4.0 Hz), 43.3, 56.2, 113.3, 115.2 (d, J = 18.3 Hz), 122.9 (d, J = 3.4 Hz), 125.5 (q, J = 28.3 Hz), 125.7 (CF₃, q, J = 272.0 Hz), 129.2, 137.6 (q, J = 1.9 Hz), 138.5 (d, J = 5.5 Hz), 145.9 (d, J = 10.6 Hz), 148.7, 152.2 (d, J = 244.3 Hz). MS (70 eV): m/z (%): 326.2 (31) [M⁺], 311.1 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₈H₁₈F₄O: 326.1294, found 326.2.

11r: 5-(1-(3-fluoro-4-methoxyphenyl)ethyl)-4'-methoxy-2-(trifluoromethyl)-1,1'-biphenyl Following synthesis the procedure for the of 11a, the reaction of 4'-methoxy-6-(trifluoromethyl)-6-((trimethylsilyl)oxy)-[1,1'-biphenyl]-3(6H)-one 5c (356 mg, 1.0 mmol), 1-fluoro-2-methoxybenzene 10a (57 µL, 0.5 mmol) and pentan-3-one 7a (157 µL, 1.5 mmol) gave 11r (81 mg, 48%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.62 (d, J = 7.0 Hz, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 4.13 (q, J = 7.0 Hz, 1H), 6.86–6.95 (m, 5H), 7.14 (s, 1H), 7.23–7.25 (m, 3H), 7.63 (d, J = 8.0 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 21.6, 43.6, 56.2, 56.3, 113.1, 113.3, 115.3 (d, J = 18.3 Hz), 122.9 (d, J = 3.4 Hz), 124.2 (CF₃, q, J = 272.0 Hz), 126.1, 126.3 (q, J = 3.8 Hz), 126.6 (q, J = 32.1 Hz), 130.1, 131.4, 132.2, 138.3 (d, J = 5.5 Hz), 141.3, 146.0 (d, J = 10.6 Hz), 149.6, 152.3 (d, J = 244.3 Hz), 159.1. MS (70 eV): m/z (%): 404.1 (65) [M⁺], 389.1 (100) [M⁺ – CH₃], 374.0 (2) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₂₃H₂₀F₄O₂: 404.1399, found 404.1.

11s: 2-fluoro-1-methoxy-4-(1-(4-(perfluoroethyl)phenyl)ethyl)benzene

Following the procedure for the synthesis of 11a, the reaction of 4-(perfluoroethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dienone 5g (300 mg, 1.0 mmol), 1-fluoro-2-methoxybenzene 10a (57 μ L, 0.5 mmol) and pentan-3-one 7a (157 μ L, 1.5 mmol) gave **11s** (115 mg, 57%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 8 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.61 (d, J = 7.5 Hz, 3H), 3.85 (s, 3H), 4.14 (q, J = 7.5 Hz, 1H), 6.87–6.94 (m, 3H), 7.31 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 21.6, 43.7, 56.2, 113.3, 113.5 (qt, J_1 = 253.1 Hz, J_2 = 38.6 Hz), 115.3 (d, J = 18.3 Hz), 119.1 (tq, J_1 = 249.4 Hz, J_2 = 39.4 Hz), 123.0 (d, J = 3.4 Hz), 126.5 (t, J = 15.8 Hz), 126.6 (t, J = 5.6 Hz), 127.8, 138.3 (d, J = 5.5 Hz), 146.1 (d, J = 10.6 Hz), 150.3, 152.3 (d, J = 244.5 Hz). MS (70 eV): m/z (%): 348.1 (36) [M⁺], 333.1 (100) [M⁺ – CH₃], 318.1 (2) [M⁺ – 2 CH₃]; MS (70 eV): calcd for C₁₇H₁₄F₆O: 404.1399, found 348.1.

11a: 2-fluoro-1-methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene

To the solution of *N*,4-dimethyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (358 mg, 1.0 mmol) in DCE (1 mL) was added TMSCl (126 μ L, 1 mmol) and In(OTf)₃ (56 mg, 0.1 mmol) at 60 °C. Then, 1-fluoro-2-methoxybenzene **10a** (57 μ L, 0.5 mmol) was added. After the reaction was finished as indicated by TLC (reaction time, 10 h), the resulting mixture was

poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1: 240) to afford **11a** (134 mg, 90%).

Please see the analytic data of 11a, 11b, 11d and 11e in page S9-12.

11t: 2-(1-(4-(trifluoromethyl)phenyl)ethyl)thiophene

11t': 3-(1-(4-(trifluoromethyl)phenyl)ethyl)thiophene

Following the procedure for the synthesis of **11a**, the reaction of *N*,4-dimethyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (179 mg, 0.5 mmol) and thiophene **10t** (82 μ L, 1.0 mmol) gave **11t/t'** (81 mg, 63%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 240). Reaction time 10 h.

Colorless viscous liquid, 11t/11t' = 2/1.

¹**H NMR** (500 MHz, CDCl₃):

11t, δ 1.71 (d, J = 7.5 Hz, 3H), 4.40 (q, J = 7.5 Hz, 1H), 6.81 (dd, J = 5.0 Hz, 1H), 6.93 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 7.17 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H).

11t', δ 1.64 (d, J = 7.5 Hz, 3H), 4.22 (q, J = 7.5 Hz, 1H), 6.85 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 6.99 (dd, J = 5.0 Hz, 1H), 7.25 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 22.0, 23.1, 40.5, 40.6, 120.2, 123.1 (CF₃, q, *J* = 270.1 Hz), 123.2 (CF₃, q, *J* = 270.1 Hz), 123.8, 123.9, 125.3 (q, *J* = 3.6 Hz), 125.4 (q, *J* = 3.6 Hz), 125.8, 126.7, 127.5, 127.6, 128.6 (q, *J* = 32.3 Hz), 128.7 (q, *J* = 32.3 Hz), 146.0, 149.2, 150.0, 150.3.

MS (70 eV): m/z (%): 256.0 (44) [M⁺], 241.0 (100) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₃H₁₁F₃S: 256.0534, found 256.0.

12a: p-tolyl(1-(4-(trifluoromethyl)phenyl)ethyl)sulfane

Following the procedure for the synthesis of **11a**, the reaction of N,4-dimethyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (179 mg, 0.5 mmol) and 4-methylbenzenethiol **10u** (124 mg, 1.0 mmol) gave **12a** (124 mg, 84%) after purification by

column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h. Colorless viscous liquid. ¹H NMR (500 MHz, CDCl₃): δ 1.60 (d, *J* = 7.0 Hz, 3H), 2.28 (s, 3H), 4.27 (q, *J* = 7.0 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 21.1, 21.8, 47.9, 124.8 (CF₃, q, *J* = 270.1 Hz), 125.2 (q, *J* = 3.6 Hz), 127.6, 129.1 (q, *J* = 32.3 Hz), 129.6, 130.4, 137.8, 147.6. MS (70 eV): *m/z* (%): 296.1 (38) [M⁺], 173.1 (100) [M⁺ - C₇H₇S]; MS (70 eV): calcd for C₁₆H₁₅F₃S: 296.0847, found 296.1.

12b: dodecyl(1-(4-(trifluoromethyl)phenyl)ethyl)sulfane

Following the procedure for the synthesis of **11a**, the reaction of *N*,4-dimethyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (179 mg, 0.5 mmol) and dodecane-1-thiol **10v** (240 μ L, 1.0 mmol) gave **12b** (114 mg, 61%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 0.88 (t, J = 7.0 Hz, 3H), 1.22–1.32 (m, 18H), 1.46–1.49 (m, 2H), 1.56 (d, J = 7.0 Hz, 3H), 2.23–2.35 (m, 2H), 3.98 (q, J = 7.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 14.1, 22.5, 22.7, 28.9, 29.1, 29.2, 29.3, 29.4, 29.5, 29.6 (2), 31.3, 31.9, 43.7, 124.1 (CF₃, q, J = 270.1 Hz), 125.4 (q, J = 3.6 Hz), 127.5, 129.1 (q, J = 32.3 Hz), 148.5. MS (70 eV): m/z (%): 374.2 (2) [M⁺], 201.2 (74) [M⁺ - C₉H₈F₃], 173.1 (100) [M⁺ - C₁₂H₂₅S]; MS (70 eV): calcd for C₂₁H₃₃F₃S: 374.2255, found 374.2.

13: 4,4'-(but-1-ene-2,3-diyl)bis((trifluoromethyl)benzene)

To the solution of *N*,4-dimethyl-*N*-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (179 mg, 0.5 mmol) in DCE (1 mL) was added TMSCl (126 μ L, 1 mmol) and In(OTf)₃ (56 mg, 0.1 mmol) at 80 °C. After the reaction was finished as indicated by TLC (reaction time, 10 h), the resulting mixture was poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1: 240) to afford **13** (159 mg, 93%).

Colorless viscous liquid. ¹**H NMR** (500 MHz, CDCl₃): δ 1.49 (d, J = 7.0 Hz, 3H), 3.73 (q, J = 7.0

Hz, 1H), 6.44 (d, J = 2.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 20.8, 42.5, 123.8 (CF₃, q, J = 270.6 Hz), 124.6 (CF₃, q, J = 270.6 Hz), 125.5 (q, J = 3.8 Hz), 126.3, 127.6, 128.1, 128.8 (q, J = 32.1 Hz), 129.1 (q, J = 32.1 Hz), 136.7, 140.7, 149.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.4, -64.3. MS (70 eV): m/z (%): 344.1 (31) [M⁺], 329.1 (32) [M⁺ – CH₃], 275.1 (100) [M⁺ – CF₃]; MS (70 eV): calcd for C₁₈H₁₄F₆: 344.1000, found 344.1.

15: (E)-1-(4-chloro-4-phenylbut-3-en-2-yl)-4-(trifluoromethyl)benzene

15': (*Z*)-1-(4-chloro-4-phenylbut-3-en-2-yl)-4-(trifluoromethyl)benzene

Following the procedure for the synthesis of **11a**, the reaction of N,4-dimethyl-N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide **9a** (358 mg, 1.0 mmol) and ethynylbenzene **14** (55 μ L, 0.5 mmol) gave **15/15'** (67 mg, 43%) after purification by column chromatography on silica gel using petroleum ether as eluant. Reaction time 10 h.

Colorless viscous liquid, 15/15' = 1/0.8.

¹**H NMR** (500 MHz, CDCl₃):

15, δ 1.37 (d, J = 7.0 Hz, 3H), 3.63 (m, 1H), 6.10 (d, J = 10.5 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.31–7.39 (m, 4H), 7.56 (d, J = 8.0 Hz, 4H).

15', δ 1.49 (d, *J* = 7.0Hz, 3H), 4.23 (m, 1H), 6.21 (d, *J* = 9.0 Hz, 1H), 7.31–7.39 (m, 5H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 20.8, 22.3, 39.5, 39.6, 123.8 (CF₃, q, *J* = 270.1 Hz), 124.6 (CF₃, q, *J* = 270.1 Hz), 125.5 (q, *J* = 3.6 Hz), 125.6 (q, *J* = 3.6 Hz), 126.5, 127.1, 127.4, 128.3, 128.4, 128.5, 128.7, 128.9, 131.0, 131.1, 132.7, 133.1, 136.9, 137.7, 148.8, 148.9.

MS (70 eV): m/z (%): 312.1 (33) [M⁺], 310.1 (100) [M⁺], 297.0 (21) [M⁺ – CH₃], 295.0 (65) [M⁺ – CH₃]; MS (70 eV): calcd for C₁₇H₁₄ClF₃: 310.0736, found 310.1.

17: ethyl 2-(N,4-dimethylphenylsulfonamido)-2-(4-(trifluoromethyl)phenyl)acetate

To the solution of ethyl 2-(4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexa-2,5-dien-1-ylidene)acetate **16** (160 mg, 0.5 mmol) and *N*,4-dimethylbenzenesulfonamide **8a** (278 mg, 1.5 mmol) in DCE (1 mL) was added TMSCl (126 μ L, 1 mmol) and In(OTf)₃ (28 mg, 0.05 mmol) at 25 °C. After the reaction

was finished as indicated by TLC (reaction time, 18 h), the resulting mixture was poured into water (20 mL) and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1: 15) to afford **17** (83 mg, 40%).

Colorless crystals, m.p. 89–90 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.17 (m, 3H), 2.45 (s, 3H), 2.76 (s, 3H), 4.03–4.12 (m, 2H), 5.92 (s, 1H), 7.33 (d, *J* = 7.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 7.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ 13.9, 21.5, 30.9, 61.6, 61.9, 123.7 (CF₃, q, *J* = 270.3 Hz), 125.7 (q, *J* = 3.8 Hz), 127.3, 128.9, 129.6, 130.8 (q, *J* = 32.3 Hz), 135.9, 137.9, 143.7, 168.9. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -64.7. **HRMS** (ESI-TOF) Calcd for C₁₉H₂₀F₃NNaO₄S (M+Na)⁺ 438.0957. Found 438.0955.

III. Mechanism Study

(a) ¹⁹F NMR monitoring reaction of **5a**, **7a**, and **8a** (0.5 h)

(b) HRMS (ESI-TOF) spectrum of intermediate **B** in the reaction mixture.

HRMS (ESI-TOF) Calcd for $C_{20}H_{22}F_3NNaO_3S$ (M+Na)⁺ 436.1165. Found 436.1197

IV. Crystal Data and OPTEP Drawings

Single-crystal X-ray diffraction data was collected at room temperature on a Oxford Diffraction Gemini R Ultra diffractometer, the X-ray generator using Mo-K α ($\lambda = 0.71073$ Å) radiation with a ω scan technique. The crystal structures were solved by direct method of SHELXS-97³ and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined anisotropic. CCDC deposition number: 1479295 (**9j**). Data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

(1) Crystal data and OPTEP drawing of compound 9j

ORTEP drawing:

Crystar data	Ľ
--------------	---

Empirical formula	$C_{16}H_{16}F_3NO_2S$
Formula weight	343.36
Crystal system	Monoclinic
Space group	P 1 21/n 1
a (Å)	8.5653(13)
b (Å)	10.5123(16)
c (Å)	17.819(3)
α (deg)	90
β (deg)	94.319(3)
γ (deg)	90
Volume (Å ³)	1599.9(4)
Ζ	4
Calculated density (mg/m ³)	1.425

3 G. M. Sheldrick, SHELXS-97, Programs for X-ray Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

Absorption coefficient (mm ⁻¹)	0.241
F(000)	712
Theta range for data collection (deg)	0.995 to 26.037
Reflections collected/unique	9833/3136
Goodness-of-fit on F ²	1.007
Final R indices $[I > 2\sigma (I)]$	R1=0.063, WR2 =0.162
R indices (all data)	R1=0.064, WR2 =0.180

V. Copies of ¹H NMR , ¹³C NMR and ¹⁹F NMR Spectra ¹H NMR (500 MHz, CDCl₃) for **9a**

1H NMR (500 MHz, CDCl₃) for 9d

S30

S31

1H NMR (500 MHz, CDCl₃) for 9f

S33

1H NMR (500 MHz, CDCl₃) for 9h

¹⁹F NMR (470 MHz. CDCl₃) for 9h

CF₃ 9h

^{13}C NMR (125 MHz, CDCl_3) for 9i

S38

^{13}C NMR (125 MHz, CDCl₃) for 9m

S40

^{13}C NMR (125 MHz, CDCl₃) for 9n

4.5 4.0 f1 (ppm)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

8.0

7.5

7.0

6.0

6.5

5.5

5.0

¹H NMR (500 MHz, CDCl₃) for **11a**

 ^{13}C NMR (125 MHz, CDCl_3) for 11b

¹H NMR (500 MHz, CDCl₃) for 11c

110 100 f1 (ppm)

¹**H NMR** (500 MHz, CDCl₃) for **11d**

S47

S48

^{13}C NMR (125 MHz, CDCl_3) for 11g

1H NMR (500 MHz, CDCl₃) for 11j

1H NMR (500 MHz, CDCl_3) for 11k

^{13}C NMR (125 MHz, CDCl_3) for 11k

S52

¹³C NMR (125 MHz, CDCl₃) for 111/111'

¹³C NMR (125 MHz, CDCl₃) for 11m/11m'

1H NMR (500 MHz, CDCl₃) for 11q

S61

^{13}C NMR (125 MHz, CDCl_3) for 12a

 ^1H NMR (500 MHz, CDCl₃) for 12b

 1H NMR (500 MHz, CDCl₃) for 13

¹H NMR (500 MHz, CDCl₃) for 15/15'

¹³C NMR (125 MHz, CDCl₃) for 15/15'

110 100 f1 (ppm)

 ^{19}F NMR (470 MHz, CDCl₃) for 17

---64.739

